Merge branches 'acpi-x86', 'acpi-cppc' and 'acpi-soc'
* acpi-x86: x86: ACPI: make variable names clearer in acpi_parse_madt_lapic_entries() x86: ACPI: remove extraneous white space after semicolon * acpi-cppc: ACPI / CPPC: Support PCC with interrupt flag ACPI / CPPC: Add prefix cppc to cpudata structure name ACPI / CPPC: Add support for functional fixed hardware address ACPI / CPPC: Don't return on CPPC probe failure ACPI / CPPC: Allow build with ACPI_CPU_FREQ_PSS config ACPI / CPPC: check for error bit in PCC status field ACPI / CPPC: move all PCC related information into pcc_data ACPI / CPPC: add sysfs support to compute delivered performance ACPI / CPPC: set a non-zero value for transition_latency ACPI / CPPC: support for batching CPPC requests ACPI / CPPC: acquire pcc_lock only while accessing PCC subspace ACPI / CPPC: restructure read/writes for efficient sys mapped reg ops mailbox: pcc: Support HW-Reduced Communication Subspace type 2 * acpi-soc: ACPI / APD: constify local structures ACPI / APD: Add device HID for Vulcan SPI controller
This commit is contained in:
commit
0d573c6a01
@ -1,6 +1,7 @@
|
||||
obj-$(CONFIG_ACPI) += boot.o
|
||||
obj-$(CONFIG_ACPI_SLEEP) += sleep.o wakeup_$(BITS).o
|
||||
obj-$(CONFIG_ACPI_APEI) += apei.o
|
||||
obj-$(CONFIG_ACPI_CPPC_LIB) += cppc_msr.o
|
||||
|
||||
ifneq ($(CONFIG_ACPI_PROCESSOR),)
|
||||
obj-y += cstate.o
|
||||
|
@ -1031,8 +1031,8 @@ static int __init acpi_parse_madt_lapic_entries(void)
|
||||
return ret;
|
||||
}
|
||||
|
||||
x2count = madt_proc[0].count;
|
||||
count = madt_proc[1].count;
|
||||
count = madt_proc[0].count;
|
||||
x2count = madt_proc[1].count;
|
||||
}
|
||||
if (!count && !x2count) {
|
||||
printk(KERN_ERR PREFIX "No LAPIC entries present\n");
|
||||
@ -1513,7 +1513,7 @@ void __init acpi_boot_table_init(void)
|
||||
* If acpi_disabled, bail out
|
||||
*/
|
||||
if (acpi_disabled)
|
||||
return;
|
||||
return;
|
||||
|
||||
/*
|
||||
* Initialize the ACPI boot-time table parser.
|
||||
|
58
arch/x86/kernel/acpi/cppc_msr.c
Normal file
58
arch/x86/kernel/acpi/cppc_msr.c
Normal file
@ -0,0 +1,58 @@
|
||||
/*
|
||||
* cppc_msr.c: MSR Interface for CPPC
|
||||
* Copyright (c) 2016, Intel Corporation.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms and conditions of the GNU General Public License,
|
||||
* version 2, as published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
* more details.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <acpi/cppc_acpi.h>
|
||||
#include <asm/msr.h>
|
||||
|
||||
/* Refer to drivers/acpi/cppc_acpi.c for the description of functions */
|
||||
|
||||
bool cpc_ffh_supported(void)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
int cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
|
||||
{
|
||||
int err;
|
||||
|
||||
err = rdmsrl_safe_on_cpu(cpunum, reg->address, val);
|
||||
if (!err) {
|
||||
u64 mask = GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
|
||||
reg->bit_offset);
|
||||
|
||||
*val &= mask;
|
||||
*val >>= reg->bit_offset;
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
|
||||
{
|
||||
u64 rd_val;
|
||||
int err;
|
||||
|
||||
err = rdmsrl_safe_on_cpu(cpunum, reg->address, &rd_val);
|
||||
if (!err) {
|
||||
u64 mask = GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
|
||||
reg->bit_offset);
|
||||
|
||||
val <<= reg->bit_offset;
|
||||
val &= mask;
|
||||
rd_val &= ~mask;
|
||||
rd_val |= val;
|
||||
err = wrmsrl_safe_on_cpu(cpunum, reg->address, rd_val);
|
||||
}
|
||||
return err;
|
||||
}
|
@ -227,7 +227,6 @@ config ACPI_MCFG
|
||||
config ACPI_CPPC_LIB
|
||||
bool
|
||||
depends on ACPI_PROCESSOR
|
||||
depends on !ACPI_CPU_FREQ_PSS
|
||||
select MAILBOX
|
||||
select PCC
|
||||
help
|
||||
|
@ -72,7 +72,7 @@ static int acpi_apd_setup(struct apd_private_data *pdata)
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_AMD_PLATFORM_DEVICE
|
||||
static struct apd_device_desc cz_i2c_desc = {
|
||||
static const struct apd_device_desc cz_i2c_desc = {
|
||||
.setup = acpi_apd_setup,
|
||||
.fixed_clk_rate = 133000000,
|
||||
};
|
||||
@ -84,7 +84,7 @@ static struct property_entry uart_properties[] = {
|
||||
{ },
|
||||
};
|
||||
|
||||
static struct apd_device_desc cz_uart_desc = {
|
||||
static const struct apd_device_desc cz_uart_desc = {
|
||||
.setup = acpi_apd_setup,
|
||||
.fixed_clk_rate = 48000000,
|
||||
.properties = uart_properties,
|
||||
@ -92,10 +92,15 @@ static struct apd_device_desc cz_uart_desc = {
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_ARM64
|
||||
static struct apd_device_desc xgene_i2c_desc = {
|
||||
static const struct apd_device_desc xgene_i2c_desc = {
|
||||
.setup = acpi_apd_setup,
|
||||
.fixed_clk_rate = 100000000,
|
||||
};
|
||||
|
||||
static const struct apd_device_desc vulcan_spi_desc = {
|
||||
.setup = acpi_apd_setup,
|
||||
.fixed_clk_rate = 133000000,
|
||||
};
|
||||
#endif
|
||||
|
||||
#else
|
||||
@ -164,6 +169,7 @@ static const struct acpi_device_id acpi_apd_device_ids[] = {
|
||||
#endif
|
||||
#ifdef CONFIG_ARM64
|
||||
{ "APMC0D0F", APD_ADDR(xgene_i2c_desc) },
|
||||
{ "BRCM900D", APD_ADDR(vulcan_spi_desc) },
|
||||
#endif
|
||||
{ }
|
||||
};
|
||||
|
@ -40,15 +40,48 @@
|
||||
#include <linux/cpufreq.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/ktime.h>
|
||||
#include <linux/rwsem.h>
|
||||
#include <linux/wait.h>
|
||||
|
||||
#include <acpi/cppc_acpi.h>
|
||||
/*
|
||||
* Lock to provide mutually exclusive access to the PCC
|
||||
* channel. e.g. When the remote updates the shared region
|
||||
* with new data, the reader needs to be protected from
|
||||
* other CPUs activity on the same channel.
