diff --git a/arch/x86/kernel/uprobes.c b/arch/x86/kernel/uprobes.c index 31dcb4d5ea46..159ca520ef5b 100644 --- a/arch/x86/kernel/uprobes.c +++ b/arch/x86/kernel/uprobes.c @@ -41,8 +41,11 @@ /* Instruction will modify TF, don't change it */ #define UPROBE_FIX_SETF 0x04 -#define UPROBE_FIX_RIP_AX 0x08 -#define UPROBE_FIX_RIP_CX 0x10 +#define UPROBE_FIX_RIP_SI 0x08 +#define UPROBE_FIX_RIP_DI 0x10 +#define UPROBE_FIX_RIP_BX 0x20 +#define UPROBE_FIX_RIP_MASK \ + (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX) #define UPROBE_TRAP_NR UINT_MAX @@ -275,20 +278,109 @@ static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) { u8 *cursor; u8 reg; + u8 reg2; if (!insn_rip_relative(insn)) return; /* - * insn_rip_relative() would have decoded rex_prefix, modrm. + * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm. * Clear REX.b bit (extension of MODRM.rm field): - * we want to encode rax/rcx, not r8/r9. + * we want to encode low numbered reg, not r8+. */ if (insn->rex_prefix.nbytes) { cursor = auprobe->insn + insn_offset_rex_prefix(insn); - *cursor &= 0xfe; /* Clearing REX.B bit */ + /* REX byte has 0100wrxb layout, clearing REX.b bit */ + *cursor &= 0xfe; + } + /* + * Similar treatment for VEX3 prefix. + * TODO: add XOP/EVEX treatment when insn decoder supports them + */ + if (insn->vex_prefix.nbytes == 3) { + /* + * vex2: c5 rvvvvLpp (has no b bit) + * vex3/xop: c4/8f rxbmmmmm wvvvvLpp + * evex: 62 rxbR00mm wvvvv1pp zllBVaaa + * (evex will need setting of both b and x since + * in non-sib encoding evex.x is 4th bit of MODRM.rm) + * Setting VEX3.b (setting because it has inverted meaning): + */ + cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1; + *cursor |= 0x20; } + /* + * Convert from rip-relative addressing to register-relative addressing + * via a scratch register. + * + * This is tricky since there are insns with modrm byte + * which also use registers not encoded in modrm byte: + * [i]div/[i]mul: implicitly use dx:ax + * shift ops: implicitly use cx + * cmpxchg: implicitly uses ax + * cmpxchg8/16b: implicitly uses dx:ax and bx:cx + * Encoding: 0f c7/1 modrm + * The code below thinks that reg=1 (cx), chooses si as scratch. + * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m. + * First appeared in Haswell (BMI2 insn). It is vex-encoded. + * Example where none of bx,cx,dx can be used as scratch reg: + * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx + * [v]pcmpistri: implicitly uses cx, xmm0 + * [v]pcmpistrm: implicitly uses xmm0 + * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0 + * [v]pcmpestrm: implicitly uses ax, dx, xmm0 + * Evil SSE4.2 string comparison ops from hell. + * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination. + * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm. + * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi). + * AMD says it has no 3-operand form (vex.vvvv must be 1111) + * and that it can have only register operands, not mem + * (its modrm byte must have mode=11). + * If these restrictions will ever be lifted, + * we'll need code to prevent selection of di as scratch reg! + * + * Summary: I don't know any insns with modrm byte which + * use SI register implicitly. DI register is used only + * by one insn (maskmovq) and BX register is used + * only by one too (cmpxchg8b). + * BP is stack-segment based (may be a problem?). + * AX, DX, CX are off-limits (many implicit users). + * SP is unusable (it's stack pointer - think about "pop mem"; + * also, rsp+disp32 needs sib encoding -> insn length change). + */ + + reg = MODRM_REG(insn); /* Fetch modrm.reg */ + reg2 = 0xff; /* Fetch vex.vvvv */ + if (insn->vex_prefix.nbytes == 2) + reg2 = insn->vex_prefix.bytes[1]; + else if (insn->vex_prefix.nbytes == 3) + reg2 = insn->vex_prefix.bytes[2]; + /* + * TODO: add XOP, EXEV vvvv reading. + * + * vex.vvvv field is in bits 6-3, bits are inverted. + * But in 32-bit mode, high-order bit may be ignored. + * Therefore, let's consider only 3 low-order bits. + */ + reg2 = ((reg2 >> 3) & 0x7) ^ 0x7; + /* + * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15. + * + * Choose scratch reg. Order is important: must not select bx + * if we can use si (cmpxchg8b case!) + */ + if (reg != 6 && reg2 != 6) { + reg2 = 6; + auprobe->def.fixups |= UPROBE_FIX_RIP_SI; + } else if (reg != 7 && reg2 != 7) { + reg2 = 7; + auprobe->def.fixups |= UPROBE_FIX_RIP_DI; + /* TODO (paranoia): force maskmovq to not use di */ + } else { + reg2 = 