EFI updates for v6.1

- implement EFI boot support for LoongArch
 - implement generic EFI compressed boot support for arm64, RISC-V and
   LoongArch, none of which implement a decompressor today
 - measure the kernel command line into the TPM if measured boot is in
   effect
 - refactor the EFI stub code in order to isolate DT dependencies for
   architectures other than x86
 - avoid calling SetVirtualAddressMap() on arm64 if the configured size
   of the VA space guarantees that doing so is unnecessary
 - move some ARM specific code out of the generic EFI source files
 - unmap kernel code from the x86 mixed mode 1:1 page tables
 -----BEGIN PGP SIGNATURE-----
 
 iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmM5mfEACgkQw08iOZLZ
 jySnJwv9G2nBheSlK9bbWKvCpnDvVIExtlL+mg1wB64oxPrGiWRgjxeyA9+92bT0
 Y6jYfKbGOGKnxkEJQl19ik6C3JfEwtGm4SnOVp4+osFeDRB7lFemfcIYN5dqz111
 wkZA/Y15rnz3tZeGaXnq2jMoFuccQDXPJtOlqbdVqFQ5Py6YT92uMyuI079pN0T+
 GSu7VVOX+SBsv4nGaUKIpSVwAP0gXkS/7s7CTf47QiR2+j8WMTlQEYZVjOKZjMJZ
 /7hXY2/mduxnuVuT7cfx0mpZKEryUREJoBL5nDzjTnlhLb5X8cHKiaE1lx0aJ//G
 JYTR8lDklJZl/7RUw/IW/YodcKcofr3F36NMzWB5vzM+KHOOpv4qEZhoGnaXv94u
 auqhzYA83heaRjz7OISlk6kgFxdlIRE1VdrkEBXSlQeCQUv1woS+ZNVGYcKqgR0B
 48b31Ogm2A0pAuba89+U9lz/n33lhIDtYvJqLO6AAPLGiVacD9ZdapN5kMftVg/1
 SfhFqNzy
 =d8Ps
 -----END PGP SIGNATURE-----

Merge tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi

Pull EFI updates from Ard Biesheuvel:
 "A bit more going on than usual in the EFI subsystem. The main driver
  for this has been the introduction of the LoonArch architecture last
  cycle, which inspired some cleanup and refactoring of the EFI code.
  Another driver for EFI changes this cycle and in the future is
  confidential compute.

  The LoongArch architecture does not use either struct bootparams or DT
  natively [yet], and so passing information between the EFI stub and
  the core kernel using either of those is undesirable. And in general,
  overloading DT has been a source of issues on arm64, so using DT for
  this on new architectures is a to avoid for the time being (even if we
  might converge on something DT based for non-x86 architectures in the
  future). For this reason, in addition to the patch that enables EFI
  boot for LoongArch, there are a number of refactoring patches applied
  on top of which separate the DT bits from the generic EFI stub bits.
  These changes are on a separate topich branch that has been shared
  with the LoongArch maintainers, who will include it in their pull
  request as well. This is not ideal, but the best way to manage the
  conflicts without stalling LoongArch for another cycle.

  Another development inspired by LoongArch is the newly added support
  for EFI based decompressors. Instead of adding yet another
  arch-specific incarnation of this pattern for LoongArch, we are
  introducing an EFI app based on the existing EFI libstub
  infrastructure that encapulates the decompression code we use on other
  architectures, but in a way that is fully generic. This has been
  developed and tested in collaboration with distro and systemd folks,
  who are eager to start using this for systemd-boot and also for arm64
  secure boot on Fedora. Note that the EFI zimage files this introduces
  can also be decompressed by non-EFI bootloaders if needed, as the
  image header describes the location of the payload inside the image,
  and the type of compression that was used. (Note that Fedora's arm64
  GRUB is buggy [0] so you'll need a recent version or switch to
  systemd-boot in order to use this.)

  Finally, we are adding TPM measurement of the kernel command line
  provided by EFI. There is an oversight in the TCG spec which results
  in a blind spot for command line arguments passed to loaded images,
  which means that either the loader or the stub needs to take the
  measurement. Given the combinatorial explosion I am anticipating when
  it comes to firmware/bootloader stacks and firmware based attestation
  protocols (SEV-SNP, TDX, DICE, DRTM), it is good to set a baseline now
  when it comes to EFI measured boot, which is that the kernel measures
  the initrd and command line. Intermediate loaders can measure
  additional assets if needed, but with the baseline in place, we can
  deploy measured boot in a meaningful way even if you boot into Linux
  straight from the EFI firmware.

  Summary:

   - implement EFI boot support for LoongArch

   - implement generic EFI compressed boot support for arm64, RISC-V and
     LoongArch, none of which implement a decompressor today

   - measure the kernel command line into the TPM if measured boot is in
     effect

   - refactor the EFI stub code in order to isolate DT dependencies for
     architectures other than x86

   - avoid calling SetVirtualAddressMap() on arm64 if the configured
     size of the VA space guarantees that doing so is unnecessary

   - move some ARM specific code out of the generic EFI source files

   - unmap kernel code from the x86 mixed mode 1:1 page tables"

* tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits)
  efi/arm64: libstub: avoid SetVirtualAddressMap() when possible
  efi: zboot: create MemoryMapped() device path for the parent if needed
  efi: libstub: fix up the last remaining open coded boot service call
  efi/arm: libstub: move ARM specific code out of generic routines
  efi/libstub: measure EFI LoadOptions
  efi/libstub: refactor the initrd measuring functions
  efi/loongarch: libstub: remove dependency on flattened DT
  efi: libstub: install boot-time memory map as config table
  efi: libstub: remove DT dependency from generic stub
  efi: libstub: unify initrd loading between architectures
  efi: libstub: remove pointless goto kludge
  efi: libstub: simplify efi_get_memory_map() and struct efi_boot_memmap
  efi: libstub: avoid efi_get_memory_map() for allocating the virt map
  efi: libstub: drop pointless get_memory_map() call
  efi: libstub: fix type confusion for load_options_size
  arm64: efi: enable generic EFI compressed boot
  loongarch: efi: enable generic EFI compressed boot
  riscv: efi: enable generic EFI compressed boot
  efi/libstub: implement generic EFI zboot
  efi/libstub: move efi_system_table global var into separate object
  ...
This commit is contained in:
Linus Torvalds 2022-10-09 08:56:54 -07:00
commit 0e470763d8
50 changed files with 1636 additions and 561 deletions

View File

@ -65,10 +65,6 @@ linux,uefi-mmap-desc-size 32-bit Size in bytes of each entry in the UEFI
linux,uefi-mmap-desc-ver 32-bit Version of the mmap descriptor format.
linux,initrd-start 64-bit Physical start address of an initrd
linux,initrd-end 64-bit Physical end address of an initrd
kaslr-seed 64-bit Entropy used to randomize the kernel image
base address location.
========================== ====== ===========================================

View File

@ -17,6 +17,7 @@
#ifdef CONFIG_EFI
void efi_init(void);
void arm_efi_init(void);
int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md);
int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md);
@ -37,7 +38,7 @@ void efi_virtmap_load(void);
void efi_virtmap_unload(void);
#else
#define efi_init()
#define arm_efi_init()
#endif /* CONFIG_EFI */
/* arch specific definitions used by the stub code */

View File

@ -4,6 +4,7 @@
*/
#include <linux/efi.h>
#include <linux/memblock.h>
#include <asm/efi.h>
#include <asm/mach/map.h>
#include <asm/mmu_context.h>
@ -73,3 +74,81 @@ int __init efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md)
return efi_set_mapping_permissions(mm, md);
return 0;
}
static unsigned long __initdata screen_info_table = EFI_INVALID_TABLE_ADDR;
static unsigned long __initdata cpu_state_table = EFI_INVALID_TABLE_ADDR;
const efi_config_table_type_t efi_arch_tables[] __initconst = {
{LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID, &screen_info_table},
{LINUX_EFI_ARM_CPU_STATE_TABLE_GUID, &cpu_state_table},
{}
};
static void __init load_screen_info_table(void)
{
struct screen_info *si;
if (screen_info_table != EFI_INVALID_TABLE_ADDR) {
si = early_memremap_ro(screen_info_table, sizeof(*si));
if (!si) {
pr_err("Could not map screen_info config table\n");
return;
}
screen_info = *si;
early_memunmap(si, sizeof(*si));
/* dummycon on ARM needs non-zero values for columns/lines */
screen_info.orig_video_cols = 80;
screen_info.orig_video_lines = 25;
if (memblock_is_map_memory(screen_info.lfb_base))
memblock_mark_nomap(screen_info.lfb_base,
screen_info.lfb_size);
}
}
static void __init load_cpu_state_table(void)
{
if (cpu_state_table != EFI_INVALID_TABLE_ADDR) {
struct efi_arm_entry_state *state;
bool dump_state = true;
state = early_memremap_ro(cpu_state_table,
sizeof(struct efi_arm_entry_state));
if (state == NULL) {
pr_warn("Unable to map CPU entry state table.\n");
return;
}
if ((state->sctlr_before_ebs & 1) == 0)
pr_warn(FW_BUG "EFI stub was entered with MMU and Dcache disabled, please fix your firmware!\n");
else if ((state->sctlr_after_ebs & 1) == 0)
pr_warn(FW_BUG "ExitBootServices() returned with MMU and Dcache disabled, please fix your firmware!\n");
else
dump_state = false;
if (dump_state || efi_enabled(EFI_DBG)) {
pr_info("CPSR at EFI stub entry : 0x%08x\n",
state->cpsr_before_ebs);
pr_info("SCTLR at EFI stub entry : 0x%08x\n",
state->sctlr_before_ebs);
pr_info("CPSR after ExitBootServices() : 0x%08x\n",
state->cpsr_after_ebs);
pr_info("SCTLR after ExitBootServices(): 0x%08x\n",
state->sctlr_after_ebs);
}
early_memunmap(state, sizeof(struct efi_arm_entry_state));
}
}
void __init arm_efi_init(void)
{
efi_init();
load_screen_info_table();
/* ARM does not permit early mappings to persist across paging_init() */
efi_memmap_unmap();
load_cpu_state_table();
}

View File

@ -1141,7 +1141,7 @@ void __init setup_arch(char **cmdline_p)
#endif
setup_dma_zone(mdesc);
xen_early_init();
efi_init();
arm_efi_init();
/*
* Make sure the calculation for lowmem/highmem is set appropriately
* before reserving/allocating any memory

View File

@ -151,12 +151,17 @@ libs-$(CONFIG_EFI_STUB) += $(objtree)/drivers/firmware/efi/libstub/lib.a
# Default target when executing plain make
boot := arch/arm64/boot
ifeq ($(CONFIG_EFI_ZBOOT),)
KBUILD_IMAGE := $(boot)/Image.gz
else
KBUILD_IMAGE := $(boot)/vmlinuz.efi
endif
all: Image.gz
all: $(notdir $(KBUILD_IMAGE))
Image: vmlinux
Image vmlinuz.efi: vmlinux
$(Q)$(MAKE) $(build)=$(boot) $(boot)/$@
Image.%: Image

View File

@ -1,3 +1,4 @@
# SPDX-License-Identifier: GPL-2.0-only
Image
Image.gz
vmlinuz*

View File

@ -38,3 +38,9 @@ $(obj)/Image.lzo: $(obj)/Image FORCE
$(obj)/Image.zst: $(obj)/Image FORCE
$(call if_changed,zstd)
EFI_ZBOOT_PAYLOAD := Image
EFI_ZBOOT_BFD_TARGET := elf64-littleaarch64
EFI_ZBOOT_MACH_TYPE := ARM64
include $(srctree)/drivers/firmware/efi/libstub/Makefile.zboot

View File

@ -24,9 +24,6 @@ PROVIDE(__efistub_primary_entry_offset = primary_entry - _text);
*/
PROVIDE(__efistub_memcmp = __pi_memcmp);
PROVIDE(__efistub_memchr = __pi_memchr);
PROVIDE(__efistub_memcpy = __pi_memcpy);
PROVIDE(__efistub_memmove = __pi_memmove);
PROVIDE(__efistub_memset = __pi_memset);
PROVIDE(__efistub_strlen = __pi_strlen);
PROVIDE(__efistub_strnlen = __pi_strnlen);
PROVIDE(__efistub_strcmp = __pi_strcmp);
@ -40,16 +37,6 @@ PROVIDE(__efistub__edata = _edata);
PROVIDE(__efistub_screen_info = screen_info);
PROVIDE(__efistub__ctype = _ctype);
/*
* The __ prefixed memcpy/memset/memmove symbols are provided by KASAN, which
* instruments the conventional ones. Therefore, any references from the EFI
* stub or other position independent, low level C code should be redirected to
* the non-instrumented versions as well.
*/
PROVIDE(__efistub___memcpy = __pi_memcpy);
PROVIDE(__efistub___memmove = __pi_memmove);
PROVIDE(__efistub___memset = __pi_memset);
PROVIDE(__pi___memcpy = __pi_memcpy);
PROVIDE(__pi___memmove = __pi_memmove);
PROVIDE(__pi___memset = __pi_memset);

View File

@ -105,8 +105,6 @@ config LOONGARCH
select MODULES_USE_ELF_RELA if MODULES
select NEED_PER_CPU_EMBED_FIRST_CHUNK
select NEED_PER_CPU_PAGE_FIRST_CHUNK
select OF
select OF_EARLY_FLATTREE
select PCI
select PCI_DOMAINS_GENERIC
select PCI_ECAM if ACPI
@ -313,12 +311,20 @@ config DMI
config EFI
bool "EFI runtime service support"
select UCS2_STRING
select EFI_PARAMS_FROM_FDT
select EFI_RUNTIME_WRAPPERS
help
This enables the kernel to use EFI runtime services that are
available (such as the EFI variable services).
config EFI_STUB
bool "EFI boot stub support"
default y
depends on EFI
select EFI_GENERIC_STUB
help
This kernel feature allows the kernel to be loaded directly by
EFI firmware without the use of a bootloader.
config SMP
bool "Multi-Processing support"
help

View File

@ -7,7 +7,14 @@ boot := arch/loongarch/boot
KBUILD_DEFCONFIG := loongson3_defconfig
KBUILD_IMAGE = $(boot)/vmlinux
image-name-y := vmlinux
image-name-$(CONFIG_EFI_ZBOOT) := vmlinuz
ifndef CONFIG_EFI_STUB
KBUILD_IMAGE := $(boot)/vmlinux.elf
else
KBUILD_IMAGE := $(boot)/$(image-name-y).efi
endif
#
# Select the object file format to substitute into the linker script.
@ -75,6 +82,7 @@ endif
head-y := arch/loongarch/kernel/head.o
libs-y += arch/loongarch/lib/
libs-$(CONFIG_EFI_STUB) += $(objtree)/drivers/firmware/efi/libstub/lib.a
ifeq ($(KBUILD_EXTMOD),)
prepare: vdso_prepare
@ -86,13 +94,13 @@ PHONY += vdso_install
vdso_install:
$(Q)$(MAKE) $(build)=arch/loongarch/vdso $@
all: $(KBUILD_IMAGE)
all: $(notdir $(KBUILD_IMAGE))
$(KBUILD_IMAGE): vmlinux
$(Q)$(MAKE) $(build)=$(boot) $(bootvars-y) $@
vmlinux.elf vmlinux.efi vmlinuz.efi: vmlinux
$(Q)$(MAKE) $(build)=$(boot) $(bootvars-y) $(boot)/$@
install:
$(Q)install -D -m 755 $(KBUILD_IMAGE) $(INSTALL_PATH)/vmlinux-$(KERNELRELEASE)
$(Q)install -D -m 755 $(KBUILD_IMAGE) $(INSTALL_PATH)/$(image-name-y)-$(KERNELRELEASE)
$(Q)install -D -m 644 .config $(INSTALL_PATH)/config-$(KERNELRELEASE)
$(Q)install -D -m 644 System.map $(INSTALL_PATH)/System.map-$(KERNELRELEASE)