|
||||
*/
|
||||
static DEFINE_SPINLOCK(pcc_lock);
|
||||
|
||||
struct cppc_pcc_data {
|
||||
struct mbox_chan *pcc_channel;
|
||||
void __iomem *pcc_comm_addr;
|
||||
int pcc_subspace_idx;
|
||||
bool pcc_channel_acquired;
|
||||
ktime_t deadline;
|
||||
unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
|
||||
|
||||
bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
|
||||
bool platform_owns_pcc; /* Ownership of PCC subspace */
|
||||
unsigned int pcc_write_cnt; /* Running count of PCC write commands */
|
||||
|
||||
/*
|
||||
* Lock to provide controlled access to the PCC channel.
|
||||
*
|
||||
* For performance critical usecases(currently cppc_set_perf)
|
||||
* We need to take read_lock and check if channel belongs to OSPM
|
||||
* before reading or writing to PCC subspace
|
||||
* We need to take write_lock before transferring the channel
|
||||
* ownership to the platform via a Doorbell
|
||||
* This allows us to batch a number of CPPC requests if they happen
|
||||
* to originate in about the same time
|
||||
*
|
||||
* For non-performance critical usecases(init)
|
||||
* Take write_lock for all purposes which gives exclusive access
|
||||
*/
|
||||
struct rw_semaphore pcc_lock;
|
||||
|
||||
/* Wait queue for CPUs whose requests were batched */
|
||||
wait_queue_head_t pcc_write_wait_q;
|
||||
};
|
||||
|
||||
/* Structure to represent the single PCC channel */
|
||||
static struct cppc_pcc_data pcc_data = {
|
||||
.pcc_subspace_idx = -1,
|
||||
.platform_owns_pcc = true,
|
||||
};
|
||||
|
||||
/*
|
||||
* The cpc_desc structure contains the ACPI register details
|
||||
@ -59,18 +92,25 @@ static DEFINE_SPINLOCK(pcc_lock);
|
||||
*/
|
||||
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
|
||||
|
||||
/* This layer handles all the PCC specifics for CPPC. */
|
||||
static struct mbox_chan *pcc_channel;
|
||||
static void __iomem *pcc_comm_addr;
|
||||
static u64 comm_base_addr;
|
||||
static int pcc_subspace_idx = -1;
|
||||
static bool pcc_channel_acquired;
|
||||
static ktime_t deadline;
|
||||
static unsigned int pcc_mpar, pcc_mrtt;
|
||||
|
||||
/* pcc mapped address + header size + offset within PCC subspace */
|
||||
#define GET_PCC_VADDR(offs) (pcc_comm_addr + 0x8 + (offs))
|
||||
#define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
|
||||
|
||||
/* Check if a CPC regsiter is in PCC */
|
||||
#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
|
||||
(cpc)->cpc_entry.reg.space_id == \
|
||||
ACPI_ADR_SPACE_PLATFORM_COMM)
|
||||
|
||||
/* Evalutes to True if reg is a NULL register descriptor */
|
||||
#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
|
||||
(reg)->address == 0 && \
|
||||
(reg)->bit_width == 0 && \
|
||||
(reg)->bit_offset == 0 && \
|
||||
(reg)->access_width == 0)
|
||||
|
||||
/* Evalutes to True if an optional cpc field is supported */
|
||||
#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
|
||||
!!(cpc)->cpc_entry.int_value : \
|
||||
!IS_NULL_REG(&(cpc)->cpc_entry.reg))
|
||||
/*
|
||||
* Arbitrary Retries in case the remote processor is slow to respond
|
||||
* to PCC commands. Keeping it high enough to cover emulators where
|
||||
@ -78,11 +118,79 @@ static unsigned int pcc_mpar, pcc_mrtt;
|
||||
*/
|
||||
#define NUM_RETRIES 500
|
||||
|
||||
static int check_pcc_chan(void)
|
||||
struct cppc_attr {
|
||||
struct attribute attr;
|
||||
ssize_t (*show)(struct kobject *kobj,
|
||||
struct attribute *attr, char *buf);
|
||||
ssize_t (*store)(struct kobject *kobj,
|
||||
struct attribute *attr, const char *c, ssize_t count);
|
||||
};
|
||||
|
||||
#define define_one_cppc_ro(_name) \
|
||||
static struct cppc_attr _name = \
|
||||
__ATTR(_name, 0444, show_##_name, NULL)
|
||||
|
||||
#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
|
||||
|
||||
static ssize_t show_feedback_ctrs(struct kobject *kobj,
|
||||
struct attribute *attr, char *buf)
|
||||
{
|
||||
int ret = -EIO;
|
||||
struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_comm_addr;
|
||||
ktime_t next_deadline = ktime_add(ktime_get(), deadline);
|
||||
struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
|
||||
struct cppc_perf_fb_ctrs fb_ctrs = {0};
|
||||
|
||||
cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
|
||||
|
||||
return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
