lib/sha1: use the git implementation of SHA-1

For ChromiumOS, we use SHA-1 to verify the integrity of the root
filesystem.  The speed of the kernel sha-1 implementation has a major
impact on our boot performance.

To improve boot performance, we investigated using the heavily optimized
sha-1 implementation used in git.  With the git sha-1 implementation, we
see a 11.7% improvement in boot time.

10 reboots, remove slowest/fastest.

Before:

  Mean: 6.58 seconds Stdev: 0.14

After (with git sha-1, this patch):

  Mean: 5.89 seconds Stdev: 0.07

The other cool thing about the git SHA-1 implementation is that it only
needs 64 bytes of stack for the workspace while the original kernel
implementation needed 320 bytes.

Signed-off-by: Mandeep Singh Baines <msb@chromium.org>
Cc: Ramsay Jones <ramsay@ramsay1.demon.co.uk>
Cc: Nicolas Pitre <nico@cam.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: David S. Miller <davem@davemloft.net>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Mandeep Singh Baines 2011-08-05 18:46:27 -07:00 committed by Linus Torvalds
parent de96355c11
commit 1eb19a12bd
2 changed files with 152 additions and 48 deletions

View File

@ -3,7 +3,7 @@
#define SHA_DIGEST_WORDS 5 #define SHA_DIGEST_WORDS 5
#define SHA_MESSAGE_BYTES (512 /*bits*/ / 8) #define SHA_MESSAGE_BYTES (512 /*bits*/ / 8)
#define SHA_WORKSPACE_WORDS 80 #define SHA_WORKSPACE_WORDS 16
void sha_init(__u32 *buf); void sha_init(__u32 *buf);
void sha_transform(__u32 *digest, const char *data, __u32 *W); void sha_transform(__u32 *digest, const char *data, __u32 *W);