View File

@ -1,2 +1,3 @@
# SPDX-License-Identifier: GPL-2.0-only
vmlinux*
vmlinuz*

View File

@ -8,9 +8,19 @@ drop-sections := .comment .note .options .note.gnu.build-id
strip-flags := $(addprefix --remove-section=,$(drop-sections)) -S
OBJCOPYFLAGS_vmlinux.efi := -O binary $(strip-flags)
targets := vmlinux
quiet_cmd_strip = STRIP $@
cmd_strip = $(STRIP) -s -o $@ $<
$(obj)/vmlinux: vmlinux FORCE
targets := vmlinux.elf
$(obj)/vmlinux.elf: vmlinux FORCE
$(call if_changed,strip)
targets += vmlinux.efi
$(obj)/vmlinux.efi: vmlinux FORCE
$(call if_changed,objcopy)
EFI_ZBOOT_PAYLOAD := vmlinux.efi
EFI_ZBOOT_BFD_TARGET := elf64-loongarch
EFI_ZBOOT_MACH_TYPE := LOONGARCH64
include $(srctree)/drivers/firmware/efi/libstub/Makefile.zboot

View File

@ -36,7 +36,7 @@ struct loongson_system_configuration {
};
extern u64 efi_system_table;
extern unsigned long fw_arg0, fw_arg1;
extern unsigned long fw_arg0, fw_arg1, fw_arg2;
extern struct loongson_board_info b_info;
extern struct loongson_system_configuration loongson_sysconf;

View File

@ -17,9 +17,16 @@ void efifb_setup_from_dmi(struct screen_info *si, const char *opt);
#define arch_efi_call_virt_teardown()
#define EFI_ALLOC_ALIGN SZ_64K
#define EFI_RT_VIRTUAL_OFFSET CSR_DMW0_BASE
struct screen_info *alloc_screen_info(void);
void free_screen_info(struct screen_info *si);
static inline struct screen_info *alloc_screen_info(void)
{
return &screen_info;
}
static inline void free_screen_info(struct screen_info *si)
{
}
static inline unsigned long efi_get_max_initrd_addr(unsigned long image_addr)
{

View File

@ -0,0 +1,99 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2020-2022 Loongson Technology Corporation Limited
*/
#include <linux/pe.h>
#include <linux/sizes.h>
.macro __EFI_PE_HEADER
.long PE_MAGIC
.Lcoff_header:
.short IMAGE_FILE_MACHINE_LOONGARCH64 /* Machine */
.short .Lsection_count /* NumberOfSections */
.long 0 /* TimeDateStamp */
.long 0 /* PointerToSymbolTable */
.long 0 /* NumberOfSymbols */
.short .Lsection_table - .Loptional_header /* SizeOfOptionalHeader */
.short IMAGE_FILE_DEBUG_STRIPPED | \
IMAGE_FILE_EXECUTABLE_IMAGE | \
IMAGE_FILE_LINE_NUMS_STRIPPED /* Characteristics */
.Loptional_header:
.short PE_OPT_MAGIC_PE32PLUS /* PE32+ format */
.byte 0x02 /* MajorLinkerVersion */
.byte 0x14 /* MinorLinkerVersion */
.long __inittext_end - .Lefi_header_end /* SizeOfCode */
.long _end - __initdata_begin /* SizeOfInitializedData */
.long 0 /* SizeOfUninitializedData */
.long __efistub_efi_pe_entry - _head /* AddressOfEntryPoint */
.long .Lefi_header_end - _head /* BaseOfCode */
.Lextra_header_fields:
.quad 0 /* ImageBase */
.long PECOFF_SEGMENT_ALIGN /* SectionAlignment */
.long PECOFF_FILE_ALIGN /* FileAlignment */
.short 0 /* MajorOperatingSystemVersion */
.short 0 /* MinorOperatingSystemVersion */
.short LINUX_EFISTUB_MAJOR_VERSION /* MajorImageVersion */
.short LINUX_EFISTUB_MINOR_VERSION /* MinorImageVersion */
.short 0 /* MajorSubsystemVersion */
.short 0 /* MinorSubsystemVersion */
.long 0 /* Win32VersionValue */
.long _end - _head /* SizeOfImage */
/* Everything before the kernel image is considered part of the header */
.long .Lefi_header_end - _head /* SizeOfHeaders */
.long 0 /* CheckSum */
.short IMAGE_SUBSYSTEM_EFI_APPLICATION /* Subsystem */
.short 0 /* DllCharacteristics */
.quad 0 /* SizeOfStackReserve */
.quad 0 /* SizeOfStackCommit */
.quad 0 /* SizeOfHeapReserve */
.quad 0 /* SizeOfHeapCommit */
.long 0 /* LoaderFlags */
.long (.Lsection_table - .) / 8 /* NumberOfRvaAndSizes */
.quad 0 /* ExportTable */
.quad 0 /* ImportTable */
.quad 0 /* ResourceTable */
.quad 0 /* ExceptionTable */
.quad 0 /* CertificationTable */
.quad 0 /* BaseRelocationTable */
/* Section table */
.Lsection_table:
.ascii ".text\0\0\0"
.long __inittext_end - .Lefi_header_end /* VirtualSize */
.long .Lefi_header_end - _head /* VirtualAddress */
.long __inittext_end - .Lefi_header_end /* SizeOfRawData */
.long .Lefi_header_end - _head /* PointerToRawData */
.long 0 /* PointerToRelocations */
.long 0 /* PointerToLineNumbers */
.short 0 /* NumberOfRelocations */
.short 0 /* NumberOfLineNumbers */
.long IMAGE_SCN_CNT_CODE | \
IMAGE_SCN_MEM_READ | \
IMAGE_SCN_MEM_EXECUTE /* Characteristics */
.ascii ".data\0\0\0"
.long _end - __initdata_begin /* VirtualSize */
.long __initdata_begin - _head /* VirtualAddress */
.long _edata - __initdata_begin /* SizeOfRawData */
.long __initdata_begin - _head /* PointerToRawData */
.long 0 /* PointerToRelocations */
.long 0 /* PointerToLineNumbers */
.short 0 /* NumberOfRelocations */
.short 0 /* NumberOfLineNumbers */
.long IMAGE_SCN_CNT_INITIALIZED_DATA | \
IMAGE_SCN_MEM_READ | \
IMAGE_SCN_MEM_WRITE /* Characteristics */
.set .Lsection_count, (. - .Lsection_table) / 40
.balign 0x10000 /* PECOFF_SEGMENT_ALIGN */
.Lefi_header_end:
.endm

View File

@ -27,8 +27,13 @@
static unsigned long efi_nr_tables;
static unsigned long efi_config_table;
static unsigned long __initdata boot_memmap = EFI_INVALID_TABLE_ADDR;
static efi_system_table_t *efi_systab;
static efi_config_table_type_t arch_tables[] __initdata = {{},};
static efi_config_table_type_t arch_tables[] __initdata = {
{LINUX_EFI_BOOT_MEMMAP_GUID, &boot_memmap, "MEMMAP" },
{},
};
void __init efi_runtime_init(void)
{
@ -51,6 +56,7 @@ void __init efi_init(void)
{
int size;
void *config_tables;
struct efi_boot_memmap *tbl;
if (!efi_system_table)
return;
@ -61,6 +67,8 @@ void __init efi_init(void)
return;
}
efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
set_bit(EFI_64BIT, &efi.flags);
efi_nr_tables = efi_systab->nr_tables;
efi_config_table = (unsigned long)efi_systab->tables;
@ -69,4 +77,27 @@ void __init efi_init(void)
config_tables = early_memremap(efi_config_table, efi_nr_tables * size);
efi_config_parse_tables(config_tables, efi_systab->nr_tables, arch_tables);
early_memunmap(config_tables, efi_nr_tables * size);
set_bit(EFI_CONFIG_TABLES, &efi.flags);
if (screen_info.orig_video_isVGA == VIDEO_TYPE_EFI)
memblock_reserve(screen_info.lfb_base, screen_info.lfb_size);
if (boot_memmap == EFI_INVALID_TABLE_ADDR)
return;
tbl = early_memremap_ro(boot_memmap, sizeof(*tbl));
if (tbl) {
struct efi_memory_map_data data;
data.phys_map = boot_memmap + sizeof(*tbl);
data.size = tbl->map_size;
data.desc_size = tbl->desc_size;
data.desc_version = tbl->desc_ver;
if (efi_memmap_init_early(&data) < 0)
panic("Unable to map EFI memory map.\n");
early_memunmap(tbl, sizeof(*tbl));
}
}

View File

@ -8,7 +8,6 @@
#include <linux/efi.h>
#include <linux/export.h>
#include <linux/memblock.h>
#include <linux/of_fdt.h>
#include <asm/early_ioremap.h>
#include <asm/bootinfo.h>
#include <asm/loongson.h>
@ -20,21 +19,17 @@ EXPORT_SYMBOL(loongson_sysconf);
void __init init_environ(void)
{
int efi_boot = fw_arg0;
struct efi_memory_map_data data;
void *fdt_ptr = early_memremap_ro(fw_arg1, SZ_64K);
char *cmdline = early_memremap_ro(fw_arg1, COMMAND_LINE_SIZE);
if (efi_boot)
set_bit(EFI_BOOT, &efi.flags);
else
clear_bit(EFI_BOOT, &efi.flags);
early_init_dt_scan(fdt_ptr);
early_init_fdt_reserve_self();
efi_system_table = efi_get_fdt_params(&data);
strscpy(boot_command_line, cmdline, COMMAND_LINE_SIZE);
early_memunmap(cmdline, COMMAND_LINE_SIZE);
efi_memmap_init_early(&data);
memblock_reserve(data.phys_map & PAGE_MASK,
PAGE_ALIGN(data.size + (data.phys_map & ~PAGE_MASK)));
efi_system_table = fw_arg2;
}
static int __init init_cpu_fullname(void)

View File

@ -12,6 +12,26 @@
#include <asm/loongarch.h>
#include <asm/stackframe.h>
#ifdef CONFIG_EFI_STUB
#include "efi-header.S"
__HEAD
_head:
.word MZ_MAGIC /* "MZ", MS-DOS header */
.org 0x3c /* 0x04 ~ 0x3b reserved */
.long pe_header - _head /* Offset to the PE header */
pe_header:
__EFI_PE_HEADER
SYM_DATA(kernel_asize, .long _end - _text);
SYM_DATA(kernel_fsize, .long _edata - _text);
SYM_DATA(kernel_offset, .long kernel_offset - _text);
#endif
__REF
.align 12
@ -49,6 +69,8 @@ SYM_CODE_START(kernel_entry) # kernel entry point
st.d a0, t0, 0 # firmware arguments
la t0, fw_arg1
st.d a1, t0, 0
la t0, fw_arg2
st.d a2, t0, 0
/* KSave3 used for percpu base, initialized as 0 */
csrwr zero, PERCPU_BASE_KS

View File

@ -0,0 +1,27 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2020-2022 Loongson Technology Corporation Limited
*/
#ifndef __LOONGARCH_KERNEL_IMAGE_VARS_H
#define __LOONGARCH_KERNEL_IMAGE_VARS_H
#ifdef CONFIG_EFI_STUB
__efistub_memcmp = memcmp;
__efistub_memchr = memchr;
__efistub_strcat = strcat;
__efistub_strcmp = strcmp;
__efistub_strlen = strlen;
__efistub_strncat = strncat;
__efistub_strnstr = strnstr;
__efistub_strnlen = strnlen;
__efistub_strrchr = strrchr;
__efistub_kernel_entry = kernel_entry;
__efistub_kernel_asize = kernel_asize;
__efistub_kernel_fsize = kernel_fsize;
__efistub_kernel_offset = kernel_offset;
__efistub_screen_info = screen_info;
#endif
#endif /* __LOONGARCH_KERNEL_IMAGE_VARS_H */

View File

@ -49,11 +49,9 @@
#define SMBIOS_CORE_PACKAGE_OFFSET 0x23
#define LOONGSON_EFI_ENABLE (1 << 3)
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
struct screen_info screen_info __section(".data");
unsigned long fw_arg0, fw_arg1;
unsigned long fw_arg0, fw_arg1, fw_arg2;
DEFINE_PER_CPU(unsigned long, kernelsp);
struct cpuinfo_loongarch cpu_data[NR_CPUS] __read_mostly;
@ -122,16 +120,9 @@ static void __init parse_cpu_table(const struct dmi_header *dm)
static void __init parse_bios_table(const struct dmi_header *dm)
{
int bios_extern;
char *dmi_data = (char *)dm;
bios_extern = *(dmi_data + SMBIOS_BIOSEXTERN_OFFSET);
b_info.bios_size = (*(dmi_data + SMBIOS_BIOSSIZE_OFFSET) + 1) << 6;
if (bios_extern & LOONGSON_EFI_ENABLE)
set_bit(EFI_BOOT, &efi.flags);
else
clear_bit(EFI_BOOT, &efi.flags);
}
static void __init find_tokens(const struct dmi_header *dm, void *dummy)
@ -196,7 +187,6 @@ early_param("mem", early_parse_mem);
void __init platform_init(void)
{
efi_init();
#ifdef CONFIG_ACPI_TABLE_UPGRADE
acpi_table_upgrade();
#endif
@ -356,6 +346,7 @@ void __init setup_arch(char **cmdline_p)
*cmdline_p = boot_command_line;
init_environ();
efi_init();
memblock_init();
parse_early_param();

View File

@ -12,6 +12,7 @@
#define BSS_FIRST_SECTIONS *(.bss..swapper_pg_dir)
#include <asm-generic/vmlinux.lds.h>
#include "image-vars.h"
/*
* Max avaliable Page Size is 64K, so we set SectionAlignment

View File

@ -136,10 +136,14 @@ ifneq ($(CONFIG_XIP_KERNEL),y)
ifeq ($(CONFIG_RISCV_M_MODE)$(CONFIG_SOC_CANAAN),yy)
KBUILD_IMAGE := $(boot)/loader.bin
else
ifeq ($(CONFIG_EFI_ZBOOT),)
KBUILD_IMAGE := $(boot)/Image.gz
else
KBUILD_IMAGE := $(boot)/vmlinuz.efi
endif
endif
BOOT_TARGETS := Image Image.gz loader loader.bin xipImage
endif
BOOT_TARGETS := Image Image.gz loader loader.bin xipImage vmlinuz.efi
all: $(notdir $(KBUILD_IMAGE))

View File

@ -4,4 +4,5 @@ Image.*
loader
loader.lds
loader.bin
vmlinuz*
xipImage

View File

@ -58,3 +58,9 @@ $(obj)/Image.lzo: $(obj)/Image FORCE
$(obj)/loader.bin: $(obj)/loader FORCE
$(call if_changed,objcopy)
EFI_ZBOOT_PAYLOAD := Image
EFI_ZBOOT_BFD_TARGET := elf$(BITS)-littleriscv
EFI_ZBOOT_MACH_TYPE := RISCV$(BITS)
include $(srctree)/drivers/firmware/efi/libstub/Makefile.zboot

