livepatch: Remove .klp.arch

After the previous patch, vmlinux-specific KLP relocations are now
applied early during KLP module load.  This means that .klp.arch
sections are no longer needed for *vmlinux-specific* KLP relocations.

One might think they're still needed for *module-specific* KLP
relocations.  If a to-be-patched module is loaded *after* its
corresponding KLP module is loaded, any corresponding KLP relocations
will be delayed until the to-be-patched module is loaded.  If any
special sections (.parainstructions, for example) rely on those
relocations, their initializations (apply_paravirt) need to be done
afterwards.  Thus the apparent need for arch_klp_init_object_loaded()
and its corresponding .klp.arch sections -- it allows some of the
special section initializations to be done at a later time.

But... if you look closer, that dependency between the special sections
and the module-specific KLP relocations doesn't actually exist in
reality.  Looking at the contents of the .altinstructions and
.parainstructions sections, there's not a realistic scenario in which a
KLP module's .altinstructions or .parainstructions section needs to
access a symbol in a to-be-patched module.  It might need to access a
local symbol or even a vmlinux symbol; but not another module's symbol.
When a special section needs to reference a local or vmlinux symbol, a
normal rela can be used instead of a KLP rela.

Since the special section initializations don't actually have any real
dependency on module-specific KLP relocations, .klp.arch and
arch_klp_init_object_loaded() no longer have a reason to exist.  So
remove them.

As Peter said much more succinctly:

  So the reason for .klp.arch was that .klp.rela.* stuff would overwrite
  paravirt instructions. If that happens you're doing it wrong. Those
  RELAs are core kernel, not module, and thus should've happened in
  .rela.* sections at patch-module loading time.

  Reverting this removes the two apply_{paravirt,alternatives}() calls
  from the late patching path, and means we don't have to worry about
  them when removing module_disable_ro().

[ jpoimboe: Rewrote patch description.  Tweaked klp_init_object_loaded()
	    error path. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
This commit is contained in:
Peter Zijlstra 2020-04-29 10:24:45 -05:00 committed by Jiri Kosina
parent 7c8e2bdd5f
commit 1d05334d28
5 changed files with 11 additions and 88 deletions

View File

@ -14,8 +14,7 @@ This document outlines the Elf format requirements that livepatch modules must f
4. Livepatch symbols
4.1 A livepatch module's symbol table
4.2 Livepatch symbol format
5. Architecture-specific sections
6. Symbol table and Elf section access
5. Symbol table and Elf section access
1. Background and motivation
============================
@ -298,17 +297,7 @@ Examples:
Note that the 'Ndx' (Section index) for these symbols is SHN_LIVEPATCH (0xff20).
"OS" means OS-specific.
5. Architecture-specific sections
=================================
Architectures may override arch_klp_init_object_loaded() to perform
additional arch-specific tasks when a target module loads, such as applying
arch-specific sections. On x86 for example, we must apply per-object
.altinstructions and .parainstructions sections when a target module loads.
These sections must be prefixed with ".klp.arch.$objname." so that they can
be easily identified when iterating through a patch module's Elf sections
(See arch/x86/kernel/livepatch.c for a complete example).
6. Symbol table and Elf section access
5. Symbol table and Elf section access
======================================
A livepatch module's symbol table is accessible through module->symtab.

View File

@ -90,7 +90,6 @@ obj-$(CONFIG_X86_MPPARSE) += mpparse.o
obj-y += apic/
obj-$(CONFIG_X86_REBOOTFIXUPS) += reboot_fixups_32.o
obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o
obj-$(CONFIG_LIVEPATCH) += livepatch.o
obj-$(CONFIG_FUNCTION_TRACER) += ftrace_$(BITS).o
obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += ftrace.o
obj-$(CONFIG_FTRACE_SYSCALLS) += ftrace.o

View File

@ -1,53 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* livepatch.c - x86-specific Kernel Live Patching Core
*/
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/livepatch.h>
#include <asm/text-patching.h>
/* Apply per-object alternatives. Based on x86 module_finalize() */
void arch_klp_init_object_loaded(struct klp_patch *patch,
struct klp_object *obj)
{
int cnt;
struct klp_modinfo *info;
Elf_Shdr *s, *alt = NULL, *para = NULL;
void *aseg, *pseg;
const char *objname;
char sec_objname[MODULE_NAME_LEN];
char secname[KSYM_NAME_LEN];
info = patch->mod->klp_info;
objname = obj->name ? obj->name : "vmlinux";
/* See livepatch core code for BUILD_BUG_ON() explanation */
BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
for (s = info->sechdrs; s < info->sechdrs + info->hdr.e_shnum; s++) {
/* Apply per-object .klp.arch sections */
cnt = sscanf(info->secstrings + s->sh_name,
".klp.arch.%55[^.].%127s",
sec_objname, secname);
if (cnt != 2)
continue;
if (strcmp(sec_objname, objname))
continue;
if (!strcmp(".altinstructions", secname))
alt = s;
if (!strcmp(".parainstructions", secname))
para = s;
}
if (alt) {
aseg = (void *) alt->sh_addr;
apply_alternatives(aseg, aseg + alt->sh_size);
}
if (para) {
pseg = (void *) para->sh_addr;
apply_paravirt(pseg, pseg + para->sh_size);
}
}

View File

@ -195,9 +195,6 @@ struct klp_patch {
int klp_enable_patch(struct klp_patch *);
void arch_klp_init_object_loaded(struct klp_patch *patch,
struct klp_object *obj);
/* Called from the module loader during module coming/going states */
int klp_module_coming(struct module *mod);
void klp_module_going(struct module *mod);

View File

@ -729,12 +729,6 @@ static int klp_init_func(struct klp_object *obj, struct klp_func *func)
func->old_sympos ? func->old_sympos : 1);
}
/* Arches may override this to finish any remaining arch-specific tasks */
void __weak arch_klp_init_object_loaded(struct klp_patch *patch,
struct klp_object *obj)
{
}
int klp_apply_object_relocs(struct klp_patch *patch, struct klp_object *obj)
{
int i, ret;
@ -764,10 +758,11 @@ static int klp_init_object_loaded(struct klp_patch *patch,
struct klp_func *func;
int ret;
if (klp_is_module(obj)) {
mutex_lock(&text_mutex);
module_disable_ro(patch->mod);
if (klp_is_module(obj)) {
/*
* Only write module-specific relocations here
* (.klp.rela.{module}.*). vmlinux-specific relocations were
@ -775,17 +770,13 @@ static int klp_init_object_loaded(struct klp_patch *patch,
* itself.
*/
ret = klp_apply_object_relocs(patch, obj);
if (ret) {
module_enable_ro(patch->mod, true);
mutex_unlock(&text_mutex);
if (ret)
return ret;
}
}
arch_klp_init_object_loaded(patch, obj);
module_enable_ro(patch->mod, true);
mutex_unlock(&text_mutex);
klp_for_each_func(obj, func) {
ret = klp_find_object_symbol(obj->name, func->old_name,