|
||||
fb_ctrs.reference, fb_ctrs.delivered);
|
||||
}
|
||||
define_one_cppc_ro(feedback_ctrs);
|
||||
|
||||
static ssize_t show_reference_perf(struct kobject *kobj,
|
||||
struct attribute *attr, char *buf)
|
||||
{
|
||||
struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
|
||||
struct cppc_perf_fb_ctrs fb_ctrs = {0};
|
||||
|
||||
cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
|
||||
|
||||
return scnprintf(buf, PAGE_SIZE, "%llu\n",
|
||||
fb_ctrs.reference_perf);
|
||||
}
|
||||
define_one_cppc_ro(reference_perf);
|
||||
|
||||
static ssize_t show_wraparound_time(struct kobject *kobj,
|
||||
struct attribute *attr, char *buf)
|
||||
{
|
||||
struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
|
||||
struct cppc_perf_fb_ctrs fb_ctrs = {0};
|
||||
|
||||
cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
|
||||
|
||||
return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
|
||||
|
||||
}
|
||||
define_one_cppc_ro(wraparound_time);
|
||||
|
||||
static struct attribute *cppc_attrs[] = {
|
||||
&feedback_ctrs.attr,
|
||||
&reference_perf.attr,
|
||||
&wraparound_time.attr,
|
||||
NULL
|
||||
};
|
||||
|
||||
static struct kobj_type cppc_ktype = {
|
||||
.sysfs_ops = &kobj_sysfs_ops,
|
||||
.default_attrs = cppc_attrs,
|
||||
};
|
||||
|
||||
static int check_pcc_chan(bool chk_err_bit)
|
||||
{
|
||||
int ret = -EIO, status = 0;
|
||||
struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
|
||||
ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
|
||||
|
||||
if (!pcc_data.platform_owns_pcc)
|
||||
return 0;
|
||||
|
||||
/* Retry in case the remote processor was too slow to catch up. */
|
||||
while (!ktime_after(ktime_get(), next_deadline)) {
|
||||
@ -91,8 +199,11 @@ static int check_pcc_chan(void)
|
||||
* platform and should have set the command completion bit when
|
||||
* PCC can be used by OSPM
|
||||
*/
|
||||
if (readw_relaxed(&generic_comm_base->status) & PCC_CMD_COMPLETE) {
|
||||
status = readw_relaxed(&generic_comm_base->status);
|
||||
if (status & PCC_CMD_COMPLETE_MASK) {
|
||||
ret = 0;
|
||||
if (chk_err_bit && (status & PCC_ERROR_MASK))
|
||||
ret = -EIO;
|
||||
break;
|
||||
}
|
||||
/*
|
||||
@ -102,14 +213,23 @@ static int check_pcc_chan(void)
|
||||
udelay(3);
|
||||
}
|
||||
|
||||
if (likely(!ret))
|
||||
pcc_data.platform_owns_pcc = false;
|
||||
else
|
||||
pr_err("PCC check channel failed. Status=%x\n", status);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function transfers the ownership of the PCC to the platform
|
||||
* So it must be called while holding write_lock(pcc_lock)
|
||||
*/
|
||||
static int send_pcc_cmd(u16 cmd)
|
||||
{
|
||||
int ret = -EIO;
|
||||
int ret = -EIO, i;
|
||||
struct acpi_pcct_shared_memory *generic_comm_base =
|
||||
(struct acpi_pcct_shared_memory *) pcc_comm_addr;
|
||||
(struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
|
||||
static ktime_t last_cmd_cmpl_time, last_mpar_reset;
|
||||
static int mpar_count;
|
||||
unsigned int time_delta;
|
||||
@ -119,20 +239,29 @@ static int send_pcc_cmd(u16 cmd)
|
||||
* the channel before writing to PCC space
|
||||
*/
|
||||
if (cmd == CMD_READ) {
|
||||
ret = check_pcc_chan();
|
||||
/*
|
||||
* If there are pending cpc_writes, then we stole the channel
|
||||
* before write completion, so first send a WRITE command to
|
||||
* platform
|
||||
*/
|
||||
if (pcc_data.pending_pcc_write_cmd)
|
||||
send_pcc_cmd(CMD_WRITE);
|
||||
|
||||
ret = check_pcc_chan(false);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
goto end;
|
||||
} else /* CMD_WRITE */
|
||||
pcc_data.pending_pcc_write_cmd = FALSE;
|
||||
|
||||
/*
|
||||
* Handle the Minimum Request Turnaround Time(MRTT)
|
||||
* "The minimum amount of time that OSPM must wait after the completion
|
||||
* of a command before issuing the next command, in microseconds"
|
||||
*/
|
||||
if (pcc_mrtt) {
|
||||
if (pcc_data.pcc_mrtt) {
|
||||
time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
|
||||
if (pcc_mrtt > time_delta)
|
||||
udelay(pcc_mrtt - time_delta);
|
||||
if (pcc_data.pcc_mrtt > time_delta)
|
||||
udelay(pcc_data.pcc_mrtt - time_delta);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -146,15 +275,16 @@ static int send_pcc_cmd(u16 cmd)
|
||||