View File

@ -25,21 +25,12 @@
*/
__efistub_memcmp = memcmp;
__efistub_memchr = memchr;
__efistub_memcpy = memcpy;
__efistub_memmove = memmove;
__efistub_memset = memset;
__efistub_strlen = strlen;
__efistub_strnlen = strnlen;
__efistub_strcmp = strcmp;
__efistub_strncmp = strncmp;
__efistub_strrchr = strrchr;
#ifdef CONFIG_KASAN
__efistub___memcpy = memcpy;
__efistub___memmove = memmove;
__efistub___memset = memset;
#endif
__efistub__start = _start;
__efistub__start_kernel = _start_kernel;
__efistub__end = _end;

View File

@ -176,7 +176,8 @@ virt_to_phys_or_null_size(void *va, unsigned long size)
int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
{
unsigned long pfn, text, pf, rodata;
extern const u8 __efi64_thunk_ret_tramp[];
unsigned long pfn, text, pf, rodata, tramp;
struct page *page;
unsigned npages;
pgd_t *pgd = efi_mm.pgd;
@ -238,11 +239,9 @@ int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
npages = (_etext - _text) >> PAGE_SHIFT;
text = __pa(_text);
pfn = text >> PAGE_SHIFT;
pf = _PAGE_ENC;
if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
pr_err("Failed to map kernel text 1:1\n");
if (kernel_unmap_pages_in_pgd(pgd, text, npages)) {
pr_err("Failed to unmap kernel text 1:1 mapping\n");
return 1;
}
@ -256,6 +255,15 @@ int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
return 1;
}
tramp = __pa(__efi64_thunk_ret_tramp);
pfn = tramp >> PAGE_SHIFT;
pf = _PAGE_ENC;
if (kernel_map_pages_in_pgd(pgd, pfn, tramp, 1, pf)) {
pr_err("Failed to map mixed mode return trampoline\n");
return 1;
}
return 0;
}

View File

@ -23,7 +23,6 @@
#include <linux/objtool.h>
#include <asm/page_types.h>
#include <asm/segment.h>
#include <asm/nospec-branch.h>
.text
.code64
@ -73,10 +72,18 @@ STACK_FRAME_NON_STANDARD __efi64_thunk
pushq %rdi /* EFI runtime service address */
lretq
// This return instruction is not needed for correctness, as it will
// never be reached. It only exists to make objtool happy, which will
// otherwise complain about unreachable instructions in the callers.
RET
SYM_FUNC_END(__efi64_thunk)
.section ".rodata", "a", @progbits
.balign 16
SYM_DATA_START(__efi64_thunk_ret_tramp)
1: movq 0x20(%rsp), %rsp
pop %rbx
pop %rbp
ANNOTATE_UNRET_SAFE
ret
int3
@ -84,7 +91,7 @@ STACK_FRAME_NON_STANDARD __efi64_thunk
2: pushl $__KERNEL_CS
pushl %ebp
lret
SYM_FUNC_END(__efi64_thunk)
SYM_DATA_END(__efi64_thunk_ret_tramp)
.bss
.balign 8

View File

@ -105,9 +105,50 @@ config EFI_RUNTIME_WRAPPERS
config EFI_GENERIC_STUB
bool
config EFI_ZBOOT
bool "Enable the generic EFI decompressor"
depends on EFI_GENERIC_STUB && !ARM
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_LZ4
select HAVE_KERNEL_LZMA
select HAVE_KERNEL_LZO
select HAVE_KERNEL_XZ
select HAVE_KERNEL_ZSTD
help
Create the bootable image as an EFI application that carries the
actual kernel image in compressed form, and decompresses it into
memory before executing it via LoadImage/StartImage EFI boot service
calls. For compatibility with non-EFI loaders, the payload can be
decompressed and executed by the loader as well, provided that the
loader implements the decompression algorithm and that non-EFI boot
is supported by the encapsulated image. (The compression algorithm
used is described in the zboot image header)
config EFI_ZBOOT_SIGNED
def_bool y
depends on EFI_ZBOOT_SIGNING_CERT != ""
depends on EFI_ZBOOT_SIGNING_KEY != ""
config EFI_ZBOOT_SIGNING
bool "Sign the EFI decompressor for UEFI secure boot"
depends on EFI_ZBOOT
help
Use the 'sbsign' command line tool (which must exist on the host
path) to sign both the EFI decompressor PE/COFF image, as well as the
encapsulated PE/COFF image, which is subsequently compressed and
wrapped by the former image.
config EFI_ZBOOT_SIGNING_CERT
string "Certificate to use for signing the compressed EFI boot image"
depends on EFI_ZBOOT_SIGNING
config EFI_ZBOOT_SIGNING_KEY
string "Private key to use for signing the compressed EFI boot image"
depends on EFI_ZBOOT_SIGNING
config EFI_ARMSTUB_DTB_LOADER
bool "Enable the DTB loader"
depends on EFI_GENERIC_STUB && !RISCV
depends on EFI_GENERIC_STUB && !RISCV && !LOONGARCH
default y
help
Select this config option to add support for the dtb= command
@ -124,7 +165,7 @@ config EFI_GENERIC_STUB_INITRD_CMDLINE_LOADER
bool "Enable the command line initrd loader" if !X86
depends on EFI_STUB && (EFI_GENERIC_STUB || X86)
default y if X86
depends on !RISCV
depends on !RISCV && !LOONGARCH
help
Select this config option to add support for the initrd= command
line parameter, allowing an initrd that resides on the same volume

View File

@ -51,34 +51,10 @@ static phys_addr_t __init efi_to_phys(unsigned long addr)
return addr;
}
static __initdata unsigned long screen_info_table = EFI_INVALID_TABLE_ADDR;
static __initdata unsigned long cpu_state_table = EFI_INVALID_TABLE_ADDR;
static const efi_config_table_type_t arch_tables[] __initconst = {
{LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID, &screen_info_table},
{LINUX_EFI_ARM_CPU_STATE_TABLE_GUID, &cpu_state_table},
{}
};
extern __weak const efi_config_table_type_t efi_arch_tables[];
static void __init init_screen_info(void)
{
struct screen_info *si;
if (IS_ENABLED(CONFIG_ARM) &&
screen_info_table != EFI_INVALID_TABLE_ADDR) {
si = early_memremap_ro(screen_info_table, sizeof(*si));
if (!si) {
pr_err("Could not map screen_info config table\n");
return;
}
screen_info = *si;
early_memunmap(si, sizeof(*si));
/* dummycon on ARM needs non-zero values for columns/lines */
screen_info.orig_video_cols = 80;
screen_info.orig_video_lines = 25;
}
if (screen_info.orig_video_isVGA == VIDEO_TYPE_EFI &&
memblock_is_map_memory(screen_info.lfb_base))
memblock_mark_nomap(screen_info.lfb_base, screen_info.lfb_size);
@ -119,8 +95,7 @@ static int __init uefi_init(u64 efi_system_table)
goto out;
}
retval = efi_config_parse_tables(config_tables, systab->nr_tables,
IS_ENABLED(CONFIG_ARM) ? arch_tables
: NULL);
efi_arch_tables);
early_memunmap(config_tables, table_size);
out:
@ -248,36 +223,4 @@ void __init efi_init(void)
PAGE_ALIGN(data.size + (data.phys_map & ~PAGE_MASK)));
init_screen_info();
#ifdef CONFIG_ARM
/* ARM does not permit early mappings to persist across paging_init() */
efi_memmap_unmap();
if (cpu_state_table != EFI_INVALID_TABLE_ADDR) {
struct efi_arm_entry_state *state;
bool dump_state = true;
state = early_memremap_ro(cpu_state_table,
sizeof(struct efi_arm_entry_state));
if (state == NULL) {
pr_warn("Unable to map CPU entry state table.\n");
return;
}
if ((state->sctlr_before_ebs & 1) == 0)
pr_warn(FW_BUG "EFI stub was entered with MMU and Dcache disabled, please fix your firmware!\n");
else if ((state->sctlr_after_ebs & 1) == 0)
pr_warn(FW_BUG "ExitBootServices() returned with MMU and Dcache disabled, please fix your firmware!\n");
else
dump_state = false;
if (dump_state || efi_enabled(EFI_DBG)) {
pr_info("CPSR at EFI stub entry : 0x%08x\n", state->cpsr_before_ebs);
pr_info("SCTLR at EFI stub entry : 0x%08x\n", state->sctlr_before_ebs);
pr_info("CPSR after ExitBootServices() : 0x%08x\n", state->cpsr_after_ebs);
pr_info("SCTLR after ExitBootServices(): 0x%08x\n", state->sctlr_after_ebs);
}
early_memunmap(state, sizeof(struct efi_arm_entry_state));
}
#endif
}

View File

@ -21,6 +21,7 @@
#include <linux/device.h>
#include <linux/efi.h>
#include <linux/of.h>
#include <linux/initrd.h>
#include <linux/io.h>
#include <linux/kexec.h>
#include <linux/platform_device.h>
@ -55,6 +56,7 @@ EXPORT_SYMBOL(efi);
unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
struct mm_struct efi_mm = {
.mm_rb = RB_ROOT,
@ -532,6 +534,7 @@ static const efi_config_table_type_t common_tables[] __initconst = {
{LINUX_EFI_TPM_EVENT_LOG_GUID, &efi.tpm_log, "TPMEventLog" },
{LINUX_EFI_TPM_FINAL_LOG_GUID, &efi.tpm_final_log, "TPMFinalLog" },
{LINUX_EFI_MEMRESERVE_TABLE_GUID, &mem_reserve, "MEMRESERVE" },
{LINUX_EFI_INITRD_MEDIA_GUID, &initrd, "INITRD" },
{EFI_RT_PROPERTIES_TABLE_GUID, &rt_prop, "RTPROP" },
#ifdef CONFIG_EFI_RCI2_TABLE
{DELLEMC_EFI_RCI2_TABLE_GUID, &rci2_table_phys },
@ -674,6 +677,18 @@ int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
}
}
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
struct linux_efi_initrd *tbl;
tbl = early_memremap(initrd, sizeof(*tbl));
if (tbl) {
phys_initrd_start = tbl->base;
phys_initrd_size = tbl->size;
early_memunmap(tbl, sizeof(*tbl));
}
}
return 0;
}

View File

@ -26,8 +26,10 @@ cflags-$(CONFIG_ARM) := $(subst $(CC_FLAGS_FTRACE),,$(KBUILD_CFLAGS)) \
$(call cc-option,-mno-single-pic-base)
cflags-$(CONFIG_RISCV) := $(subst $(CC_FLAGS_FTRACE),,$(KBUILD_CFLAGS)) \
-fpic
cflags-$(CONFIG_LOONGARCH) := $(subst $(CC_FLAGS_FTRACE),,$(KBUILD_CFLAGS)) \
-fpie
cflags-$(CONFIG_EFI_GENERIC_STUB) += -I$(srctree)/scripts/dtc/libfdt
cflags-$(CONFIG_EFI_PARAMS_FROM_FDT) += -I$(srctree)/scripts/dtc/libfdt
KBUILD_CFLAGS := $(cflags-y) -Os -DDISABLE_BRANCH_PROFILING \
-include $(srctree)/include/linux/hidden.h \
@ -66,21 +68,32 @@ lib-y := efi-stub-helper.o gop.o secureboot.o tpm.o \
skip_spaces.o lib-cmdline.o lib-ctype.o \
alignedmem.o relocate.o vsprintf.o
# include the stub's generic dependencies from lib/ when building for ARM/arm64
efi-deps-y := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c fdt_empty_tree.c fdt_sw.c
# include the stub's libfdt dependencies from lib/ when needed
libfdt-deps := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c \
fdt_empty_tree.c fdt_sw.c
lib-$(CONFIG_EFI_PARAMS_FROM_FDT) += fdt.o \
$(patsubst %.c,lib-%.o,$(libfdt-deps))
$(obj)/lib-%.o: $(srctree)/lib/%.c FORCE
$(call if_changed_rule,cc_o_c)
lib-$(CONFIG_EFI_GENERIC_STUB) += efi-stub.o fdt.o string.o \
$(patsubst %.c,lib-%.o,$(efi-deps-y))
lib-$(CONFIG_EFI_GENERIC_STUB) += efi-stub.o string.o intrinsics.o systable.o
lib-$(CONFIG_ARM) += arm32-stub.o
lib-$(CONFIG_ARM64) += arm64-stub.o
lib-$(CONFIG_X86) += x86-stub.o
lib-$(CONFIG_RISCV) += riscv-stub.o
lib-$(CONFIG_LOONGARCH) += loongarch-stub.o
CFLAGS_arm32-stub.o := -DTEXT_OFFSET=$(TEXT_OFFSET)
zboot-obj-$(CONFIG_RISCV) := lib-clz_ctz.o lib-ashldi3.o
lib-$(CONFIG_EFI_ZBOOT) += zboot.o $(zboot-obj-y)
extra-y := $(lib-y)
lib-y := $(patsubst %.o,%.stub.o,$(lib-y))
# Even when -mbranch-protection=none is set, Clang will generate a
# .note.gnu.property for code-less object files (like lib/ctype.c),
# so work around this by explicitly removing the unwanted section.
@ -120,9 +133,6 @@ STUBCOPY_RELOC-$(CONFIG_ARM) := R_ARM_ABS
# a verification pass to see if any absolute relocations exist in any of the
# object files.
#
extra-y := $(lib-y)
lib-y := $(patsubst %.o,%.stub.o,$(lib-y))
STUBCOPY_FLAGS-$(CONFIG_ARM64) += --prefix-alloc-sections=.init \
--prefix-symbols=__efistub_
STUBCOPY_RELOC-$(CONFIG_ARM64) := R_AARCH64_ABS
@ -134,6 +144,12 @@ STUBCOPY_FLAGS-$(CONFIG_RISCV) += --prefix-alloc-sections=.init \
--prefix-symbols=__efistub_
STUBCOPY_RELOC-$(CONFIG_RISCV) := R_RISCV_HI20
# For LoongArch, keep all the symbols in .init section and make sure that no
# absolute symbols references exist.
STUBCOPY_FLAGS-$(CONFIG_LOONGARCH) += --prefix-alloc-sections=.init \
--prefix-symbols=__efistub_
STUBCOPY_RELOC-$(CONFIG_LOONGARCH) := R_LARCH_MARK_LA
$(obj)/%.stub.o: $(obj)/%.o FORCE
$(call if_changed,stubcopy)