3; + auprobe->def.fixups |= UPROBE_FIX_RIP_BX; + } /* * Point cursor at the modrm byte. The next 4 bytes are the * displacement. Beyond the displacement, for some instructions, @@ -296,41 +388,21 @@ static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) */ cursor = auprobe->insn + insn_offset_modrm(insn); /* - * Convert from rip-relative addressing - * to register-relative addressing via a scratch register. + * Change modrm from "00 reg 101" to "10 reg reg2". Example: + * 89 05 disp32 mov %eax,disp32(%rip) becomes + * 89 86 disp32 mov %eax,disp32(%rsi) */ - reg = MODRM_REG(insn); - if (reg == 0) { - /* - * The register operand (if any) is either the A register - * (%rax, %eax, etc.) or (if the 0x4 bit is set in the - * REX prefix) %r8. In any case, we know the C register - * is NOT the register operand, so we use %rcx (register - * #1) for the scratch register. - */ - auprobe->def.fixups |= UPROBE_FIX_RIP_CX; - /* - * Change modrm from "00 000 101" to "10 000 001". Example: - * 89 05 disp32 mov %eax,disp32(%rip) becomes - * 89 81 disp32 mov %eax,disp32(%rcx) - */ - *cursor = 0x81; - } else { - /* Use %rax (register #0) for the scratch register. */ - auprobe->def.fixups |= UPROBE_FIX_RIP_AX; - /* - * Change modrm from "00 reg 101" to "10 reg 000". Example: - * 89 1d disp32 mov %edx,disp32(%rip) becomes - * 89 98 disp32 mov %edx,disp32(%rax) - */ - *cursor = (reg << 3) | 0x80; - } + *cursor = 0x80 | (reg << 3) | reg2; } static inline unsigned long * scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs) { - return (auprobe->def.fixups & UPROBE_FIX_RIP_AX) ? ®s->ax : ®s->cx; + if (auprobe->def.fixups & UPROBE_FIX_RIP_SI) + return ®s->si; + if (auprobe->def.fixups & UPROBE_FIX_RIP_DI) + return ®s->di; + return ®s->bx; } /* @@ -339,7 +411,7 @@ scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs) */ static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) { - if (auprobe->def.fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) { + if (auprobe->def.fixups & UPROBE_FIX_RIP_MASK) { struct uprobe_task *utask = current->utask; unsigned long *sr = scratch_reg(auprobe, regs); @@ -350,7 +422,7 @@ static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) { - if (auprobe->def.fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) { + if (auprobe->def.fixups & UPROBE_FIX_RIP_MASK) { struct uprobe_task *utask = current->utask; unsigned long *sr = scratch_reg(auprobe, regs); @@ -405,6 +477,23 @@ static int push_ret_address(struct pt_regs *regs, unsigned long ip) return 0; } +/* + * We have to fix things up as follows: + * + * Typically, the new ip is relative to the copied instruction. We need + * to make it relative to the original instruction (FIX_IP). Exceptions + * are return instructions and absolute or indirect jump or call instructions. + * + * If the single-stepped instruction was a call, the return address that + * is atop the stack is the address following the copied instruction. We + * need to make it the address following the original instruction (FIX_CALL). + * + * If the original instruction was a rip-relative instruction such as + * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent + * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)". + * We need to restore the contents of the scratch register + * (FIX_RIP_reg). + */ static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) { struct uprobe_task *utask = current->utask; @@ -711,21 +800,6 @@ bool arch_uprobe_xol_was_trapped(struct task_struct *t) * single-step, we single-stepped a copy of the instruction. * * This function prepares to resume execution after the single-step. - * We have to fix things up as follows: - * - * Typically, the new ip is relative to the copied instruction. We need - * to make it relative to the original instruction (FIX_IP). Exceptions - * are return instructions and absolute or indirect jump or call instructions. - * - * If the single-stepped instruction was a call, the return address that - * is atop the stack is the address following the copied instruction. We - * need to make it the address following the original instruction (FIX_CALL). - * - * If the original instruction was a rip-relative instruction such as - * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent - * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rax)". - * We need to restore the contents of the scratch register - * (FIX_RIP_AX or FIX_RIP_CX). */ int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) {