* not send the request to the platform after hitting the MPAR limit in
|
||||
* any 60s window
|
||||
*/
|
||||
if (pcc_mpar) {
|
||||
if (pcc_data.pcc_mpar) {
|
||||
if (mpar_count == 0) {
|
||||
time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
|
||||
if (time_delta < 60 * MSEC_PER_SEC) {
|
||||
pr_debug("PCC cmd not sent due to MPAR limit");
|
||||
return -EIO;
|
||||
ret = -EIO;
|
||||
goto end;
|
||||
}
|
||||
last_mpar_reset = ktime_get();
|
||||
mpar_count = pcc_mpar;
|
||||
mpar_count = pcc_data.pcc_mpar;
|
||||
}
|
||||
mpar_count--;
|
||||
}
|
||||
@ -165,33 +295,43 @@ static int send_pcc_cmd(u16 cmd)
|
||||
/* Flip CMD COMPLETE bit */
|
||||
writew_relaxed(0, &generic_comm_base->status);
|
||||
|
||||
pcc_data.platform_owns_pcc = true;
|
||||
|
||||
/* Ring doorbell */
|
||||
ret = mbox_send_message(pcc_channel, &cmd);
|
||||
ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
|
||||
if (ret < 0) {
|
||||
pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
|
||||
cmd, ret);
|
||||
return ret;
|
||||
goto end;
|
||||
}
|
||||
|
||||
/*
|
||||
* For READs we need to ensure the cmd completed to ensure
|
||||
* the ensuing read()s can proceed. For WRITEs we dont care
|
||||
* because the actual write()s are done before coming here
|
||||
* and the next READ or WRITE will check if the channel
|
||||
* is busy/free at the entry of this call.
|
||||
*
|
||||
* If Minimum Request Turnaround Time is non-zero, we need
|
||||
* to record the completion time of both READ and WRITE
|
||||
* command for proper handling of MRTT, so we need to check
|
||||
* for pcc_mrtt in addition to CMD_READ
|
||||
*/
|
||||
if (cmd == CMD_READ || pcc_mrtt) {
|
||||
ret = check_pcc_chan();
|
||||
if (pcc_mrtt)
|
||||
last_cmd_cmpl_time = ktime_get();
|
||||
/* wait for completion and check for PCC errro bit */
|
||||
ret = check_pcc_chan(true);
|
||||
|
||||
if (pcc_data.pcc_mrtt)
|
||||
last_cmd_cmpl_time = ktime_get();
|
||||
|
||||
if (pcc_data.pcc_channel->mbox->txdone_irq)
|
||||
mbox_chan_txdone(pcc_data.pcc_channel, ret);
|
||||
else
|
||||
mbox_client_txdone(pcc_data.pcc_channel, ret);
|
||||
|
||||
end:
|
||||
if (cmd == CMD_WRITE) {
|
||||
if (unlikely(ret)) {
|
||||
for_each_possible_cpu(i) {
|
||||
struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
|
||||
if (!desc)
|
||||
continue;
|
||||
|
||||
if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
|
||||
desc->write_cmd_status = ret;
|
||||
}
|
||||
}
|
||||
pcc_data.pcc_write_cnt++;
|
||||
wake_up_all(&pcc_data.pcc_write_wait_q);
|
||||
}
|
||||
|
||||
mbox_client_txdone(pcc_channel, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -272,13 +412,13 @@ end:
|
||||
*
|
||||
* Return: 0 for success or negative value for err.
|
||||
*/
|
||||
int acpi_get_psd_map(struct cpudata **all_cpu_data)
|
||||
int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
|
||||
{
|
||||
int count_target;
|
||||
int retval = 0;
|
||||
unsigned int i, j;
|
||||
cpumask_var_t covered_cpus;
|
||||
struct cpudata *pr, *match_pr;
|
||||
struct cppc_cpudata *pr, *match_pr;
|
||||
struct acpi_psd_package *pdomain;
|
||||
struct acpi_psd_package *match_pdomain;
|
||||
struct cpc_desc *cpc_ptr, *match_cpc_ptr;
|
||||
@ -394,14 +534,13 @@ EXPORT_SYMBOL_GPL(acpi_get_psd_map);
|
||||
static int register_pcc_channel(int pcc_subspace_idx)
|
||||
{
|
||||
struct acpi_pcct_hw_reduced *cppc_ss;
|
||||
unsigned int len;
|
||||
u64 usecs_lat;
|
||||
|
||||
if (pcc_subspace_idx >= 0) {
|
||||
pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
|
||||
pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
|
||||
pcc_subspace_idx);
|
||||
|
||||
if (IS_ERR(pcc_channel)) {
|
||||
if (IS_ERR(pcc_data.pcc_channel)) {
|
||||
pr_err("Failed to find PCC communication channel\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
@ -412,43 +551,50 @@ static int register_pcc_channel(int pcc_subspace_idx)
|
||||
* PCC channels) and stored pointers to the
|
||||
* subspace communication region in con_priv.
|
||||
*/
|
||||
cppc_ss = pcc_channel->con_priv;
|
||||
cppc_ss = (pcc_data.pcc_channel)->con_priv;
|
||||
|
||||
if (!cppc_ss) {
|
||||
pr_err("No PCC subspace found for CPPC\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
/*
|
||||
* This is the shared communication region
|
||||
* for the OS and Platform to communicate over.