View File

@ -1,31 +1,72 @@
/* /*
* SHA transform algorithm, originally taken from code written by * SHA1 routine optimized to do word accesses rather than byte accesses,
* Peter Gutmann, and placed in the public domain. * and to avoid unnecessary copies into the context array.
*
* This was based on the git SHA1 implementation.
*/ */
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/cryptohash.h> #include <linux/bitops.h>
#include <asm/unaligned.h>
/* The SHA f()-functions. */ /*
* If you have 32 registers or more, the compiler can (and should)
* try to change the array[] accesses into registers. However, on
* machines with less than ~25 registers, that won't really work,
* and at least gcc will make an unholy mess of it.
*
* So to avoid that mess which just slows things down, we force
* the stores to memory to actually happen (we might be better off
* with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
* suggested by Artur Skawina - that will also make gcc unable to
* try to do the silly "optimize away loads" part because it won't
* see what the value will be).
*
* Ben Herrenschmidt reports that on PPC, the C version comes close
* to the optimized asm with this (ie on PPC you don't want that
* 'volatile', since there are lots of registers).
*
* On ARM we get the best code generation by forcing a full memory barrier
* between each SHA_ROUND, otherwise gcc happily get wild with spilling and
* the stack frame size simply explode and performance goes down the drain.
*/
#define f1(x,y,z) (z ^ (x & (y ^ z))) /* x ? y : z */ #ifdef CONFIG_X86
#define f2(x,y,z) (x ^ y ^ z) /* XOR */ #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
#define f3(x,y,z) ((x & y) + (z & (x ^ y))) /* majority */ #elif defined(CONFIG_ARM)
#define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
#else
#define setW(x, val) (W(x) = (val))
#endif
/* The SHA Mysterious Constants */ /* This "rolls" over the 512-bit array */
#define W(x) (array[(x)&15])
#define K1 0x5A827999L /* Rounds 0-19: sqrt(2) * 2^30 */ /*
#define K2 0x6ED9EBA1L /* Rounds 20-39: sqrt(3) * 2^30 */ * Where do we get the source from? The first 16 iterations get it from
#define K3 0x8F1BBCDCL /* Rounds 40-59: sqrt(5) * 2^30 */ * the input data, the next mix it from the 512-bit array.
#define K4 0xCA62C1D6L /* Rounds 60-79: sqrt(10) * 2^30 */ */
#define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
#define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
__u32 TEMP = input(t); setW(t, TEMP); \
E += TEMP + rol32(A,5) + (fn) + (constant); \
B = ror32(B, 2); } while (0)
#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E )
/** /**
* sha_transform - single block SHA1 transform * sha_transform - single block SHA1 transform
* *
* @digest: 160 bit digest to update * @digest: 160 bit digest to update
* @data: 512 bits of data to hash * @data: 512 bits of data to hash
* @W: 80 words of workspace (see note) * @array: 16 words of workspace (see note)
* *
* This function generates a SHA1 digest for a single 512-bit block. * This function generates a SHA1 digest for a single 512-bit block.
* Be warned, it does not handle padding and message digest, do not * Be warned, it does not handle padding and message digest, do not
@ -36,47 +77,111 @@
* to clear the workspace. This is left to the caller to avoid * to clear the workspace. This is left to the caller to avoid
* unnecessary clears between chained hashing operations. * unnecessary clears between chained hashing operations.
*/ */
void sha_transform(__u32 *digest, const char *in, __u32 *W) void sha_transform(__u32 *digest, const char *data, __u32 *array)
{ {
__u32 a, b, c, d, e, t, i; __u32 A, B, C, D, E;
for (i = 0; i < 16; i++) A = digest[0];
W[i] = be32_to_cpu(((const __be32 *)in)[i]); B = digest[1];
C = digest[2];
D = digest[3];
E = digest[4];
for (i = 0; i < 64; i++) /* Round 1 - iterations 0-16 take their input from 'data' */
W[i+16] = rol32(W[i+13] ^ W[i+8] ^ W[i+2] ^ W[i], 1); T_0_15( 0, A, B, C, D, E);
T_0_15( 1, E, A, B, C, D);
T_0_15( 2, D, E, A, B, C);
T_0_15( 3, C, D, E, A, B);
T_0_15( 4, B, C, D, E, A);
T_0_15( 5, A, B, C, D, E);
T_0_15( 6, E, A, B, C, D);
T_0_15( 7, D, E, A, B, C);
T_0_15( 8, C, D, E, A, B);
T_0_15( 9, B, C, D, E, A);
T_0_15(10, A, B, C, D, E);
T_0_15(11, E, A, B, C, D);
T_0_15(12, D, E, A, B, C);
T_0_15(13, C, D, E, A, B);
T_0_15(14, B, C, D, E, A);
T_0_15(15, A, B, C, D, E);
a = digest[0]; /* Round 1 - tail. Input from 512-bit mixing array */
b = digest[1]; T_16_19(16, E, A, B, C, D);
c = digest[2]; T_16_19(17, D, E, A, B, C);
d = digest[3]; T_16_19(18, C, D, E, A, B);
e = digest[4]; T_16_19(19, B, C, D, E, A);
for (i = 0; i < 20; i++) { /* Round 2 */
t = f1(b, c, d) + K1 + rol32(a, 5) + e + W[i]; T_20_39(20, A, B, C, D, E);
e = d; d = c; c = rol32(b, 30); b = a; a = t; T_20_39(21, E, A, B, C, D);
} T_20_39(22, D, E, A, B, C);
T_20_39(23, C, D, E, A, B);
T_20_39(24, B, C, D, E, A);
T_20_39(25, A, B, C, D, E);
T_20_39(26, E, A, B, C, D);
T_20_39(27, D, E, A, B, C);
T_20_39(28, C, D, E, A, B);
T_20_39(29, B, C, D, E, A);
T_20_39(30, A, B, C, D, E);
T_20_39(31, E, A, B, C, D);
T_20_39(32, D, E, A, B, C);
T_20_39(33, C, D, E, A, B);
T_20_39(34, B, C, D, E, A);
T_20_39(35, A, B, C, D, E);
T_20_39(36, E, A, B, C, D);
T_20_39(37, D, E, A, B, C);
T_20_39(38, C, D, E, A, B);
T_20_39(39, B, C, D, E, A);
for (; i < 40; i ++) { /* Round 3 */
t = f2(b, c, d) + K2 + rol32(a, 5) + e + W[i]; T_40_59(40, A, B, C, D, E);
e = d; d = c; c = rol32(b, 30); b = a; a = t; T_40_59(41, E, A, B, C, D);
} T_40_59(42, D, E, A, B, C);
T_40_59(43, C, D, E, A, B);
T_40_59(44, B, C, D, E, A);
T_40_59(45, A, B, C, D, E);
T_40_59(46, E, A, B, C, D);
T_40_59(47, D, E, A, B, C);
T_40_59(48, C, D, E, A, B);
T_40_59(49, B, C, D, E, A);
T_40_59(50, A, B, C, D, E);
T_40_59(51, E, A, B, C, D);
T_40_59(52, D, E, A, B, C);
T_40_59(53, C, D, E, A, B);
T_40_59(54, B, C, D, E, A);
T_40_59(55, A, B, C, D, E);
T_40_59(56, E, A, B, C, D);
T_40_59(57, D, E, A, B, C);
T_40_59(58, C, D, E, A, B);
T_40_59(59, B, C, D, E, A);
for (; i < 60; i ++) { /* Round 4 */
t = f3(b, c, d) + K3 + rol32(a, 5) + e + W[i]; T_60_79(60, A, B, C, D, E);
e = d; d = c; c = rol32(b, 30); b = a; a = t; T_60_79(61, E, A, B, C, D);
} T_60_79(62, D, E, A, B, C);
T_60_79(63, C, D, E, A, B);
T_60_79(64, B, C, D, E, A);
T_60_79(65, A, B, C, D, E);
T_60_79(66, E, A, B, C, D);
T_60_79(67, D, E, A, B, C);
T_60_79(68, C, D, E, A, B);
T_60_79(69, B, C, D, E, A);
T_60_79(70, A, B, C, D, E);
T_60_79(71, E, A, B, C, D);
T_60_79(72, D, E, A, B, C);
T_60_79(73, C, D, E, A, B);
T_60_79(74, B, C, D, E, A);
T_60_79(75, A, B, C, D, E);
T_60_79(76, E, A, B, C, D);
T_60_79(77, D, E, A, B, C);
T_60_79(78, C, D, E, A, B);
T_60_79(79, B, C, D, E, A);
for (; i < 80; i ++) { digest[0] += A;
t = f2(b, c, d) + K4 + rol32(a, 5) + e + W[i]; digest[1] += B;
e = d; d = c; c = rol32(b, 30); b = a; a = t; digest[2] += C;
} digest[3] += D;
digest[4] += E;
digest[0] += a;
digest[1] += b;
digest[2] += c;
digest[3] += d;
digest[4] += e;
} }
EXPORT_SYMBOL(sha_transform); EXPORT_SYMBOL(sha_transform);
@ -92,4 +197,3 @@ void sha_init(__u32 *buf)
buf[3] = 0x10325476; buf[3] = 0x10325476;
buf[4] = 0xc3d2e1f0; buf[4] = 0xc3d2e1f0;
} }