View File

@ -0,0 +1,70 @@
# SPDX-License-Identifier: GPL-2.0
# to be include'd by arch/$(ARCH)/boot/Makefile after setting
# EFI_ZBOOT_PAYLOAD, EFI_ZBOOT_BFD_TARGET and EFI_ZBOOT_MACH_TYPE
comp-type-$(CONFIG_KERNEL_GZIP) := gzip
comp-type-$(CONFIG_KERNEL_LZ4) := lz4
comp-type-$(CONFIG_KERNEL_LZMA) := lzma
comp-type-$(CONFIG_KERNEL_LZO) := lzo
comp-type-$(CONFIG_KERNEL_XZ) := xzkern
comp-type-$(CONFIG_KERNEL_ZSTD) := zstd22
# in GZIP, the appended le32 carrying the uncompressed size is part of the
# format, but in other cases, we just append it at the end for convenience,
# causing the original tools to complain when checking image integrity.
# So disregard it when calculating the payload size in the zimage header.
zboot-method-y := $(comp-type-y)_with_size
zboot-size-len-y := 4
zboot-method-$(CONFIG_KERNEL_GZIP) := gzip
zboot-size-len-$(CONFIG_KERNEL_GZIP) := 0
quiet_cmd_sbsign = SBSIGN $@
cmd_sbsign = sbsign --out $@ $< \
--key $(CONFIG_EFI_ZBOOT_SIGNING_KEY) \
--cert $(CONFIG_EFI_ZBOOT_SIGNING_CERT)
$(obj)/$(EFI_ZBOOT_PAYLOAD).signed: $(obj)/$(EFI_ZBOOT_PAYLOAD) FORCE
$(call if_changed,sbsign)
ZBOOT_PAYLOAD-y := $(EFI_ZBOOT_PAYLOAD)
ZBOOT_PAYLOAD-$(CONFIG_EFI_ZBOOT_SIGNED) := $(EFI_ZBOOT_PAYLOAD).signed
$(obj)/vmlinuz: $(obj)/$(ZBOOT_PAYLOAD-y) FORCE
$(call if_changed,$(zboot-method-y))
OBJCOPYFLAGS_vmlinuz.o := -I binary -O $(EFI_ZBOOT_BFD_TARGET) \
--rename-section .data=.gzdata,load,alloc,readonly,contents
$(obj)/vmlinuz.o: $(obj)/vmlinuz FORCE
$(call if_changed,objcopy)
AFLAGS_zboot-header.o += -DMACHINE_TYPE=IMAGE_FILE_MACHINE_$(EFI_ZBOOT_MACH_TYPE) \
-DZBOOT_EFI_PATH="\"$(realpath $(obj)/vmlinuz.efi.elf)\"" \
-DZBOOT_SIZE_LEN=$(zboot-size-len-y) \
-DCOMP_TYPE="\"$(comp-type-y)\""
$(obj)/zboot-header.o: $(srctree)/drivers/firmware/efi/libstub/zboot-header.S FORCE
$(call if_changed_rule,as_o_S)
ZBOOT_DEPS := $(obj)/zboot-header.o $(objtree)/drivers/firmware/efi/libstub/lib.a
LDFLAGS_vmlinuz.efi.elf := -T $(srctree)/drivers/firmware/efi/libstub/zboot.lds
$(obj)/vmlinuz.efi.elf: $(obj)/vmlinuz.o $(ZBOOT_DEPS) FORCE
$(call if_changed,ld)
ZBOOT_EFI-y := vmlinuz.efi
ZBOOT_EFI-$(CONFIG_EFI_ZBOOT_SIGNED) := vmlinuz.efi.unsigned
OBJCOPYFLAGS_$(ZBOOT_EFI-y) := -O binary
$(obj)/$(ZBOOT_EFI-y): $(obj)/vmlinuz.efi.elf FORCE
$(call if_changed,objcopy)
targets += zboot-header.o vmlinuz vmlinuz.o vmlinuz.efi.elf vmlinuz.efi
ifneq ($(CONFIG_EFI_ZBOOT_SIGNED),)
$(obj)/vmlinuz.efi: $(obj)/vmlinuz.efi.unsigned FORCE
$(call if_changed,sbsign)
endif
targets += $(EFI_ZBOOT_PAYLOAD).signed vmlinuz.efi.unsigned

View File

@ -19,6 +19,14 @@ efi_status_t check_platform_features(void)
{
u64 tg;
/*
* If we have 48 bits of VA space for TTBR0 mappings, we can map the
* UEFI runtime regions 1:1 and so calling SetVirtualAddressMap() is
* unnecessary.
*/
if (VA_BITS_MIN >= 48)
efi_novamap = true;
/* UEFI mandates support for 4 KB granularity, no need to check */
if (IS_ENABLED(CONFIG_ARM64_4K_PAGES))
return EFI_SUCCESS;
@ -42,26 +50,17 @@ efi_status_t check_platform_features(void)
*/
static bool check_image_region(u64 base, u64 size)
{
unsigned long map_size, desc_size, buff_size;
efi_memory_desc_t *memory_map;
struct efi_boot_memmap map;
struct efi_boot_memmap *map;
efi_status_t status;
bool ret = false;
int map_offset;
map.map = &memory_map;
map.map_size = &map_size;
map.desc_size = &desc_size;
map.desc_ver = NULL;
map.key_ptr = NULL;
map.buff_size = &buff_size;
status = efi_get_memory_map(&map);
status = efi_get_memory_map(&map, false);
if (status != EFI_SUCCESS)
return false;
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
efi_memory_desc_t *md = (void *)memory_map + map_offset;
for (map_offset = 0; map_offset < map->map_size; map_offset += map->desc_size) {
efi_memory_desc_t *md = (void *)map->map + map_offset;
u64 end = md->phys_addr + md->num_pages * EFI_PAGE_SIZE;
/*
@ -74,7 +73,7 @@ static bool check_image_region(u64 base, u64 size)
}
}
efi_bs_call(free_pool, memory_map);
efi_bs_call(free_pool, map);
return ret;
}

View File

@ -218,7 +218,7 @@ efi_status_t efi_parse_options(char const *cmdline)
efi_noinitrd = true;
} else if (!strcmp(param, "efi") && val) {
efi_nochunk = parse_option_str(val, "nochunk");
efi_novamap = parse_option_str(val, "novamap");
efi_novamap |= parse_option_str(val, "novamap");
efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) &&
parse_option_str(val, "nosoftreserve");
@ -310,7 +310,7 @@ bool efi_load_option_unpack(efi_load_option_unpacked_t *dest,
*
* Detect this case and extract OptionalData.
*/
void efi_apply_loadoptions_quirk(const void **load_options, int *load_options_size)
void efi_apply_loadoptions_quirk(const void **load_options, u32 *load_options_size)
{
const efi_load_option_t *load_option = *load_options;
efi_load_option_unpacked_t load_option_unpacked;
@ -334,6 +334,85 @@ void efi_apply_loadoptions_quirk(const void **load_options, int *load_options_si
*load_options_size = load_option_unpacked.optional_data_size;
}
enum efistub_event {
EFISTUB_EVT_INITRD,
EFISTUB_EVT_LOAD_OPTIONS,
EFISTUB_EVT_COUNT,
};
#define STR_WITH_SIZE(s) sizeof(s), s
static const struct {
u32 pcr_index;
u32 event_id;
u32 event_data_len;
u8 event_data[52];
} events[] = {
[EFISTUB_EVT_INITRD] = {
9,
INITRD_EVENT_TAG_ID,
STR_WITH_SIZE("Linux initrd")
},
[EFISTUB_EVT_LOAD_OPTIONS] = {
9,
LOAD_OPTIONS_EVENT_TAG_ID,
STR_WITH_SIZE("LOADED_IMAGE::LoadOptions")
},
};
static efi_status_t efi_measure_tagged_event(unsigned long load_addr,
unsigned long load_size,
enum efistub_event event)
{
efi_guid_t tcg2_guid = EFI_TCG2_PROTOCOL_GUID;
efi_tcg2_protocol_t *tcg2 = NULL;
efi_status_t status;
efi_bs_call(locate_protocol, &tcg2_guid, NULL, (void **)&tcg2);
if (tcg2) {
struct efi_measured_event {
efi_tcg2_event_t event_data;
efi_tcg2_tagged_event_t tagged_event;
u8 tagged_event_data[];
} *evt;
int size = sizeof(*evt) + events[event].event_data_len;
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
(void **)&evt);
if (status != EFI_SUCCESS)
goto fail;
evt->event_data = (struct efi_tcg2_event){
.event_size = size,
.event_header.header_size = sizeof(evt->event_data.event_header),
.event_header.header_version = EFI_TCG2_EVENT_HEADER_VERSION,
.event_header.pcr_index = events[event].pcr_index,
.event_header.event_type = EV_EVENT_TAG,
};
evt->tagged_event = (struct efi_tcg2_tagged_event){
.tagged_event_id = events[event].event_id,
.tagged_event_data_size = events[event].event_data_len,
};
memcpy(evt->tagged_event_data, events[event].event_data,
events[event].event_data_len);
status = efi_call_proto(tcg2, hash_log_extend_event, 0,
load_addr, load_size, &evt->event_data);
efi_bs_call(free_pool, evt);
if (status != EFI_SUCCESS)
goto fail;
return EFI_SUCCESS;
}
return EFI_UNSUPPORTED;
fail:
efi_warn("Failed to measure data for event %d: 0x%lx\n", event, status);
return status;
}
/*
* Convert the unicode UEFI command line to ASCII to pass to kernel.
* Size of memory allocated return in *cmd_line_len.
@ -341,21 +420,26 @@ void efi_apply_loadoptions_quirk(const void **load_options, int *load_options_si
*/
char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len)
{
const u16 *s2;
unsigned long cmdline_addr = 0;
int options_chars = efi_table_attr(image, load_options_size);
const u16 *options = efi_table_attr(image, load_options);
const efi_char16_t *options = efi_table_attr(image, load_options);
u32 options_size = efi_table_attr(image, load_options_size);
int options_bytes = 0, safe_options_bytes = 0; /* UTF-8 bytes */
unsigned long cmdline_addr = 0;
const efi_char16_t *s2;
bool in_quote = false;
efi_status_t status;
u32 options_chars;
efi_apply_loadoptions_quirk((const void **)&options, &options_chars);
options_chars /= sizeof(*options);
if (options_size > 0)
efi_measure_tagged_event((unsigned long)options, options_size,
EFISTUB_EVT_LOAD_OPTIONS);
efi_apply_loadoptions_quirk((const void **)&options, &options_size);
options_chars = options_size / sizeof(efi_char16_t);
if (options) {
s2 = options;
while (options_bytes < COMMAND_LINE_SIZE && options_chars--) {
u16 c = *s2++;
efi_char16_t c = *s2++;
if (c < 0x80) {
if (c == L'\0' || c == L'\n')
@ -419,7 +503,6 @@ char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len)
/**
* efi_exit_boot_services() - Exit boot services
* @handle: handle of the exiting image
* @map: pointer to receive the memory map
* @priv: argument to be passed to @priv_func
* @priv_func: function to process the memory map before exiting boot services
*
@ -432,26 +515,26 @@ char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len)
*
* Return: status code
*/
efi_status_t efi_exit_boot_services(void *handle,
struct efi_boot_memmap *map,
void *priv,
efi_status_t efi_exit_boot_services(void *handle, void *priv,
efi_exit_boot_map_processing priv_func)
{
struct efi_boot_memmap *map;
efi_status_t status;
status = efi_get_memory_map(map);
status = efi_get_memory_map(&map, true);
if (status != EFI_SUCCESS)
goto fail;
return status;
status = priv_func(map, priv);
if (status != EFI_SUCCESS)
goto free_map;
if (status != EFI_SUCCESS) {
efi_bs_call(free_pool, map);
return status;
}
if (efi_disable_pci_dma)
efi_pci_disable_bridge_busmaster();
status = efi_bs_call(exit_boot_services, handle, *map->key_ptr);
status = efi_bs_call(exit_boot_services, handle, map->map_key);
if (status == EFI_INVALID_PARAMETER) {
/*
@ -467,35 +550,26 @@ efi_status_t efi_exit_boot_services(void *handle,
* buffer should account for any changes in the map so the call
* to get_memory_map() is expected to succeed here.
*/
*map->map_size = *map->buff_size;
map->map_size = map->buff_size;
status = efi_bs_call(get_memory_map,
map->map_size,
*map->map,
map->key_ptr,
map->desc_size,
map->desc_ver);
&map->map_size,
&map->map,
&map->map_key,
&map->desc_size,
&map->desc_ver);
/* exit_boot_services() was called, thus cannot free */
if (status != EFI_SUCCESS)
goto fail;
return status;
status = priv_func(map, priv);
/* exit_boot_services() was called, thus cannot free */
if (status != EFI_SUCCESS)
goto fail;
return status;
status = efi_bs_call(exit_boot_services, handle, *map->key_ptr);
status = efi_bs_call(exit_boot_services, handle, map->map_key);
}
/* exit_boot_services() was called, thus cannot free */
if (status != EFI_SUCCESS)
goto fail;
return EFI_SUCCESS;
free_map:
efi_bs_call(free_pool, *map->map);
fail:
return status;
}
@ -560,20 +634,16 @@ static const struct {
* * %EFI_SUCCESS if the initrd was loaded successfully, in which
* case @load_addr and @load_size are assigned accordingly
* * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path
* * %EFI_INVALID_PARAMETER if load_addr == NULL or load_size == NULL
* * %EFI_OUT_OF_RESOURCES if memory allocation failed
* * %EFI_LOAD_ERROR in all other cases
*/
static
efi_status_t efi_load_initrd_dev_path(unsigned long *load_addr,
unsigned long *load_size,
efi_status_t efi_load_initrd_dev_path(struct linux_efi_initrd *initrd,
unsigned long max)
{
efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID;
efi_device_path_protocol_t *dp;
efi_load_file2_protocol_t *lf2;
unsigned long initrd_addr;
unsigned long initrd_size;
efi_handle_t handle;
efi_status_t status;
@ -587,124 +657,98 @@ efi_status_t efi_load_initrd_dev_path(unsigned long *load_addr,
if (status != EFI_SUCCESS)
return status;
status = efi_call_proto(lf2, load_file, dp, false, &initrd_size, NULL);
initrd->size = 0;
status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, NULL);
if (status != EFI_BUFFER_TOO_SMALL)
return EFI_LOAD_ERROR;
status = efi_allocate_pages(initrd_size, &initrd_addr, max);
status = efi_allocate_pages(initrd->size, &initrd->base, max);
if (status != EFI_SUCCESS)
return status;
status = efi_call_proto(lf2, load_file, dp, false, &initrd_size,
(void *)initrd_addr);
status = efi_call_proto(lf2, load_file, dp, false, &initrd->size,
(void *)initrd->base);
if (status != EFI_SUCCESS) {
efi_free(initrd_size, initrd_addr);
efi_free(initrd->size, initrd->base);
return EFI_LOAD_ERROR;
}
*load_addr = initrd_addr;
*load_size = initrd_size;
return EFI_SUCCESS;
}
static
efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image,
unsigned long *load_addr,
unsigned long *load_size,
struct linux_efi_initrd *initrd,
unsigned long soft_limit,
unsigned long hard_limit)
{
if (!IS_ENABLED(CONFIG_EFI_GENERIC_STUB_INITRD_CMDLINE_LOADER) ||
(IS_ENABLED(CONFIG_X86) && (!efi_is_native() || image == NULL))) {
*load_addr = *load_size = 0;
return EFI_SUCCESS;
}
(IS_ENABLED(CONFIG_X86) && (!efi_is_native() || image == NULL)))
return EFI_UNSUPPORTED;
return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2,
soft_limit, hard_limit,
load_addr, load_size);
}
static const struct {
efi_tcg2_event_t event_data;
efi_tcg2_tagged_event_t tagged_event;
u8 tagged_event_data[];
} initrd_tcg2_event = {
{
sizeof(initrd_tcg2_event) + sizeof("Linux initrd"),
{
sizeof(initrd_tcg2_event.event_data.event_header),
EFI_TCG2_EVENT_HEADER_VERSION,
9,
EV_EVENT_TAG,
},
},
{
INITRD_EVENT_TAG_ID,
sizeof("Linux initrd"),
},
{ "Linux initrd" },
};
static void efi_measure_initrd(unsigned long load_addr, unsigned long load_size)
{
efi_guid_t tcg2_guid = EFI_TCG2_PROTOCOL_GUID;
efi_tcg2_protocol_t *tcg2 = NULL;
efi_status_t status;
efi_bs_call(locate_protocol, &tcg2_guid, NULL, (void **)&tcg2);
if (tcg2) {
status = efi_call_proto(tcg2, hash_log_extend_event,
0, load_addr, load_size,
&initrd_tcg2_event.event_data);
if (status != EFI_SUCCESS)
efi_warn("Failed to measure initrd data: 0x%lx\n",
status);
else
efi_info("Measured initrd data into PCR %d\n",
initrd_tcg2_event.event_data.event_header.pcr_index);
}
&initrd->base, &initrd->size);
}
/**
* efi_load_initrd() - Load initial RAM disk
* @image: EFI loaded image protocol
* @load_addr: pointer to loaded initrd
* @load_size: size of loaded initrd
* @soft_limit: preferred address for loading the initrd
* @hard_limit: upper limit address for loading the initrd
*
* Return: status code
*/
efi_status_t efi_load_initrd(efi_loaded_image_t *image,
unsigned long *load_addr,
unsigned long *load_size,
unsigned long soft_limit,
unsigned long hard_limit)
unsigned long hard_limit,
const struct linux_efi_initrd **out)
{
efi_status_t status;
efi_guid_t tbl_guid = LINUX_EFI_INITRD_MEDIA_GUID;
efi_status_t status = EFI_SUCCESS;
struct linux_efi_initrd initrd, *tbl;
if (efi_noinitrd) {
*load_addr = *load_size = 0;
status = EFI_SUCCESS;
} else {
status = efi_load_initrd_dev_path(load_addr, load_size, hard_limit);
if (status == EFI_SUCCESS) {
efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
if (*load_size > 0)
efi_measure_initrd(*load_addr, *load_size);
} else if (status == EFI_NOT_FOUND) {
status = efi_load_initrd_cmdline(image, load_addr, load_size,
soft_limit, hard_limit);
if (status == EFI_SUCCESS && *load_size > 0)
efi_info("Loaded initrd from command line option\n");
}
if (status != EFI_SUCCESS) {
efi_err("Failed to load initrd: 0x%lx\n", status);
*load_addr = *load_size = 0;
}
if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD) || efi_noinitrd)
return EFI_SUCCESS;
status = efi_load_initrd_dev_path(&initrd, hard_limit);
if (status == EFI_SUCCESS) {
efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
if (initrd.size > 0 &&
efi_measure_tagged_event(initrd.base, initrd.size,
EFISTUB_EVT_INITRD) == EFI_SUCCESS)
efi_info("Measured initrd data into PCR 9\n");
} else if (status == EFI_NOT_FOUND) {
status = efi_load_initrd_cmdline(image, &initrd, soft_limit,
hard_limit);
/* command line loader disabled or no initrd= passed? */
if (status == EFI_UNSUPPORTED || status == EFI_NOT_READY)
return EFI_SUCCESS;
if (status == EFI_SUCCESS)
efi_info("Loaded initrd from command line option\n");
}
if (status != EFI_SUCCESS)
goto failed;
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(initrd),
(void **)&tbl);
if (status != EFI_SUCCESS)
goto free_initrd;
*tbl = initrd;
status = efi_bs_call(install_configuration_table, &tbl_guid, tbl);
if (status != EFI_SUCCESS)
goto free_tbl;
if (out)
*out = tbl;
return EFI_SUCCESS;
free_tbl:
efi_bs_call(free_pool, tbl);
free_initrd:
efi_free(initrd.size, initrd.base);
failed:
efi_err("Failed to load initrd: 0x%lx\n", status);
return status;
}