|
||||
*/
|
||||
comm_base_addr = cppc_ss->base_address;
|
||||
len = cppc_ss->length;
|
||||
|
||||
/*
|
||||
* cppc_ss->latency is just a Nominal value. In reality
|
||||
* the remote processor could be much slower to reply.
|
||||
* So add an arbitrary amount of wait on top of Nominal.
|
||||
*/
|
||||
usecs_lat = NUM_RETRIES * cppc_ss->latency;
|
||||
deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
|
||||
pcc_mrtt = cppc_ss->min_turnaround_time;
|
||||
pcc_mpar = cppc_ss->max_access_rate;
|
||||
pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
|
||||
pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
|
||||
pcc_data.pcc_mpar = cppc_ss->max_access_rate;
|
||||
pcc_data.pcc_nominal = cppc_ss->latency;
|
||||
|
||||
pcc_comm_addr = acpi_os_ioremap(comm_base_addr, len);
|
||||
if (!pcc_comm_addr) {
|
||||
pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
|
||||
if (!pcc_data.pcc_comm_addr) {
|
||||
pr_err("Failed to ioremap PCC comm region mem\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/* Set flag so that we dont come here for each CPU. */
|
||||
pcc_channel_acquired = true;
|
||||
pcc_data.pcc_channel_acquired = true;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* cpc_ffh_supported() - check if FFH reading supported
|
||||
*
|
||||
* Check if the architecture has support for functional fixed hardware
|
||||
* read/write capability.
|
||||
*
|
||||
* Return: true for supported, false for not supported
|
||||
*/
|
||||
bool __weak cpc_ffh_supported(void)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* An example CPC table looks like the following.
|
||||
*
|
||||
@ -507,6 +653,7 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
|
||||
union acpi_object *out_obj, *cpc_obj;
|
||||
struct cpc_desc *cpc_ptr;
|
||||
struct cpc_reg *gas_t;
|
||||
struct device *cpu_dev;
|
||||
acpi_handle handle = pr->handle;
|
||||
unsigned int num_ent, i, cpc_rev;
|
||||
acpi_status status;
|
||||
@ -545,6 +692,8 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
|
||||
goto out_free;
|
||||
}
|
||||
|
||||
cpc_ptr->num_entries = num_ent;
|
||||
|
||||
/* Second entry should be revision. */
|
||||
cpc_obj = &out_obj->package.elements[1];
|
||||
if (cpc_obj->type == ACPI_TYPE_INTEGER) {
|
||||
@ -579,16 +728,27 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
|
||||
* so extract it only once.
|
||||
*/
|
||||
if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
|
||||
if (pcc_subspace_idx < 0)
|
||||
pcc_subspace_idx = gas_t->access_width;
|
||||
else if (pcc_subspace_idx != gas_t->access_width) {
|
||||
if (pcc_data.pcc_subspace_idx < 0)
|
||||
pcc_data.pcc_subspace_idx = gas_t->access_width;
|
||||
else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
|
||||
pr_debug("Mismatched PCC ids.\n");
|
||||
goto out_free;
|
||||
}
|
||||
} else if (gas_t->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) {
|
||||
/* Support only PCC and SYS MEM type regs */
|
||||
pr_debug("Unsupported register type: %d\n", gas_t->space_id);
|
||||
goto out_free;
|
||||
} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
|
||||
if (gas_t->address) {
|
||||
void __iomem *addr;
|
||||
|
||||
addr = ioremap(gas_t->address, gas_t->bit_width/8);
|
||||
if (!addr)
|
||||
goto out_free;
|
||||
cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
|
||||
}
|
||||
} else {
|
||||
if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
|
||||
/* Support only PCC ,SYS MEM and FFH type regs */
|
||||
pr_debug("Unsupported register type: %d\n", gas_t->space_id);
|
||||
goto out_free;
|
||||
}
|
||||
}
|
||||
|
||||
cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
|
||||
@ -607,10 +767,13 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
|
||||
goto out_free;
|
||||
|
||||
/* Register PCC channel once for all CPUs. */
|
||||
if (!pcc_channel_acquired) {
|
||||
ret = register_pcc_channel(pcc_subspace_idx);
|
||||
if (!pcc_data.pcc_channel_acquired) {
|
||||
ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
|
||||
if (ret)
|
||||
goto out_free;
|
||||
|
||||
init_rwsem(&pcc_data.pcc_lock);
|
||||
init_waitqueue_head(&pcc_data.pcc_write_wait_q);
|
||||
}
|
||||
|
||||
/* Plug PSD data into this CPUs CPC descriptor. */
|
||||
@ -619,10 +782,27 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
|
||||
/* Everything looks okay */
|
||||
pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
|
||||
|
||||
/* Add per logical CPU nodes for reading its feedback counters. */
|
||||
cpu_dev = get_cpu_device(pr->id);
|
||||
if (!cpu_dev)
|
||||
goto out_free;
|
||||
|
||||
ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
|
||||
"acpi_cppc");
|
||||
if (ret)
|
||||
goto out_free;
|
||||
|
||||
kfree(output.pointer);
|
||||
return 0;
|
||||
|
||||
out_free:
|
||||
/* Free all the mapped sys mem areas for this CPU */
|
||||
for (i = 2; i < cpc_ptr->num_entries; i++) {
|
||||
void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
|
||||
|
||||
if (addr)
|
||||
iounmap(addr);
|
||||
}
|
||||
kfree(cpc_ptr);
|
||||
|
||||
out_buf_free:
|
||||
@ -640,26 +820,82 @@ EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
|
||||
void acpi_cppc_processor_exit(struct acpi_processor *pr)
|
||||
{
|
||||
struct cpc_desc *cpc_ptr;
|
||||
unsigned int i;
|
||||
void __iomem *addr;
|
||||
|
||||
cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
|
||||
|
||||
/* Free all the mapped sys mem areas for this CPU */
|
||||
for (i = 2; i < cpc_ptr->num_entries; i++) {
|
||||
addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
