pci: Additional search functions

In order to finish converting to pci_get_* interfaces we need to add a couple
of bits of missing functionaility

pci_get_bus_and_slot() provides the equivalent to pci_find_slot()
(pci_get_slot is already taken as a name for something similar but not the
same)

pci_get_device_reverse() is the equivalent of pci_find_device_reverse but
refcounting

Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
Alan Cox 2006-10-16 16:20:21 -07:00 committed by Greg Kroah-Hartman
parent 11f242f04c
commit 29f3eb6463
2 changed files with 72 additions and 3 deletions

View File

@ -139,6 +139,31 @@ struct pci_dev * pci_get_slot(struct pci_bus *bus, unsigned int devfn)
return dev; return dev;
} }
/**
* pci_get_bus_and_slot - locate PCI device from a given PCI slot
* @bus: number of PCI bus on which desired PCI device resides
* @devfn: encodes number of PCI slot in which the desired PCI
* device resides and the logical device number within that slot
* in case of multi-function devices.
*
* Given a PCI bus and slot/function number, the desired PCI device
* is located in system global list of PCI devices. If the device
* is found, a pointer to its data structure is returned. If no
* device is found, %NULL is returned. The returned device has its
* reference count bumped by one.
*/
struct pci_dev * pci_get_bus_and_slot(unsigned int bus, unsigned int devfn)
{
struct pci_dev *dev = NULL;
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
if (dev->bus->number == bus && dev->devfn == devfn)
return dev;
}
return NULL;
}
/** /**
* pci_find_subsys - begin or continue searching for a PCI device by vendor/subvendor/device/subdevice id * pci_find_subsys - begin or continue searching for a PCI device by vendor/subvendor/device/subdevice id
* @vendor: PCI vendor id to match, or %PCI_ANY_ID to match all vendor ids * @vendor: PCI vendor id to match, or %PCI_ANY_ID to match all vendor ids
@ -274,6 +299,45 @@ pci_get_device(unsigned int vendor, unsigned int device, struct pci_dev *from)
return pci_get_subsys(vendor, device, PCI_ANY_ID, PCI_ANY_ID, from); return pci_get_subsys(vendor, device, PCI_ANY_ID, PCI_ANY_ID, from);
} }
/**
* pci_get_device_reverse - begin or continue searching for a PCI device by vendor/device id
* @vendor: PCI vendor id to match, or %PCI_ANY_ID to match all vendor ids
* @device: PCI device id to match, or %PCI_ANY_ID to match all device ids
* @from: Previous PCI device found in search, or %NULL for new search.
*
* Iterates through the list of known PCI devices in the reverse order of
* pci_get_device.
* If a PCI device is found with a matching @vendor and @device, the reference
* count to the device is incremented and a pointer to its device structure
* is returned Otherwise, %NULL is returned. A new search is initiated by
* passing %NULL as the @from argument. Otherwise if @from is not %NULL,
* searches continue from next device on the global list. The reference
* count for @from is always decremented if it is not %NULL.
*/
struct pci_dev *
pci_get_device_reverse(unsigned int vendor, unsigned int device, struct pci_dev *from)
{
struct list_head *n;
struct pci_dev *dev;
WARN_ON(in_interrupt());
down_read(&pci_bus_sem);
n = from ? from->global_list.prev : pci_devices.prev;
while (n && (n != &pci_devices)) {
dev = pci_dev_g(n);
if ((vendor == PCI_ANY_ID || dev->vendor == vendor) &&
(device == PCI_ANY_ID || dev->device == device))
goto exit;
n = n->prev;
}
dev = NULL;
exit:
dev = pci_dev_get(dev);
up_read(&pci_bus_sem);
pci_dev_put(from);
return dev;
}
/** /**
* pci_find_device_reverse - begin or continue searching for a PCI device by vendor/device id * pci_find_device_reverse - begin or continue searching for a PCI device by vendor/device id
@ -382,12 +446,16 @@ exit:
} }
EXPORT_SYMBOL(pci_dev_present); EXPORT_SYMBOL(pci_dev_present);
EXPORT_SYMBOL(pci_find_bus);
EXPORT_SYMBOL(pci_find_next_bus);
EXPORT_SYMBOL(pci_find_device); EXPORT_SYMBOL(pci_find_device);
EXPORT_SYMBOL(pci_find_device_reverse); EXPORT_SYMBOL(pci_find_device_reverse);
EXPORT_SYMBOL(pci_find_slot); EXPORT_SYMBOL(pci_find_slot);
/* For boot time work */
EXPORT_SYMBOL(pci_find_bus);
EXPORT_SYMBOL(pci_find_next_bus);
/* For everyone */
EXPORT_SYMBOL(pci_get_device); EXPORT_SYMBOL(pci_get_device);
EXPORT_SYMBOL(pci_get_device_reverse);
EXPORT_SYMBOL(pci_get_subsys); EXPORT_SYMBOL(pci_get_subsys);
EXPORT_SYMBOL(pci_get_slot); EXPORT_SYMBOL(pci_get_slot);
EXPORT_SYMBOL(pci_get_bus_and_slot);
EXPORT_SYMBOL(pci_get_class); EXPORT_SYMBOL(pci_get_class);

View File

@ -452,13 +452,14 @@ struct pci_dev *pci_find_slot (unsigned int bus, unsigned int devfn);
int pci_find_capability (struct pci_dev *dev, int cap); int pci_find_capability (struct pci_dev *dev, int cap);
int pci_find_next_capability (struct pci_dev *dev, u8 pos, int cap); int pci_find_next_capability (struct pci_dev *dev, u8 pos, int cap);
int pci_find_ext_capability (struct pci_dev *dev, int cap); int pci_find_ext_capability (struct pci_dev *dev, int cap);
struct pci_bus * pci_find_next_bus(const struct pci_bus *from); struct pci_bus *pci_find_next_bus(const struct pci_bus *from);
struct pci_dev *pci_get_device (unsigned int vendor, unsigned int device, struct pci_dev *from); struct pci_dev *pci_get_device (unsigned int vendor, unsigned int device, struct pci_dev *from);
struct pci_dev *pci_get_subsys (unsigned int vendor, unsigned int device, struct pci_dev *pci_get_subsys (unsigned int vendor, unsigned int device,
unsigned int ss_vendor, unsigned int ss_device, unsigned int ss_vendor, unsigned int ss_device,
struct pci_dev *from); struct pci_dev *from);
struct pci_dev *pci_get_slot (struct pci_bus *bus, unsigned int devfn); struct pci_dev *pci_get_slot (struct pci_bus *bus, unsigned int devfn);
struct pci_dev *pci_get_bus_and_slot (unsigned int bus, unsigned int devfn);
struct pci_dev *pci_get_class (unsigned int class, struct pci_dev *from); struct pci_dev *pci_get_class (unsigned int class, struct pci_dev *from);
int pci_dev_present(const struct pci_device_id *ids); int pci_dev_present(const struct pci_device_id *ids);