View File

@ -10,7 +10,6 @@
*/
#include <linux/efi.h>
#include <linux/libfdt.h>
#include <asm/efi.h>
#include "efistub.h"
@ -40,16 +39,22 @@
#ifdef CONFIG_ARM64
# define EFI_RT_VIRTUAL_LIMIT DEFAULT_MAP_WINDOW_64
#elif defined(CONFIG_RISCV)
#elif defined(CONFIG_RISCV) || defined(CONFIG_LOONGARCH)
# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE_MIN
#else
#else /* Only if TASK_SIZE is a constant */
# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE
#endif
static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
static bool flat_va_mapping;
/*
* Some architectures map the EFI regions into the kernel's linear map using a
* fixed offset.
*/
#ifndef EFI_RT_VIRTUAL_OFFSET
#define EFI_RT_VIRTUAL_OFFSET 0
#endif
const efi_system_table_t *efi_system_table;
static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
static bool flat_va_mapping = (EFI_RT_VIRTUAL_OFFSET != 0);
static struct screen_info *setup_graphics(void)
{
@ -124,16 +129,11 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
unsigned long image_addr;
unsigned long image_size = 0;
/* addr/point and size pairs for memory management*/
unsigned long initrd_addr = 0;
unsigned long initrd_size = 0;
unsigned long fdt_addr = 0; /* Original DTB */
unsigned long fdt_size = 0;
char *cmdline_ptr = NULL;
int cmdline_size = 0;
efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
unsigned long reserve_addr = 0;
unsigned long reserve_size = 0;
enum efi_secureboot_mode secure_boot;
struct screen_info *si;
efi_properties_table_t *prop_tbl;
@ -154,8 +154,8 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
* information about the running image, such as size and the command
* line.
*/
status = efi_system_table->boottime->handle_protocol(handle,
&loaded_image_proto, (void *)&image);
status = efi_bs_call(handle_protocol, handle, &loaded_image_proto,
(void *)&image);
if (status != EFI_SUCCESS) {
efi_err("Failed to get loaded image protocol\n");
goto fail;
@ -209,40 +209,8 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
/* Ask the firmware to clear memory on unclean shutdown */
efi_enable_reset_attack_mitigation();
secure_boot = efi_get_secureboot();
/*
* Unauthenticated device tree data is a security hazard, so ignore
* 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
* boot is enabled if we can't determine its state.
*/
if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
secure_boot != efi_secureboot_mode_disabled) {
if (strstr(cmdline_ptr, "dtb="))
efi_err("Ignoring DTB from command line.\n");
} else {
status = efi_load_dtb(image, &fdt_addr, &fdt_size);
if (status != EFI_SUCCESS) {
efi_err("Failed to load device tree!\n");
goto fail_free_image;
}
}
if (fdt_addr) {
efi_info("Using DTB from command line\n");
} else {
/* Look for a device tree configuration table entry. */
fdt_addr = (uintptr_t)get_fdt(&fdt_size);
if (fdt_addr)
efi_info("Using DTB from configuration table\n");
}
if (!fdt_addr)
efi_info("Generating empty DTB\n");
efi_load_initrd(image, &initrd_addr, &initrd_size, ULONG_MAX,
efi_get_max_initrd_addr(image_addr));
efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr),
NULL);
efi_random_get_seed();
@ -254,8 +222,8 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
* The easiest way to achieve that is to simply use a 1:1 mapping.
*/
prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
flat_va_mapping = prop_tbl &&
(prop_tbl->memory_protection_attribute &
flat_va_mapping |= prop_tbl &&
(prop_tbl->memory_protection_attribute &
EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
/* force efi_novamap if SetVirtualAddressMap() is unsupported */
@ -284,25 +252,8 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
install_memreserve_table();
status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
initrd_addr, initrd_size,
cmdline_ptr, fdt_addr, fdt_size);
if (status != EFI_SUCCESS)
goto fail_free_initrd;
status = efi_boot_kernel(handle, image, image_addr, cmdline_ptr);
if (IS_ENABLED(CONFIG_ARM))
efi_handle_post_ebs_state();
efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
/* not reached */
fail_free_initrd:
efi_err("Failed to update FDT and exit boot services\n");
efi_free(initrd_size, initrd_addr);
efi_free(fdt_size, fdt_addr);
fail_free_image:
efi_free(image_size, image_addr);
efi_free(reserve_size, reserve_addr);
fail_free_screeninfo:
@ -313,6 +264,35 @@ fail:
return status;
}
/*
* efi_allocate_virtmap() - create a pool allocation for the virtmap
*
* Create an allocation that is of sufficient size to hold all the memory
* descriptors that will be passed to SetVirtualAddressMap() to inform the
* firmware about the virtual mapping that will be used under the OS to call
* into the firmware.
*/
efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap,
unsigned long *desc_size, u32 *desc_ver)
{
unsigned long size, mmap_key;
efi_status_t status;
/*
* Use the size of the current memory map as an upper bound for the
* size of the buffer we need to pass to SetVirtualAddressMap() to
* cover all EFI_MEMORY_RUNTIME regions.
*/
size = 0;
status = efi_bs_call(get_memory_map, &size, NULL, &mmap_key, desc_size,
desc_ver);
if (status != EFI_BUFFER_TOO_SMALL)
return EFI_LOAD_ERROR;
return efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
(void **)virtmap);
}
/*
* efi_get_virtmap() - create a virtual mapping for the EFI memory map
*
@ -328,6 +308,8 @@ void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
efi_memory_desc_t *in, *out = runtime_map;
int l;
*count = 0;
for (l = 0; l < map_size; l += desc_size) {
u64 paddr, size;
@ -338,7 +320,7 @@ void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
paddr = in->phys_addr;
size = in->num_pages * EFI_PAGE_SIZE;
in->virt_addr = in->phys_addr;
in->virt_addr = in->phys_addr + EFI_RT_VIRTUAL_OFFSET;
if (efi_novamap) {
continue;
}

View File

@ -160,16 +160,24 @@ void efi_set_u64_split(u64 data, u32 *lo, u32 *hi)
*/
#define EFI_MMAP_NR_SLACK_SLOTS 8
struct efi_boot_memmap {
efi_memory_desc_t **map;
unsigned long *map_size;
unsigned long *desc_size;
u32 *desc_ver;
unsigned long *key_ptr;
unsigned long *buff_size;
typedef struct efi_generic_dev_path efi_device_path_protocol_t;
union efi_device_path_to_text_protocol {
struct {
efi_char16_t *(__efiapi *convert_device_node_to_text)(
const efi_device_path_protocol_t *,
bool, bool);
efi_char16_t *(__efiapi *convert_device_path_to_text)(
const efi_device_path_protocol_t *,
bool, bool);
};
struct {
u32 convert_device_node_to_text;
u32 convert_device_path_to_text;
} mixed_mode;
};
typedef struct efi_generic_dev_path efi_device_path_protocol_t;
typedef union efi_device_path_to_text_protocol efi_device_path_to_text_protocol_t;
typedef void *efi_event_t;
/* Note that notifications won't work in mixed mode */
@ -254,13 +262,17 @@ union efi_boot_services {
efi_handle_t *);
efi_status_t (__efiapi *install_configuration_table)(efi_guid_t *,
void *);
void *load_image;
void *start_image;
efi_status_t (__efiapi *load_image)(bool, efi_handle_t,
efi_device_path_protocol_t *,
void *, unsigned long,
efi_handle_t *);
efi_status_t (__efiapi *start_image)(efi_handle_t, unsigned long *,
efi_char16_t **);
efi_status_t __noreturn (__efiapi *exit)(efi_handle_t,
efi_status_t,
unsigned long,
efi_char16_t *);
void *unload_image;
efi_status_t (__efiapi *unload_image)(efi_handle_t);
efi_status_t (__efiapi *exit_boot_services)(efi_handle_t,
unsigned long);
void *get_next_monotonic_count;
@ -277,11 +289,11 @@ union efi_boot_services {
void *locate_handle_buffer;
efi_status_t (__efiapi *locate_protocol)(efi_guid_t *, void *,
void **);
void *install_multiple_protocol_interfaces;
void *uninstall_multiple_protocol_interfaces;
efi_status_t (__efiapi *install_multiple_protocol_interfaces)(efi_handle_t *, ...);
efi_status_t (__efiapi *uninstall_multiple_protocol_interfaces)(efi_handle_t, ...);
void *calculate_crc32;
void *copy_mem;
void *set_mem;
void (__efiapi *copy_mem)(void *, const void *, unsigned long);
void (__efiapi *set_mem)(void *, unsigned long, unsigned char);
void *create_event_ex;
};
struct {
@ -741,6 +753,7 @@ union apple_properties_protocol {
typedef u32 efi_tcg2_event_log_format;
#define INITRD_EVENT_TAG_ID 0x8F3B22ECU
#define LOAD_OPTIONS_EVENT_TAG_ID 0x8F3B22EDU
#define EV_EVENT_TAG 0x00000006U
#define EFI_TCG2_EVENT_HEADER_VERSION 0x1
@ -840,7 +853,7 @@ typedef struct {
u16 file_path_list_length;
const efi_char16_t *description;
const efi_device_path_protocol_t *file_path_list;
size_t optional_data_size;
u32 optional_data_size;
const void *optional_data;
} efi_load_option_unpacked_t;
@ -850,20 +863,16 @@ typedef efi_status_t (*efi_exit_boot_map_processing)(
struct efi_boot_memmap *map,
void *priv);
efi_status_t efi_exit_boot_services(void *handle,
struct efi_boot_memmap *map,
void *priv,
efi_status_t efi_exit_boot_services(void *handle, void *priv,
efi_exit_boot_map_processing priv_func);
efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
unsigned long *new_fdt_addr,
u64 initrd_addr, u64 initrd_size,
char *cmdline_ptr,
unsigned long fdt_addr,
unsigned long fdt_size);
efi_status_t efi_boot_kernel(void *handle, efi_loaded_image_t *image,
unsigned long kernel_addr, char *cmdline_ptr);
void *get_fdt(unsigned long *fdt_size);
efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap,
unsigned long *desc_size, u32 *desc_ver);
void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
unsigned long desc_size, efi_memory_desc_t *runtime_map,
int *count);
@ -885,11 +894,12 @@ __printf(1, 2) int efi_printk(char const *fmt, ...);
void efi_free(unsigned long size, unsigned long addr);
void efi_apply_loadoptions_quirk(const void **load_options, int *load_options_size);
void efi_apply_loadoptions_quirk(const void **load_options, u32 *load_options_size);
char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len);
efi_status_t efi_get_memory_map(struct efi_boot_memmap *map);
efi_status_t efi_get_memory_map(struct efi_boot_memmap **map,
bool install_cfg_tbl);
efi_status_t efi_allocate_pages(unsigned long size, unsigned long *addr,
unsigned long max);
@ -932,10 +942,9 @@ static inline efi_status_t efi_load_dtb(efi_loaded_image_t *image,
}
efi_status_t efi_load_initrd(efi_loaded_image_t *image,
unsigned long *load_addr,
unsigned long *load_size,
unsigned long soft_limit,
unsigned long hard_limit);
unsigned long hard_limit,
const struct linux_efi_initrd **out);
/*
* This function handles the architcture specific differences between arm and
* arm64 regarding where the kernel image must be loaded and any memory that