|
||||
if (addr)
|
||||
iounmap(addr);
|
||||
}
|
||||
|
||||
kobject_put(&cpc_ptr->kobj);
|
||||
kfree(cpc_ptr);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
|
||||
|
||||
/**
|
||||
* cpc_read_ffh() - Read FFH register
|
||||
* @cpunum: cpu number to read
|
||||
* @reg: cppc register information
|
||||
* @val: place holder for return value
|
||||
*
|
||||
* Read bit_width bits from a specified address and bit_offset
|
||||
*
|
||||
* Return: 0 for success and error code
|
||||
*/
|
||||
int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
|
||||
{
|
||||
return -ENOTSUPP;
|
||||
}
|
||||
|
||||
/**
|
||||
* cpc_write_ffh() - Write FFH register
|
||||
* @cpunum: cpu number to write
|
||||
* @reg: cppc register information
|
||||
* @val: value to write
|
||||
*
|
||||
* Write value of bit_width bits to a specified address and bit_offset
|
||||
*
|
||||
* Return: 0 for success and error code
|
||||
*/
|
||||
int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
|
||||
{
|
||||
return -ENOTSUPP;
|
||||
}
|
||||
|
||||
/*
|
||||
* Since cpc_read and cpc_write are called while holding pcc_lock, it should be
|
||||
* as fast as possible. We have already mapped the PCC subspace during init, so
|
||||
* we can directly write to it.
|
||||
*/
|
||||
|
||||
static int cpc_read(struct cpc_reg *reg, u64 *val)
|
||||
static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
|
||||
{
|
||||
int ret_val = 0;
|
||||
void __iomem *vaddr = 0;
|
||||
struct cpc_reg *reg = ®_res->cpc_entry.reg;
|
||||
|
||||
if (reg_res->type == ACPI_TYPE_INTEGER) {
|
||||
*val = reg_res->cpc_entry.int_value;
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
*val = 0;
|
||||
if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
|
||||
void __iomem *vaddr = GET_PCC_VADDR(reg->address);
|
||||
if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
|
||||
vaddr = GET_PCC_VADDR(reg->address);
|
||||
else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
|
||||
vaddr = reg_res->sys_mem_vaddr;
|
||||
else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
|
||||
return cpc_read_ffh(cpu, reg, val);
|
||||
else
|
||||
return acpi_os_read_memory((acpi_physical_address)reg->address,
|
||||
val, reg->bit_width);
|
||||
|
||||
switch (reg->bit_width) {
|
||||
switch (reg->bit_width) {
|
||||
case 8:
|
||||
*val = readb_relaxed(vaddr);
|
||||
break;
|
||||
@ -674,23 +910,30 @@ static int cpc_read(struct cpc_reg *reg, u64 *val)
|
||||
break;
|
||||
default:
|
||||
pr_debug("Error: Cannot read %u bit width from PCC\n",
|
||||
reg->bit_width);
|
||||
reg->bit_width);
|
||||
ret_val = -EFAULT;
|
||||
}
|
||||
} else
|
||||
ret_val = acpi_os_read_memory((acpi_physical_address)reg->address,
|
||||
val, reg->bit_width);
|
||||
}
|
||||
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
static int cpc_write(struct cpc_reg *reg, u64 val)
|
||||
static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
|
||||
{
|
||||
int ret_val = 0;
|
||||
void __iomem *vaddr = 0;
|
||||
struct cpc_reg *reg = ®_res->cpc_entry.reg;
|
||||
|
||||
if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
|
||||
void __iomem *vaddr = GET_PCC_VADDR(reg->address);
|
||||
if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
|
||||
vaddr = GET_PCC_VADDR(reg->address);
|
||||
else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
|
||||
vaddr = reg_res->sys_mem_vaddr;
|
||||
else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
|
||||
return cpc_write_ffh(cpu, reg, val);
|
||||
else
|
||||
return acpi_os_write_memory((acpi_physical_address)reg->address,
|
||||
val, reg->bit_width);
|
||||
|
||||
switch (reg->bit_width) {
|
||||
switch (reg->bit_width) {
|
||||
case 8:
|
||||
writeb_relaxed(val, vaddr);
|
||||
break;
|
||||
@ -705,13 +948,11 @@ static int cpc_write(struct cpc_reg *reg, u64 val)
|
||||
break;
|
||||
default:
|
||||
pr_debug("Error: Cannot write %u bit width to PCC\n",
|
||||
reg->bit_width);
|
||||
reg->bit_width);
|
||||
ret_val = -EFAULT;
|
||||
break;
|
||||
}
|
||||
} else
|
||||
ret_val = acpi_os_write_memory((acpi_physical_address)reg->address,
|
||||
val, reg->bit_width);
|
||||
}
|
||||
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
@ -727,8 +968,8 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
|
||||
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
|
||||
struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
|
||||
*nom_perf;
|
||||
u64 high, low, ref, nom;
|
||||
int ret = 0;
|
||||
u64 high, low, nom;
|
||||
int ret = 0, regs_in_pcc = 0;
|
||||
|
||||
if (!cpc_desc) {
|
||||
pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
|
||||
@ -740,13 +981,11 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
|
||||
ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
|
||||
nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
|
||||
|
||||
spin_lock(&pcc_lock);
|
||||
|
||||
/* Are any of the regs PCC ?*/
|
||||
if ((highest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
|
||||
(lowest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
|
||||
(ref_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
|
||||
(nom_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) {
|
||||
if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
|
||||
CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
|
||||
regs_in_pcc = 1;
|
||||
down_write(&pcc_data.pcc_lock);
|
||||
/* Ring doorbell once to update PCC subspace */
|
||||
if (send_pcc_cmd(CMD_READ) < 0) {
|
||||
ret = -EIO;
|
