forked from Minki/linux
GRO: Add support for TCP with fixed IPv4 ID field, limit tunnel IP ID values
This patch does two things. First it allows TCP to aggregate TCP frames with a fixed IPv4 ID field. As a result we should now be able to aggregate flows that were converted from IPv6 to IPv4. In addition this allows us more flexibility for future implementations of segmentation as we may be able to use a fixed IP ID when segmenting the flow. The second thing this does is that it places limitations on the outer IPv4 ID header in the case of tunneled frames. Specifically it forces the IP ID to be incrementing by 1 unless the DF bit is set in the outer IPv4 header. This way we can avoid creating overlapping series of IP IDs that could possibly be fragmented if the frame goes through GRO and is then resegmented via GSO. Signed-off-by: Alexander Duyck <aduyck@mirantis.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
cbc53e08a7
commit
1530545ed6
@ -2121,7 +2121,10 @@ struct napi_gro_cb {
|
||||
/* Used in GRE, set in fou/gue_gro_receive */
|
||||
u8 is_fou:1;
|
||||
|
||||
/* 6 bit hole */
|
||||
/* Used to determine if flush_id can be ignored */
|
||||
u8 is_atomic:1;
|
||||
|
||||
/* 5 bit hole */
|
||||
|
||||
/* used to support CHECKSUM_COMPLETE for tunneling protocols */
|
||||
__wsum csum;
|
||||
|
@ -4462,6 +4462,7 @@ static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff
|
||||
NAPI_GRO_CB(skb)->free = 0;
|
||||
NAPI_GRO_CB(skb)->encap_mark = 0;
|
||||
NAPI_GRO_CB(skb)->is_fou = 0;
|
||||
NAPI_GRO_CB(skb)->is_atomic = 1;
|
||||
NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
|
||||
|
||||
/* Setup for GRO checksum validation */
|
||||
|
@ -1328,6 +1328,7 @@ static struct sk_buff **inet_gro_receive(struct sk_buff **head,
|
||||
|
||||
for (p = *head; p; p = p->next) {
|
||||
struct iphdr *iph2;
|
||||
u16 flush_id;
|
||||
|
||||
if (!NAPI_GRO_CB(p)->same_flow)
|
||||
continue;
|
||||
@ -1351,16 +1352,36 @@ static struct sk_buff **inet_gro_receive(struct sk_buff **head,
|
||||
(iph->tos ^ iph2->tos) |
|
||||
((iph->frag_off ^ iph2->frag_off) & htons(IP_DF));
|
||||
|
||||
/* Save the IP ID check to be included later when we get to
|
||||
* the transport layer so only the inner most IP ID is checked.
|
||||
* This is because some GSO/TSO implementations do not
|
||||
* correctly increment the IP ID for the outer hdrs.
|
||||
*/
|
||||
NAPI_GRO_CB(p)->flush_id =
|
||||
((u16)(ntohs(iph2->id) + NAPI_GRO_CB(p)->count) ^ id);
|
||||
NAPI_GRO_CB(p)->flush |= flush;
|
||||
|
||||
/* We need to store of the IP ID check to be included later
|
||||
* when we can verify that this packet does in fact belong
|
||||
* to a given flow.
|
||||
*/
|
||||
flush_id = (u16)(id - ntohs(iph2->id));
|
||||
|
||||
/* This bit of code makes it much easier for us to identify
|
||||
* the cases where we are doing atomic vs non-atomic IP ID
|
||||
* checks. Specifically an atomic check can return IP ID
|
||||
* values 0 - 0xFFFF, while a non-atomic check can only
|
||||
* return 0 or 0xFFFF.
|
||||
*/
|
||||
if (!NAPI_GRO_CB(p)->is_atomic ||
|
||||
!(iph->frag_off & htons(IP_DF))) {
|
||||
flush_id ^= NAPI_GRO_CB(p)->count;
|
||||
flush_id = flush_id ? 0xFFFF : 0;
|
||||
}
|
||||
|
||||
/* If the previous IP ID value was based on an atomic
|
||||
* datagram we can overwrite the value and ignore it.
|
||||
*/
|
||||
if (NAPI_GRO_CB(skb)->is_atomic)
|
||||
NAPI_GRO_CB(p)->flush_id = flush_id;
|
||||
else
|
||||
NAPI_GRO_CB(p)->flush_id |= flush_id;
|
||||
}
|
||||
|
||||
NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF));
|
||||
NAPI_GRO_CB(skb)->flush |= flush;
|
||||
skb_set_network_header(skb, off);
|
||||
/* The above will be needed by the transport layer if there is one
|
||||
|
@ -239,7 +239,7 @@ struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
|
||||
|
||||
found:
|
||||
/* Include the IP ID check below from the inner most IP hdr */
|
||||
flush = NAPI_GRO_CB(p)->flush | NAPI_GRO_CB(p)->flush_id;
|
||||
flush = NAPI_GRO_CB(p)->flush;
|
||||
flush |= (__force int)(flags & TCP_FLAG_CWR);
|
||||
flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
|
||||
~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
|
||||
@ -248,6 +248,17 @@ found:
|
||||
flush |= *(u32 *)((u8 *)th + i) ^
|
||||
*(u32 *)((u8 *)th2 + i);
|
||||
|
||||
/* When we receive our second frame we can made a decision on if we
|
||||
* continue this flow as an atomic flow with a fixed ID or if we use
|
||||
* an incrementing ID.
|
||||
*/
|
||||
if (NAPI_GRO_CB(p)->flush_id != 1 ||
|
||||
NAPI_GRO_CB(p)->count != 1 ||
|
||||
!NAPI_GRO_CB(p)->is_atomic)
|
||||
flush |= NAPI_GRO_CB(p)->flush_id;
|
||||
else
|
||||
NAPI_GRO_CB(p)->is_atomic = false;
|
||||
|
||||
mss = skb_shinfo(p)->gso_size;
|
||||
|
||||
flush |= (len - 1) >= mss;
|
||||
@ -316,6 +327,9 @@ static int tcp4_gro_complete(struct sk_buff *skb, int thoff)
|
||||
iph->daddr, 0);
|
||||
skb_shinfo(skb)->gso_type |= SKB_GSO_TCPV4;
|
||||
|
||||
if (NAPI_GRO_CB(skb)->is_atomic)
|
||||
skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
|
||||
|
||||
return tcp_gro_complete(skb);
|
||||
}
|
||||
|
||||
|
@ -240,10 +240,14 @@ static struct sk_buff **ipv6_gro_receive(struct sk_buff **head,
|
||||
NAPI_GRO_CB(p)->flush |= !!(first_word & htonl(0x0FF00000));
|
||||
NAPI_GRO_CB(p)->flush |= flush;
|
||||
|
||||
/* Clear flush_id, there's really no concept of ID in IPv6. */
|
||||
NAPI_GRO_CB(p)->flush_id = 0;
|
||||
/* If the previous IP ID value was based on an atomic
|
||||
* datagram we can overwrite the value and ignore it.
|
||||
*/
|
||||
if (NAPI_GRO_CB(skb)->is_atomic)
|
||||
NAPI_GRO_CB(p)->flush_id = 0;
|
||||
}
|
||||
|
||||
NAPI_GRO_CB(skb)->is_atomic = true;
|
||||
NAPI_GRO_CB(skb)->flush |= flush;
|
||||
|
||||
skb_gro_postpull_rcsum(skb, iph, nlen);
|
||||
|
Loading…
Reference in New Issue
Block a user