View File

@ -28,8 +28,7 @@ static void fdt_update_cell_size(void *fdt)
}
static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
void *fdt, int new_fdt_size, char *cmdline_ptr,
u64 initrd_addr, u64 initrd_size)
void *fdt, int new_fdt_size, char *cmdline_ptr)
{
int node, num_rsv;
int status;
@ -93,21 +92,6 @@ static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
goto fdt_set_fail;
}
/* Set initrd address/end in device tree, if present */
if (initrd_size != 0) {
u64 initrd_image_end;
u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
if (status)
goto fdt_set_fail;
initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
if (status)
goto fdt_set_fail;
}
/* Add FDT entries for EFI runtime services in chosen node. */
node = fdt_subnode_offset(fdt, 0, "chosen");
fdt_val64 = cpu_to_fdt64((u64)(unsigned long)efi_system_table);
@ -170,25 +154,25 @@ static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
if (node < 0)
return EFI_LOAD_ERROR;
fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
fdt_val64 = cpu_to_fdt64((unsigned long)map->map);
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
if (err)
return EFI_LOAD_ERROR;
fdt_val32 = cpu_to_fdt32(*map->map_size);
fdt_val32 = cpu_to_fdt32(map->map_size);
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
if (err)
return EFI_LOAD_ERROR;
fdt_val32 = cpu_to_fdt32(*map->desc_size);
fdt_val32 = cpu_to_fdt32(map->desc_size);
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
if (err)
return EFI_LOAD_ERROR;
fdt_val32 = cpu_to_fdt32(*map->desc_ver);
fdt_val32 = cpu_to_fdt32(map->desc_ver);
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
if (err)
@ -198,22 +182,25 @@ static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
}
struct exit_boot_struct {
struct efi_boot_memmap *boot_memmap;
efi_memory_desc_t *runtime_map;
int *runtime_entry_count;
int runtime_entry_count;
void *new_fdt_addr;
};
static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
void *priv)
static efi_status_t exit_boot_func(struct efi_boot_memmap *map, void *priv)
{
struct exit_boot_struct *p = priv;
p->boot_memmap = map;
/*
* Update the memory map with virtual addresses. The function will also
* populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
* entries so that we can pass it straight to SetVirtualAddressMap()
*/
efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
p->runtime_map, p->runtime_entry_count);
efi_get_virtmap(map->map, map->map_size, map->desc_size,
p->runtime_map, &p->runtime_entry_count);
return update_fdt_memmap(p->new_fdt_addr, map);
}
@ -223,86 +210,86 @@ static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
#endif
/*
* Allocate memory for a new FDT, then add EFI, commandline, and
* initrd related fields to the FDT. This routine increases the
* FDT allocation size until the allocated memory is large
* enough. EFI allocations are in EFI_PAGE_SIZE granules,
* which are fixed at 4K bytes, so in most cases the first
* allocation should succeed.
* EFI boot services are exited at the end of this function.
* There must be no allocations between the get_memory_map()
* call and the exit_boot_services() call, so the exiting of
* boot services is very tightly tied to the creation of the FDT
* with the final memory map in it.
* Allocate memory for a new FDT, then add EFI and commandline related fields
* to the FDT. This routine increases the FDT allocation size until the
* allocated memory is large enough. EFI allocations are in EFI_PAGE_SIZE
* granules, which are fixed at 4K bytes, so in most cases the first allocation
* should succeed. EFI boot services are exited at the end of this function.
* There must be no allocations between the get_memory_map() call and the
* exit_boot_services() call, so the exiting of boot services is very tightly
* tied to the creation of the FDT with the final memory map in it.
*/
static
efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
efi_loaded_image_t *image,
unsigned long *new_fdt_addr,
u64 initrd_addr, u64 initrd_size,
char *cmdline_ptr,
unsigned long fdt_addr,
unsigned long fdt_size)
char *cmdline_ptr)
{
unsigned long map_size, desc_size, buff_size;
unsigned long desc_size;
u32 desc_ver;
unsigned long mmap_key;
efi_memory_desc_t *memory_map, *runtime_map;
efi_status_t status;
int runtime_entry_count;
struct efi_boot_memmap map;
struct exit_boot_struct priv;
unsigned long fdt_addr = 0;
unsigned long fdt_size = 0;
map.map = &runtime_map;
map.map_size = &map_size;
map.desc_size = &desc_size;
map.desc_ver = &desc_ver;
map.key_ptr = &mmap_key;
map.buff_size = &buff_size;
if (!efi_novamap) {
status = efi_alloc_virtmap(&priv.runtime_map, &desc_size,
&desc_ver);
if (status != EFI_SUCCESS) {
efi_err("Unable to retrieve UEFI memory map.\n");
return status;
}
}
/*
* Get a copy of the current memory map that we will use to prepare
* the input for SetVirtualAddressMap(). We don't have to worry about
* subsequent allocations adding entries, since they could not affect
* the number of EFI_MEMORY_RUNTIME regions.
* Unauthenticated device tree data is a security hazard, so ignore
* 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
* boot is enabled if we can't determine its state.
*/
status = efi_get_memory_map(&map);
if (status != EFI_SUCCESS) {
efi_err("Unable to retrieve UEFI memory map.\n");
return status;
if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
efi_get_secureboot() != efi_secureboot_mode_disabled) {
if (strstr(cmdline_ptr, "dtb="))
efi_err("Ignoring DTB from command line.\n");
} else {
status = efi_load_dtb(image, &fdt_addr, &fdt_size);
if (status != EFI_SUCCESS && status != EFI_NOT_READY) {
efi_err("Failed to load device tree!\n");
goto fail;
}
}
if (fdt_addr) {
efi_info("Using DTB from command line\n");
} else {
/* Look for a device tree configuration table entry. */
fdt_addr = (uintptr_t)get_fdt(&fdt_size);
if (fdt_addr)
efi_info("Using DTB from configuration table\n");
}
if (!fdt_addr)
efi_info("Generating empty DTB\n");
efi_info("Exiting boot services...\n");
map.map = &memory_map;
status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, ULONG_MAX);
if (status != EFI_SUCCESS) {
efi_err("Unable to allocate memory for new device tree.\n");
goto fail;
}
/*
* Now that we have done our final memory allocation (and free)
* we can get the memory map key needed for exit_boot_services().
*/
status = efi_get_memory_map(&map);
if (status != EFI_SUCCESS)
goto fail_free_new_fdt;
status = update_fdt((void *)fdt_addr, fdt_size,
(void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
initrd_addr, initrd_size);
(void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr);
if (status != EFI_SUCCESS) {
efi_err("Unable to construct new device tree.\n");
goto fail_free_new_fdt;
}
runtime_entry_count = 0;
priv.runtime_map = runtime_map;
priv.runtime_entry_count = &runtime_entry_count;
priv.new_fdt_addr = (void *)*new_fdt_addr;
priv.new_fdt_addr = (void *)*new_fdt_addr;
status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func);
status = efi_exit_boot_services(handle, &priv, exit_boot_func);
if (status == EFI_SUCCESS) {
efi_set_virtual_address_map_t *svam;
@ -312,8 +299,8 @@ efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
/* Install the new virtual address map */
svam = efi_system_table->runtime->set_virtual_address_map;
status = svam(runtime_entry_count * desc_size, desc_size,
desc_ver, runtime_map);
status = svam(priv.runtime_entry_count * desc_size, desc_size,
desc_ver, priv.runtime_map);
/*
* We are beyond the point of no return here, so if the call to
@ -321,6 +308,7 @@ efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
* incoming kernel but proceed normally otherwise.
*/
if (status != EFI_SUCCESS) {
efi_memory_desc_t *p;
int l;
/*
@ -329,8 +317,9 @@ efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
* the incoming kernel that no virtual translation has
* been installed.
*/
for (l = 0; l < map_size; l += desc_size) {
efi_memory_desc_t *p = (void *)memory_map + l;
for (l = 0; l < priv.boot_memmap->map_size;
l += priv.boot_memmap->desc_size) {
p = (void *)priv.boot_memmap->map + l;
if (p->attribute & EFI_MEMORY_RUNTIME)
p->virt_addr = 0;
@ -345,11 +334,33 @@ fail_free_new_fdt:
efi_free(MAX_FDT_SIZE, *new_fdt_addr);
fail:
efi_system_table->boottime->free_pool(runtime_map);
efi_free(fdt_size, fdt_addr);
efi_bs_call(free_pool, priv.runtime_map);
return EFI_LOAD_ERROR;
}
efi_status_t efi_boot_kernel(void *handle, efi_loaded_image_t *image,
unsigned long kernel_addr, char *cmdline_ptr)
{
unsigned long fdt_addr;
efi_status_t status;
status = allocate_new_fdt_and_exit_boot(handle, image, &fdt_addr,
cmdline_ptr);
if (status != EFI_SUCCESS) {
efi_err("Failed to update FDT and exit boot services\n");
return status;
}
if (IS_ENABLED(CONFIG_ARM))
efi_handle_post_ebs_state();
efi_enter_kernel(kernel_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
/* not reached */
}
void *get_fdt(unsigned long *fdt_size)
{
void *fdt;

View File

@ -66,10 +66,28 @@ static efi_status_t efi_open_file(efi_file_protocol_t *volume,
static efi_status_t efi_open_volume(efi_loaded_image_t *image,
efi_file_protocol_t **fh)
{
struct efi_vendor_dev_path *dp = image->file_path;
efi_guid_t li_proto = LOADED_IMAGE_PROTOCOL_GUID;
efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
efi_simple_file_system_protocol_t *io;
efi_status_t status;
// If we are using EFI zboot, we should look for the file system
// protocol on the parent image's handle instead
if (IS_ENABLED(CONFIG_EFI_ZBOOT) &&
image->parent_handle != NULL &&
dp != NULL &&
dp->header.type == EFI_DEV_MEDIA &&
dp->header.sub_type == EFI_DEV_MEDIA_VENDOR &&
!efi_guidcmp(dp->vendorguid, LINUX_EFI_ZBOOT_MEDIA_GUID)) {
status = efi_bs_call(handle_protocol, image->parent_handle,
&li_proto, (void *)&image);
if (status != EFI_SUCCESS) {
efi_err("Failed to locate parent image handle\n");
return status;
}
}
status = efi_bs_call(handle_protocol, image->device_handle, &fs_proto,
(void **)&io);
if (status != EFI_SUCCESS) {
@ -136,7 +154,7 @@ efi_status_t handle_cmdline_files(efi_loaded_image_t *image,
unsigned long *load_size)
{
const efi_char16_t *cmdline = image->load_options;
int cmdline_len = image->load_options_size;
u32 cmdline_len = image->load_options_size;
unsigned long efi_chunk_size = ULONG_MAX;
efi_file_protocol_t *volume = NULL;
efi_file_protocol_t *file;
@ -238,6 +256,9 @@ efi_status_t handle_cmdline_files(efi_loaded_image_t *image,
if (volume)
volume->close(volume);
if (*load_size == 0)
return EFI_NOT_READY;
return EFI_SUCCESS;
err_close_file:

View File

@ -0,0 +1,30 @@
// SPDX-License-Identifier: GPL-2.0
#include <linux/efi.h>
#include <asm/efi.h>
#include <asm/string.h>
#include "efistub.h"
#ifdef CONFIG_KASAN
#undef memcpy
#undef memmove
#undef memset
void *__memcpy(void *__dest, const void *__src, size_t __n) __alias(memcpy);
void *__memmove(void *__dest, const void *__src, size_t count) __alias(memmove);
void *__memset(void *s, int c, size_t count) __alias(memset);
#endif
void *memcpy(void *dst, const void *src, size_t len)
{
efi_bs_call(copy_mem, dst, src, len);
return dst;
}
extern void *memmove(void *dst, const void *src, size_t len) __alias(memcpy);
void *memset(void *dst, int c, size_t len)
{
efi_bs_call(set_mem, dst, len, c & U8_MAX);
return dst;
}

View File

@ -0,0 +1,102 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Author: Yun Liu <liuyun@loongson.cn>
* Huacai Chen <chenhuacai@loongson.cn>
* Copyright (C) 2020-2022 Loongson Technology Corporation Limited
*/
#include <asm/efi.h>
#include <asm/addrspace.h>
#include "efistub.h"
typedef void __noreturn (*kernel_entry_t)(bool efi, unsigned long cmdline,
unsigned long systab);
extern int kernel_asize;
extern int kernel_fsize;
extern int kernel_offset;
extern kernel_entry_t kernel_entry;
efi_status_t check_platform_features(void)
{
return EFI_SUCCESS;
}
efi_status_t handle_kernel_image(unsigned long *image_addr,
unsigned long *image_size,
unsigned long *reserve_addr,
unsigned long *reserve_size,
efi_loaded_image_t *image,
efi_handle_t image_handle)
{
efi_status_t status;
unsigned long kernel_addr = 0;
kernel_addr = (unsigned long)&kernel_offset - kernel_offset;
status = efi_relocate_kernel(&kernel_addr, kernel_fsize, kernel_asize,
PHYSADDR(VMLINUX_LOAD_ADDRESS), SZ_2M, 0x0);
*image_addr = kernel_addr;
*image_size = kernel_asize;
return status;
}
struct exit_boot_struct {
efi_memory_desc_t *runtime_map;
int runtime_entry_count;
};
static efi_status_t exit_boot_func(struct efi_boot_memmap *map, void *priv)
{
struct exit_boot_struct *p = priv;
/*
* Update the memory map with virtual addresses. The function will also
* populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
* entries so that we can pass it straight to SetVirtualAddressMap()
*/
efi_get_virtmap(map->map, map->map_size, map->desc_size,
p->runtime_map, &p->runtime_entry_count);
return EFI_SUCCESS;
}
efi_status_t efi_boot_kernel(void *handle, efi_loaded_image_t *image,
unsigned long kernel_addr, char *cmdline_ptr)
{
kernel_entry_t real_kernel_entry;
struct exit_boot_struct priv;
unsigned long desc_size;
efi_status_t status;
u32 desc_ver;
status = efi_alloc_virtmap(&priv.runtime_map, &desc_size, &desc_ver);
if (status != EFI_SUCCESS) {
efi_err("Unable to retrieve UEFI memory map.\n");
return status;
}
efi_info("Exiting boot services\n");
efi_novamap = false;
status = efi_exit_boot_services(handle, &priv, exit_boot_func);
if (status != EFI_SUCCESS)
return status;
/* Install the new virtual address map */
efi_rt_call(set_virtual_address_map,
priv.runtime_entry_count * desc_size, desc_size,
desc_ver, priv.runtime_map);
/* Config Direct Mapping */
csr_write64(CSR_DMW0_INIT, LOONGARCH_CSR_DMWIN0);
csr_write64(CSR_DMW1_INIT, LOONGARCH_CSR_DMWIN1);
real_kernel_entry = (kernel_entry_t)
((unsigned long)&kernel_entry - kernel_addr + VMLINUX_LOAD_ADDRESS);
real_kernel_entry(true, (unsigned long)cmdline_ptr,
(unsigned long)efi_system_table);
}

View File

@ -5,71 +5,66 @@
#include "efistub.h"
static inline bool mmap_has_headroom(unsigned long buff_size,
unsigned long map_size,
unsigned long desc_size)
{
unsigned long slack = buff_size - map_size;
return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
}
/**
* efi_get_memory_map() - get memory map
* @map: on return pointer to memory map
* @map: pointer to memory map pointer to which to assign the
* newly allocated memory map
* @install_cfg_tbl: whether or not to install the boot memory map as a
* configuration table
*
* Retrieve the UEFI memory map. The allocated memory leaves room for
* up to EFI_MMAP_NR_SLACK_SLOTS additional memory map entries.
*
* Return: status code
*/
efi_status_t efi_get_memory_map(struct efi_boot_memmap *map)
efi_status_t efi_get_memory_map(struct efi_boot_memmap **map,
bool install_cfg_tbl)
{
efi_memory_desc_t *m = NULL;
int memtype = install_cfg_tbl ? EFI_ACPI_RECLAIM_MEMORY
: EFI_LOADER_DATA;
efi_guid_t tbl_guid = LINUX_EFI_BOOT_MEMMAP_GUID;
struct efi_boot_memmap *m, tmp;
efi_status_t status;
unsigned long key;
u32 desc_version;
unsigned long size;
*map->desc_size = sizeof(*m);
*map->map_size = *map->desc_size * 32;
*map->buff_size = *map->map_size;
again:
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
*map->map_size, (void **)&m);
tmp.map_size = 0;
status = efi_bs_call(get_memory_map, &tmp.map_size, NULL, &tmp.map_key,
&tmp.desc_size, &tmp.desc_ver);
if (status != EFI_BUFFER_TOO_SMALL)
return EFI_LOAD_ERROR;
size = tmp.map_size + tmp.desc_size * EFI_MMAP_NR_SLACK_SLOTS;
status = efi_bs_call(allocate_pool, memtype, sizeof(*m) + size,
(void **)&m);
if (status != EFI_SUCCESS)
goto fail;
return status;
*map->desc_size = 0;
key = 0;
status = efi_bs_call(get_memory_map, map->map_size, m,
&key, map->desc_size, &desc_version);
if (status == EFI_BUFFER_TOO_SMALL ||
!mmap_has_headroom(*map->buff_size, *map->map_size,
*map->desc_size)) {
efi_bs_call(free_pool, m);
if (install_cfg_tbl) {
/*
* Make sure there is some entries of headroom so that the
* buffer can be reused for a new map after allocations are
* no longer permitted. Its unlikely that the map will grow to
* exceed this headroom once we are ready to trigger
* ExitBootServices()
* Installing a configuration table might allocate memory, and
* this may modify the memory map. This means we should install
* the configuration table first, and re-install or delete it
* as needed.
*/
*map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
*map->buff_size = *map->map_size;
goto again;
status = efi_bs_call(install_configuration_table, &tbl_guid, m);
if (status != EFI_SUCCESS)
goto free_map;
}
if (status == EFI_SUCCESS) {
if (map->key_ptr)
*map->key_ptr = key;
if (map->desc_ver)
*map->desc_ver = desc_version;
} else {
efi_bs_call(free_pool, m);
}
m->buff_size = m->map_size = size;
status = efi_bs_call(get_memory_map, &m->map_size, m->map, &m->map_key,
&m->desc_size, &m->desc_ver);
if (status != EFI_SUCCESS)
goto uninstall_table;
fail:
*map->map = m;
*map = m;
return EFI_SUCCESS;
uninstall_table:
if (install_cfg_tbl)
efi_bs_call(install_configuration_table, &tbl_guid, NULL);
free_map:
efi_bs_call(free_pool, m);
return status;
}