||||
@ -754,26 +993,21 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
|
||||
}
|
||||
}
|
||||
|
||||
cpc_read(&highest_reg->cpc_entry.reg, &high);
|
||||
cpc_read(cpunum, highest_reg, &high);
|
||||
perf_caps->highest_perf = high;
|
||||
|
||||
cpc_read(&lowest_reg->cpc_entry.reg, &low);
|
||||
cpc_read(cpunum, lowest_reg, &low);
|
||||
perf_caps->lowest_perf = low;
|
||||
|
||||
cpc_read(&ref_perf->cpc_entry.reg, &ref);
|
||||
perf_caps->reference_perf = ref;
|
||||
|
||||
cpc_read(&nom_perf->cpc_entry.reg, &nom);
|
||||
cpc_read(cpunum, nom_perf, &nom);
|
||||
perf_caps->nominal_perf = nom;
|
||||
|
||||
if (!ref)
|
||||
perf_caps->reference_perf = perf_caps->nominal_perf;
|
||||
|
||||
if (!high || !low || !nom)
|
||||
ret = -EFAULT;
|
||||
|
||||
out_err:
|
||||
spin_unlock(&pcc_lock);
|
||||
if (regs_in_pcc)
|
||||
up_write(&pcc_data.pcc_lock);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
|
||||
@ -788,9 +1022,10 @@ EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
|
||||
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
|
||||
{
|
||||
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
|
||||
struct cpc_register_resource *delivered_reg, *reference_reg;
|
||||
u64 delivered, reference;
|
||||
int ret = 0;
|
||||
struct cpc_register_resource *delivered_reg, *reference_reg,
|
||||
*ref_perf_reg, *ctr_wrap_reg;
|
||||
u64 delivered, reference, ref_perf, ctr_wrap_time;
|
||||
int ret = 0, regs_in_pcc = 0;
|
||||
|
||||
if (!cpc_desc) {
|
||||
pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
|
||||
@ -799,12 +1034,21 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
|
||||
|
||||
delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
|
||||
reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
|
||||
ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
|
||||
ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
|
||||
|
||||
spin_lock(&pcc_lock);
|
||||
/*
|
||||
* If refernce perf register is not supported then we should
|
||||
* use the nominal perf value
|
||||
*/
|
||||
if (!CPC_SUPPORTED(ref_perf_reg))
|
||||
ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
|
||||
|
||||
/* Are any of the regs PCC ?*/
|
||||
if ((delivered_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
|
||||
(reference_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) {
|
||||
if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
|
||||
CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
|
||||
down_write(&pcc_data.pcc_lock);
|
||||
regs_in_pcc = 1;
|
||||
/* Ring doorbell once to update PCC subspace */
|
||||
if (send_pcc_cmd(CMD_READ) < 0) {
|
||||
ret = -EIO;
|
||||
@ -812,25 +1056,31 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
|
||||
}
|
||||
}
|
||||
|
||||
cpc_read(&delivered_reg->cpc_entry.reg, &delivered);
|
||||
cpc_read(&reference_reg->cpc_entry.reg, &reference);
|
||||
cpc_read(cpunum, delivered_reg, &delivered);
|
||||
cpc_read(cpunum, reference_reg, &reference);
|
||||
cpc_read(cpunum, ref_perf_reg, &ref_perf);
|
||||
|
||||
if (!delivered || !reference) {
|
||||
/*
|
||||
* Per spec, if ctr_wrap_time optional register is unsupported, then the
|
||||
* performance counters are assumed to never wrap during the lifetime of
|
||||
* platform
|
||||
*/
|
||||
ctr_wrap_time = (u64)(~((u64)0));
|
||||
if (CPC_SUPPORTED(ctr_wrap_reg))
|
||||
cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
|
||||
|
||||
if (!delivered || !reference || !ref_perf) {
|
||||
ret = -EFAULT;
|
||||
goto out_err;
|
||||
}
|
||||
|
||||
perf_fb_ctrs->delivered = delivered;
|
||||
perf_fb_ctrs->reference = reference;
|
||||
|
||||
perf_fb_ctrs->delivered -= perf_fb_ctrs->prev_delivered;
|
||||
perf_fb_ctrs->reference -= perf_fb_ctrs->prev_reference;
|
||||
|
||||
perf_fb_ctrs->prev_delivered = delivered;
|
||||
perf_fb_ctrs->prev_reference = reference;
|
||||
|
||||
perf_fb_ctrs->reference_perf = ref_perf;
|
||||
perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
|
||||
out_err:
|
||||
spin_unlock(&pcc_lock);
|
||||
if (regs_in_pcc)
|
||||
up_write(&pcc_data.pcc_lock);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
|
||||
@ -855,30 +1105,142 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
|
||||
|
||||
desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
|
||||
|
||||
spin_lock(&pcc_lock);
|
||||
|
||||
/* If this is PCC reg, check if channel is free before writing */
|
||||
if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
|
||||
ret = check_pcc_chan();
|
||||
if (ret)
|
||||
goto busy_channel;
|
||||
/*
|
||||
* This is Phase-I where we want to write to CPC registers
|
||||
* -> We want all CPUs to be able to execute this phase in parallel
|
||||
*
|
||||
* Since read_lock can be acquired by multiple CPUs simultaneously we
|
||||
* achieve that goal here
|
||||
*/
|
||||
if (CPC_IN_PCC(desired_reg)) {
|
||||
down_read(&pcc_data.pcc_lock); /* BEGIN Phase-I */
|
||||
if (pcc_data.platform_owns_pcc) {
|
||||
ret = check_pcc_chan(false);
|
||||
if (ret) {
|
||||
up_read(&pcc_data.pcc_lock);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Update the pending_write to make sure a PCC CMD_READ will not
|
||||
* arrive and steal the channel during the switch to write lock
|
||||
*/
|
||||
pcc_data.pending_pcc_write_cmd = true;
|
||||
cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
|
||||
cpc_desc->write_cmd_status = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Skip writing MIN/MAX until Linux knows how to come up with
|
||||
* useful values.