View File

@ -55,22 +55,13 @@ efi_status_t efi_random_alloc(unsigned long size,
unsigned long *addr,
unsigned long random_seed)
{
unsigned long map_size, desc_size, total_slots = 0, target_slot;
unsigned long total_slots = 0, target_slot;
unsigned long total_mirrored_slots = 0;
unsigned long buff_size;
struct efi_boot_memmap *map;
efi_status_t status;
efi_memory_desc_t *memory_map;
int map_offset;
struct efi_boot_memmap map;
map.map = &memory_map;
map.map_size = &map_size;
map.desc_size = &desc_size;
map.desc_ver = NULL;
map.key_ptr = NULL;
map.buff_size = &buff_size;
status = efi_get_memory_map(&map);
status = efi_get_memory_map(&map, false);
if (status != EFI_SUCCESS)
return status;
@ -80,8 +71,8 @@ efi_status_t efi_random_alloc(unsigned long size,
size = round_up(size, EFI_ALLOC_ALIGN);
/* count the suitable slots in each memory map entry */
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
efi_memory_desc_t *md = (void *)memory_map + map_offset;
for (map_offset = 0; map_offset < map->map_size; map_offset += map->desc_size) {
efi_memory_desc_t *md = (void *)map->map + map_offset;
unsigned long slots;
slots = get_entry_num_slots(md, size, ilog2(align));
@ -109,8 +100,8 @@ efi_status_t efi_random_alloc(unsigned long size,
* to calculate the randomly chosen address, and allocate it directly
* using EFI_ALLOCATE_ADDRESS.
*/
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
efi_memory_desc_t *md = (void *)memory_map + map_offset;
for (map_offset = 0; map_offset < map->map_size; map_offset += map->desc_size) {
efi_memory_desc_t *md = (void *)map->map + map_offset;
efi_physical_addr_t target;
unsigned long pages;
@ -133,7 +124,7 @@ efi_status_t efi_random_alloc(unsigned long size,
break;
}
efi_bs_call(free_pool, memory_map);
efi_bs_call(free_pool, map);
return status;
}

View File

@ -23,21 +23,12 @@
efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
unsigned long *addr, unsigned long min)
{
unsigned long map_size, desc_size, buff_size;
efi_memory_desc_t *map;
struct efi_boot_memmap *map;
efi_status_t status;
unsigned long nr_pages;
int i;
struct efi_boot_memmap boot_map;
boot_map.map = &map;
boot_map.map_size = &map_size;
boot_map.desc_size = &desc_size;
boot_map.desc_ver = NULL;
boot_map.key_ptr = NULL;
boot_map.buff_size = &buff_size;
status = efi_get_memory_map(&boot_map);
status = efi_get_memory_map(&map, false);
if (status != EFI_SUCCESS)
goto fail;
@ -52,12 +43,12 @@ efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
size = round_up(size, EFI_ALLOC_ALIGN);
nr_pages = size / EFI_PAGE_SIZE;
for (i = 0; i < map_size / desc_size; i++) {
for (i = 0; i < map->map_size / map->desc_size; i++) {
efi_memory_desc_t *desc;
unsigned long m = (unsigned long)map;
unsigned long m = (unsigned long)map->map;
u64 start, end;
desc = efi_early_memdesc_ptr(m, desc_size, i);
desc = efi_early_memdesc_ptr(m, map->desc_size, i);
if (desc->type != EFI_CONVENTIONAL_MEMORY)
continue;
@ -87,7 +78,7 @@ efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
}
}
if (i == map_size / desc_size)
if (i == map->map_size / map->desc_size)
status = EFI_NOT_FOUND;
efi_bs_call(free_pool, map);

View File

@ -0,0 +1,8 @@
// SPDX-License-Identifier: GPL-2.0
#include <linux/efi.h>
#include <asm/efi.h>
#include "efistub.h"
const efi_system_table_t *efi_system_table;

View File

@ -722,32 +722,22 @@ static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
efi_set_u64_split((unsigned long)efi_system_table,
&p->efi->efi_systab, &p->efi->efi_systab_hi);
p->efi->efi_memdesc_size = *map->desc_size;
p->efi->efi_memdesc_version = *map->desc_ver;
efi_set_u64_split((unsigned long)*map->map,
p->efi->efi_memdesc_size = map->desc_size;
p->efi->efi_memdesc_version = map->desc_ver;
efi_set_u64_split((unsigned long)map->map,
&p->efi->efi_memmap, &p->efi->efi_memmap_hi);
p->efi->efi_memmap_size = *map->map_size;
p->efi->efi_memmap_size = map->map_size;
return EFI_SUCCESS;
}
static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
{
unsigned long map_sz, key, desc_size, buff_size;
efi_memory_desc_t *mem_map;
struct setup_data *e820ext = NULL;
__u32 e820ext_size = 0;
efi_status_t status;
__u32 desc_version;
struct efi_boot_memmap map;
struct exit_boot_struct priv;
map.map = &mem_map;
map.map_size = &map_sz;
map.desc_size = &desc_size;
map.desc_ver = &desc_version;
map.key_ptr = &key;
map.buff_size = &buff_size;
priv.boot_params = boot_params;
priv.efi = &boot_params->efi_info;
@ -756,7 +746,7 @@ static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
return status;
/* Might as well exit boot services now */
status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func);
status = efi_exit_boot_services(handle, &priv, exit_boot_func);
if (status != EFI_SUCCESS)
return status;
@ -782,7 +772,7 @@ unsigned long efi_main(efi_handle_t handle,
unsigned long bzimage_addr = (unsigned long)startup_32;
unsigned long buffer_start, buffer_end;
struct setup_header *hdr = &boot_params->hdr;
unsigned long addr, size;
const struct linux_efi_initrd *initrd = NULL;
efi_status_t status;
efi_system_table = sys_table_arg;
@ -877,17 +867,18 @@ unsigned long efi_main(efi_handle_t handle,
* arguments will be processed only if image is not NULL, which will be
* the case only if we were loaded via the PE entry point.
*/
status = efi_load_initrd(image, &addr, &size, hdr->initrd_addr_max,
ULONG_MAX);
status = efi_load_initrd(image, hdr->initrd_addr_max, ULONG_MAX,
&initrd);
if (status != EFI_SUCCESS)
goto fail;
if (size > 0) {
efi_set_u64_split(addr, &hdr->ramdisk_image,
if (initrd && initrd->size > 0) {
efi_set_u64_split(initrd->base, &hdr->ramdisk_image,
&boot_params->ext_ramdisk_image);
efi_set_u64_split(size, &hdr->ramdisk_size,
efi_set_u64_split(initrd->size, &hdr->ramdisk_size,
&boot_params->ext_ramdisk_size);
}
/*
* If the boot loader gave us a value for secure_boot then we use that,
* otherwise we ask the BIOS.

View File

@ -0,0 +1,143 @@
/* SPDX-License-Identifier: GPL-2.0 */
#include <linux/pe.h>
#ifdef CONFIG_64BIT
.set .Lextra_characteristics, 0x0
.set .Lpe_opt_magic, PE_OPT_MAGIC_PE32PLUS
#else
.set .Lextra_characteristics, IMAGE_FILE_32BIT_MACHINE
.set .Lpe_opt_magic, PE_OPT_MAGIC_PE32
#endif
.section ".head", "a"
.globl __efistub_efi_zboot_header
__efistub_efi_zboot_header:
.Ldoshdr:
.long MZ_MAGIC
.ascii "zimg" // image type
.long __efistub__gzdata_start - .Ldoshdr // payload offset
.long __efistub__gzdata_size - ZBOOT_SIZE_LEN // payload size
.long 0, 0 // reserved
.asciz COMP_TYPE // compression type
.org .Ldoshdr + 0x3c
.long .Lpehdr - .Ldoshdr // PE header offset
.Lpehdr:
.long PE_MAGIC
.short MACHINE_TYPE
.short .Lsection_count
.long 0
.long 0
.long 0
.short .Lsection_table - .Loptional_header
.short IMAGE_FILE_DEBUG_STRIPPED | \
IMAGE_FILE_EXECUTABLE_IMAGE | \
IMAGE_FILE_LINE_NUMS_STRIPPED |\
.Lextra_characteristics
.Loptional_header:
.short .Lpe_opt_magic
.byte 0, 0
.long _etext - .Lefi_header_end
.long __data_size
.long 0
.long __efistub_efi_zboot_entry - .Ldoshdr
.long .Lefi_header_end - .Ldoshdr
#ifdef CONFIG_64BIT
.quad 0
#else
.long _etext - .Ldoshdr, 0x0
#endif
.long 4096
.long 512
.short 0, 0
.short LINUX_EFISTUB_MAJOR_VERSION // MajorImageVersion
.short LINUX_EFISTUB_MINOR_VERSION // MinorImageVersion
.short 0, 0
.long 0
.long _end - .Ldoshdr
.long .Lefi_header_end - .Ldoshdr
.long 0
.short IMAGE_SUBSYSTEM_EFI_APPLICATION
.short 0
#ifdef CONFIG_64BIT
.quad 0, 0, 0, 0
#else
.long 0, 0, 0, 0
#endif
.long 0
.long (.Lsection_table - .) / 8
.quad 0 // ExportTable
.quad 0 // ImportTable
.quad 0 // ResourceTable
.quad 0 // ExceptionTable
.quad 0 // CertificationTable
.quad 0 // BaseRelocationTable
#ifdef CONFIG_DEBUG_EFI
.long .Lefi_debug_table - .Ldoshdr // DebugTable
.long .Lefi_debug_table_size
#endif
.Lsection_table:
.ascii ".text\0\0\0"
.long _etext - .Lefi_header_end
.long .Lefi_header_end - .Ldoshdr
.long _etext - .Lefi_header_end
.long .Lefi_header_end - .Ldoshdr
.long 0, 0
.short 0, 0
.long IMAGE_SCN_CNT_CODE | \
IMAGE_SCN_MEM_READ | \
IMAGE_SCN_MEM_EXECUTE
.ascii ".data\0\0\0"
.long __data_size
.long _etext - .Ldoshdr
.long __data_rawsize
.long _etext - .Ldoshdr
.long 0, 0
.short 0, 0
.long IMAGE_SCN_CNT_INITIALIZED_DATA | \
IMAGE_SCN_MEM_READ | \
IMAGE_SCN_MEM_WRITE
.set .Lsection_count, (. - .Lsection_table) / 40
#ifdef CONFIG_DEBUG_EFI
.section ".rodata", "a"
.align 2
.Lefi_debug_table:
// EFI_IMAGE_DEBUG_DIRECTORY_ENTRY
.long 0 // Characteristics
.long 0 // TimeDateStamp
.short 0 // MajorVersion
.short 0 // MinorVersion
.long IMAGE_DEBUG_TYPE_CODEVIEW // Type
.long .Lefi_debug_entry_size // SizeOfData
.long 0 // RVA
.long .Lefi_debug_entry - .Ldoshdr // FileOffset
.set .Lefi_debug_table_size, . - .Lefi_debug_table
.previous
.Lefi_debug_entry:
// EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY
.ascii "NB10" // Signature
.long 0 // Unknown
.long 0 // Unknown2
.long 0 // Unknown3
.asciz ZBOOT_EFI_PATH
.set .Lefi_debug_entry_size, . - .Lefi_debug_entry
#endif
.p2align 12
.Lefi_header_end:

View File

@ -0,0 +1,302 @@
// SPDX-License-Identifier: GPL-2.0
#include <linux/efi.h>
#include <linux/pe.h>
#include <asm/efi.h>
#include <asm/unaligned.h>
#include "efistub.h"
static unsigned char zboot_heap[SZ_256K] __aligned(64);
static unsigned long free_mem_ptr, free_mem_end_ptr;
#define STATIC static
#if defined(CONFIG_KERNEL_GZIP)
#include "../../../../lib/decompress_inflate.c"
#elif defined(CONFIG_KERNEL_LZ4)
#include "../../../../lib/decompress_unlz4.c"
#elif defined(CONFIG_KERNEL_LZMA)
#include "../../../../lib/decompress_unlzma.c"
#elif defined(CONFIG_KERNEL_LZO)
#include "../../../../lib/decompress_unlzo.c"
#elif defined(CONFIG_KERNEL_XZ)
#undef memcpy
#define memcpy memcpy
#undef memmove
#define memmove memmove
#include "../../../../lib/decompress_unxz.c"
#elif defined(CONFIG_KERNEL_ZSTD)
#include "../../../../lib/decompress_unzstd.c"
#endif
extern char efi_zboot_header[];
extern char _gzdata_start[], _gzdata_end[];
static void log(efi_char16_t str[])
{
efi_call_proto(efi_table_attr(efi_system_table, con_out),
output_string, L"EFI decompressor: ");
efi_call_proto(efi_table_attr(efi_system_table, con_out),
output_string, str);
efi_call_proto(efi_table_attr(efi_system_table, con_out),
output_string, L"\n");
}
static void error(char *x)
{
log(L"error() called from decompressor library\n");
}
// Local version to avoid pulling in memcmp()
static bool guids_eq(const efi_guid_t *a, const efi_guid_t *b)
{
const u32 *l = (u32 *)a;
const u32 *r = (u32 *)b;
return l[0] == r[0] && l[1] == r[1] && l[2] == r[2] && l[3] == r[3];
}
static efi_status_t __efiapi
load_file(efi_load_file_protocol_t *this, efi_device_path_protocol_t *rem,
bool boot_policy, unsigned long *bufsize, void *buffer)
{
unsigned long compressed_size = _gzdata_end - _gzdata_start;
struct efi_vendor_dev_path *vendor_dp;
bool decompress = false;
unsigned long size;
int ret;
if (rem == NULL || bufsize == NULL)
return EFI_INVALID_PARAMETER;
if (boot_policy)
return EFI_UNSUPPORTED;
// Look for our vendor media device node in the remaining file path
if (rem->type == EFI_DEV_MEDIA &&
rem->sub_type == EFI_DEV_MEDIA_VENDOR) {
vendor_dp = container_of(rem, struct efi_vendor_dev_path, header);
if (!guids_eq(&vendor_dp->vendorguid, &LINUX_EFI_ZBOOT_MEDIA_GUID))
return EFI_NOT_FOUND;
decompress = true;
rem = (void *)(vendor_dp + 1);
}
if (rem->type != EFI_DEV_END_PATH ||
rem->sub_type != EFI_DEV_END_ENTIRE)
return EFI_NOT_FOUND;
// The uncompressed size of the payload is appended to the raw bit
// stream, and may therefore appear misaligned in memory
size = decompress ? get_unaligned_le32(_gzdata_end - 4)
: compressed_size;
if (buffer == NULL || *bufsize < size) {
*bufsize = size;
return EFI_BUFFER_TOO_SMALL;
}
if (decompress) {
ret = __decompress(_gzdata_start, compressed_size, NULL, NULL,
buffer, size, NULL, error);
if (ret < 0) {
log(L"Decompression failed");
return EFI_DEVICE_ERROR;
}
} else {
memcpy(buffer, _gzdata_start, compressed_size);
}
return EFI_SUCCESS;
}
// Return the length in bytes of the device path up to the first end node.
static int device_path_length(const efi_device_path_protocol_t *dp)
{
int len = 0;
while (dp->type != EFI_DEV_END_PATH) {
len += dp->length;
dp = (void *)((u8 *)dp + dp->length);
}
return len;
}
static void append_rel_offset_node(efi_device_path_protocol_t **dp,
unsigned long start, unsigned long end)
{
struct efi_rel_offset_dev_path *rodp = (void *)*dp;
rodp->header.type = EFI_DEV_MEDIA;
rodp->header.sub_type = EFI_DEV_MEDIA_REL_OFFSET;
rodp->header.length = sizeof(struct efi_rel_offset_dev_path);
rodp->reserved = 0;
rodp->starting_offset = start;
rodp->ending_offset = end;
*dp = (void *)(rodp + 1);
}
static void append_ven_media_node(efi_device_path_protocol_t **dp,
efi_guid_t *guid)
{
struct efi_vendor_dev_path *vmdp = (void *)*dp;
vmdp->header.type = EFI_DEV_MEDIA;
vmdp->header.sub_type = EFI_DEV_MEDIA_VENDOR;
vmdp->header.length = sizeof(struct efi_vendor_dev_path);
vmdp->vendorguid = *guid;
*dp = (void *)(vmdp + 1);
}
static void append_end_node(efi_device_path_protocol_t **dp)
{
(*dp)->type = EFI_DEV_END_PATH;
(*dp)->sub_type = EFI_DEV_END_ENTIRE;
(*dp)->length = sizeof(struct efi_generic_dev_path);
++*dp;
}
asmlinkage efi_status_t __efiapi
efi_zboot_entry(efi_handle_t handle, efi_system_table_t *systab)
{
struct efi_mem_mapped_dev_path mmdp = {
.header.type = EFI_DEV_HW,
.header.sub_type = EFI_DEV_MEM_MAPPED,
.header.length = sizeof(struct efi_mem_mapped_dev_path)
};
efi_device_path_protocol_t *parent_dp, *dpp, *lf2_dp, *li_dp;
efi_load_file2_protocol_t zboot_load_file2;
efi_loaded_image_t *parent, *child;
unsigned long exit_data_size;
efi_handle_t child_handle;
efi_handle_t zboot_handle;
efi_char16_t *exit_data;
efi_status_t status;
void *dp_alloc;
int dp_len;
WRITE_ONCE(efi_system_table, systab);
free_mem_ptr = (unsigned long)&zboot_heap;
free_mem_end_ptr = free_mem_ptr + sizeof(zboot_heap);
exit_data = NULL;
exit_data_size = 0;
status = efi_bs_call(handle_protocol, handle,
&LOADED_IMAGE_PROTOCOL_GUID, (void **)&parent);
if (status != EFI_SUCCESS) {
log(L"Failed to locate parent's loaded image protocol");
return status;
}
status = efi_bs_call(handle_protocol, handle,
&LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID,
(void **)&parent_dp);
if (status != EFI_SUCCESS || parent_dp == NULL) {
// Create a MemoryMapped() device path node to describe
// the parent image if no device path was provided.
mmdp.memory_type = parent->image_code_type;
mmdp.starting_addr = (unsigned long)parent->image_base;
mmdp.ending_addr = (unsigned long)parent->image_base +
parent->image_size - 1;
parent_dp = &mmdp.header;
dp_len = sizeof(mmdp);
} else {
dp_len = device_path_length(parent_dp);
}
// Allocate some pool memory for device path protocol data
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
2 * (dp_len + sizeof(struct efi_rel_offset_dev_path) +
sizeof(struct efi_generic_dev_path)) +
sizeof(struct efi_vendor_dev_path),
(void **)&dp_alloc);
if (status != EFI_SUCCESS) {
log(L"Failed to allocate device path pool memory");
return status;
}
// Create a device path describing the compressed payload in this image
// <...parent_dp...>/Offset(<start>, <end>)
lf2_dp = memcpy(dp_alloc, parent_dp, dp_len);
dpp = (void *)((u8 *)lf2_dp + dp_len);
append_rel_offset_node(&dpp,
(unsigned long)(_gzdata_start - efi_zboot_header),
(unsigned long)(_gzdata_end - efi_zboot_header - 1));
append_end_node(&dpp);
// Create a device path describing the decompressed payload in this image
// <...parent_dp...>/Offset(<start>, <end>)/VenMedia(ZBOOT_MEDIA_GUID)
dp_len += sizeof(struct efi_rel_offset_dev_path);
li_dp = memcpy(dpp, lf2_dp, dp_len);
dpp = (void *)((u8 *)li_dp + dp_len);
append_ven_media_node(&dpp, &LINUX_EFI_ZBOOT_MEDIA_GUID);
append_end_node(&dpp);
zboot_handle = NULL;
zboot_load_file2.load_file = load_file;
status = efi_bs_call(install_multiple_protocol_interfaces,
&zboot_handle,
&EFI_DEVICE_PATH_PROTOCOL_GUID, lf2_dp,
&EFI_LOAD_FILE2_PROTOCOL_GUID, &zboot_load_file2,
NULL);
if (status != EFI_SUCCESS) {
log(L"Failed to install LoadFile2 protocol and device path");
goto free_dpalloc;
}
status = efi_bs_call(load_image, false, handle, li_dp, NULL, 0,
&child_handle);
if (status != EFI_SUCCESS) {
log(L"Failed to load image");
goto uninstall_lf2;
}
status = efi_bs_call(handle_protocol, child_handle,
&LOADED_IMAGE_PROTOCOL_GUID, (void **)&child);
if (status != EFI_SUCCESS) {
log(L"Failed to locate child's loaded image protocol");
goto unload_image;
}
// Copy the kernel command line
child->load_options = parent->load_options;
child->load_options_size = parent->load_options_size;
status = efi_bs_call(start_image, child_handle, &exit_data_size,
&exit_data);
if (status != EFI_SUCCESS) {
log(L"StartImage() returned with error");
if (exit_data_size > 0)
log(exit_data);
// If StartImage() returns EFI_SECURITY_VIOLATION, the image is
// not unloaded so we need to do it by hand.
if (status == EFI_SECURITY_VIOLATION)
unload_image:
efi_bs_call(unload_image, child_handle);
}
uninstall_lf2:
efi_bs_call(uninstall_multiple_protocol_interfaces,
zboot_handle,
&EFI_DEVICE_PATH_PROTOCOL_GUID, lf2_dp,
&EFI_LOAD_FILE2_PROTOCOL_GUID, &zboot_load_file2,
NULL);
free_dpalloc:
efi_bs_call(free_pool, dp_alloc);
efi_bs_call(exit, handle, status, exit_data_size, exit_data);
// Free ExitData in case Exit() returned with a failure code,
// but return the original status code.
log(L"Exit() returned with failure code");
if (exit_data != NULL)
efi_bs_call(free_pool, exit_data);
return status;
}

View File

@ -0,0 +1,44 @@
/* SPDX-License-Identifier: GPL-2.0 */
ENTRY(__efistub_efi_zboot_header);
SECTIONS
{
.head : ALIGN(4096) {
*(.head)
}
.text : {
*(.text* .init.text*)
}
.rodata : ALIGN(8) {
__efistub__gzdata_start = .;
*(.gzdata)
__efistub__gzdata_end = .;
*(.rodata* .init.rodata* .srodata*)
_etext = ALIGN(4096);
. = _etext;
}
.data : ALIGN(4096) {
*(.data* .init.data*)
_edata = ALIGN(512);
. = _edata;
}
.bss : {
*(.bss* .init.bss*)
_end = ALIGN(512);
. = _end;
}
/DISCARD/ : {
*(.modinfo .init.modinfo)
}
}
PROVIDE(__efistub__gzdata_size = ABSOLUTE(. - __efistub__gzdata_start));
PROVIDE(__data_rawsize = ABSOLUTE(_edata - _etext));
PROVIDE(__data_size = ABSOLUTE(_end - _etext));

View File

@ -368,6 +368,9 @@ void efi_native_runtime_setup(void);
#define UV_SYSTEM_TABLE_GUID EFI_GUID(0x3b13a7d4, 0x633e, 0x11dd, 0x93, 0xec, 0xda, 0x25, 0x56, 0xd8, 0x95, 0x93)
#define LINUX_EFI_CRASH_GUID EFI_GUID(0xcfc8fc79, 0xbe2e, 0x4ddc, 0x97, 0xf0, 0x9f, 0x98, 0xbf, 0xe2, 0x98, 0xa0)
#define LOADED_IMAGE_PROTOCOL_GUID EFI_GUID(0x5b1b31a1, 0x9562, 0x11d2, 0x8e, 0x3f, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b)
#define LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID EFI_GUID(0xbc62157e, 0x3e33, 0x4fec, 0x99, 0x20, 0x2d, 0x3b, 0x36, 0xd7, 0x50, 0xdf)
#define EFI_DEVICE_PATH_PROTOCOL_GUID EFI_GUID(0x09576e91, 0x6d3f, 0x11d2, 0x8e, 0x39, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b)
#define EFI_DEVICE_PATH_TO_TEXT_PROTOCOL_GUID EFI_GUID(0x8b843e20, 0x8132, 0x4852, 0x90, 0xcc, 0x55, 0x1a, 0x4e, 0x4a, 0x7f, 0x1c)
#define EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID EFI_GUID(0x9042a9de, 0x23dc, 0x4a38, 0x96, 0xfb, 0x7a, 0xde, 0xd0, 0x80, 0x51, 0x6a)
#define EFI_UGA_PROTOCOL_GUID EFI_GUID(0x982c298b, 0xf4fa, 0x41cb, 0xb8, 0x38, 0x77, 0xaa, 0x68, 0x8f, 0xb8, 0x39)
#define EFI_PCI_IO_PROTOCOL_GUID EFI_GUID(0x4cf5b200, 0x68b8, 0x4ca5, 0x9e, 0xec, 0xb2, 0x3e, 0x3f, 0x50, 0x02, 0x9a)
@ -408,8 +411,10 @@ void efi_native_runtime_setup(void);
#define LINUX_EFI_TPM_FINAL_LOG_GUID EFI_GUID(0x1e2ed096, 0x30e2, 0x4254, 0xbd, 0x89, 0x86, 0x3b, 0xbe, 0xf8, 0x23, 0x25)
#define LINUX_EFI_MEMRESERVE_TABLE_GUID EFI_GUID(0x888eb0c6, 0x8ede, 0x4ff5, 0xa8, 0xf0, 0x9a, 0xee, 0x5c, 0xb9, 0x77, 0xc2)
#define LINUX_EFI_INITRD_MEDIA_GUID EFI_GUID(0x5568e427, 0x68fc, 0x4f3d, 0xac, 0x74, 0xca, 0x55, 0x52, 0x31, 0xcc, 0x68)
#define LINUX_EFI_ZBOOT_MEDIA_GUID EFI_GUID(0xe565a30d, 0x47da, 0x4dbd, 0xb3, 0x54, 0x9b, 0xb5, 0xc8, 0x4f, 0x8b, 0xe2)
#define LINUX_EFI_MOK_VARIABLE_TABLE_GUID EFI_GUID(0xc451ed2b, 0x9694, 0x45d3, 0xba, 0xba, 0xed, 0x9f, 0x89, 0x88, 0xa3, 0x89)
#define LINUX_EFI_COCO_SECRET_AREA_GUID EFI_GUID(0xadf956ad, 0xe98c, 0x484c, 0xae, 0x11, 0xb5, 0x1c, 0x7d, 0x33, 0x64, 0x47)
#define LINUX_EFI_BOOT_MEMMAP_GUID EFI_GUID(0x800f683f, 0xd08b, 0x423a, 0xa2, 0x93, 0x96, 0x5c, 0x3c, 0x6f, 0xe2, 0xb4)
#define RISCV_EFI_BOOT_PROTOCOL_GUID EFI_GUID(0xccd15fec, 0x6f73, 0x4eec, 0x83, 0x95, 0x3e, 0x69, 0xe4, 0xb9, 0x40, 0xbf)
@ -518,6 +523,15 @@ typedef union {
efi_system_table_32_t mixed_mode;
} efi_system_table_t;
struct efi_boot_memmap {
unsigned long map_size;
unsigned long desc_size;
u32 desc_ver;
unsigned long map_key;
unsigned long buff_size;
efi_memory_desc_t map[];
};
/*
* Architecture independent structure for describing a memory map for the
* benefit of efi_memmap_init_early(), and for passing context between
@ -952,6 +966,7 @@ extern int efi_status_to_err(efi_status_t status);
#define EFI_DEV_MEDIA_VENDOR 3
#define EFI_DEV_MEDIA_FILE 4
#define EFI_DEV_MEDIA_PROTOCOL 5
#define EFI_DEV_MEDIA_REL_OFFSET 8
#define EFI_DEV_BIOS_BOOT 0x05
#define EFI_DEV_END_PATH 0x7F
#define EFI_DEV_END_PATH2 0xFF
@ -982,12 +997,27 @@ struct efi_vendor_dev_path {
u8 vendordata[];
} __packed;
struct efi_rel_offset_dev_path {
struct efi_generic_dev_path header;
u32 reserved;
u64 starting_offset;
u64 ending_offset;
} __packed;
struct efi_mem_mapped_dev_path {
struct efi_generic_dev_path header;
u32 memory_type;
u64 starting_addr;
u64 ending_addr;
} __packed;
struct efi_dev_path {
union {
struct efi_generic_dev_path header;
struct efi_acpi_dev_path acpi;
struct efi_pci_dev_path pci;
struct efi_vendor_dev_path vendor;
struct efi_rel_offset_dev_path rel_offset;
};
} __packed;
@ -1321,6 +1351,11 @@ struct linux_efi_coco_secret_area {
u64 size;
};
struct linux_efi_initrd {
unsigned long base;
unsigned long size;
};
/* Header of a populated EFI secret area */
#define EFI_SECRET_TABLE_HEADER_GUID EFI_GUID(0x1e74f542, 0x71dd, 0x4d66, 0x96, 0x3e, 0xef, 0x42, 0x87, 0xff, 0x17, 0x3b)

View File

@ -65,6 +65,8 @@
#define IMAGE_FILE_MACHINE_SH5 0x01a8
#define IMAGE_FILE_MACHINE_THUMB 0x01c2
#define IMAGE_FILE_MACHINE_WCEMIPSV2 0x0169
#define IMAGE_FILE_MACHINE_LOONGARCH32 0x6232
#define IMAGE_FILE_MACHINE_LOONGARCH64 0x6264
/* flags */
#define IMAGE_FILE_RELOCS_STRIPPED 0x0001