|
||||
*/
|
||||
cpc_write(&desired_reg->cpc_entry.reg, perf_ctrls->desired_perf);
|
||||
cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
|
||||
|
||||
/* Is this a PCC reg ?*/
|
||||
if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
|
||||
/* Ring doorbell so Remote can get our perf request. */
|
||||
if (send_pcc_cmd(CMD_WRITE) < 0)
|
||||
ret = -EIO;
|
||||
if (CPC_IN_PCC(desired_reg))
|
||||
up_read(&pcc_data.pcc_lock); /* END Phase-I */
|
||||
/*
|
||||
* This is Phase-II where we transfer the ownership of PCC to Platform
|
||||
*
|
||||
* Short Summary: Basically if we think of a group of cppc_set_perf
|
||||
* requests that happened in short overlapping interval. The last CPU to
|
||||
* come out of Phase-I will enter Phase-II and ring the doorbell.
|
||||
*
|
||||
* We have the following requirements for Phase-II:
|
||||
* 1. We want to execute Phase-II only when there are no CPUs
|
||||
* currently executing in Phase-I
|
||||
* 2. Once we start Phase-II we want to avoid all other CPUs from
|
||||
* entering Phase-I.
|
||||
* 3. We want only one CPU among all those who went through Phase-I
|
||||
* to run phase-II
|
||||
*
|
||||
* If write_trylock fails to get the lock and doesn't transfer the
|
||||
* PCC ownership to the platform, then one of the following will be TRUE
|
||||
* 1. There is at-least one CPU in Phase-I which will later execute
|
||||
* write_trylock, so the CPUs in Phase-I will be responsible for
|
||||
* executing the Phase-II.
|
||||
* 2. Some other CPU has beaten this CPU to successfully execute the
|
||||
* write_trylock and has already acquired the write_lock. We know for a
|
||||
* fact it(other CPU acquiring the write_lock) couldn't have happened
|
||||
* before this CPU's Phase-I as we held the read_lock.
|
||||
* 3. Some other CPU executing pcc CMD_READ has stolen the
|
||||
* down_write, in which case, send_pcc_cmd will check for pending
|
||||
* CMD_WRITE commands by checking the pending_pcc_write_cmd.
|
||||
* So this CPU can be certain that its request will be delivered
|
||||
* So in all cases, this CPU knows that its request will be delivered
|
||||
* by another CPU and can return
|
||||
*
|
||||
* After getting the down_write we still need to check for
|
||||
* pending_pcc_write_cmd to take care of the following scenario
|
||||
* The thread running this code could be scheduled out between
|
||||
* Phase-I and Phase-II. Before it is scheduled back on, another CPU
|
||||
* could have delivered the request to Platform by triggering the
|
||||
* doorbell and transferred the ownership of PCC to platform. So this
|
||||
* avoids triggering an unnecessary doorbell and more importantly before
|
||||
* triggering the doorbell it makes sure that the PCC channel ownership
|
||||
* is still with OSPM.
|
||||
* pending_pcc_write_cmd can also be cleared by a different CPU, if
|
||||
* there was a pcc CMD_READ waiting on down_write and it steals the lock
|
||||
* before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
|
||||
* case during a CMD_READ and if there are pending writes it delivers
|
||||
* the write command before servicing the read command
|
||||
*/
|
||||
if (CPC_IN_PCC(desired_reg)) {
|
||||
if (down_write_trylock(&pcc_data.pcc_lock)) { /* BEGIN Phase-II */
|
||||
/* Update only if there are pending write commands */
|
||||
if (pcc_data.pending_pcc_write_cmd)
|
||||
send_pcc_cmd(CMD_WRITE);
|
||||
up_write(&pcc_data.pcc_lock); /* END Phase-II */
|
||||
} else
|
||||
/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
|
||||
wait_event(pcc_data.pcc_write_wait_q,
|
||||
cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
|
||||
|
||||
/* send_pcc_cmd updates the status in case of failure */
|
||||
ret = cpc_desc->write_cmd_status;
|
||||
}
|
||||
busy_channel:
|
||||
spin_unlock(&pcc_lock);
|
||||
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(cppc_set_perf);
|
||||
|
||||
/**
|
||||
* cppc_get_transition_latency - returns frequency transition latency in ns
|
||||
*
|
||||
* ACPI CPPC does not explicitly specifiy how a platform can specify the
|
||||
* transition latency for perfromance change requests. The closest we have
|
||||
* is the timing information from the PCCT tables which provides the info
|
||||
* on the number and frequency of PCC commands the platform can handle.
|
||||
*/
|
||||
unsigned int cppc_get_transition_latency(int cpu_num)
|
||||
{
|
||||
/*
|
||||
* Expected transition latency is based on the PCCT timing values
|
||||
* Below are definition from ACPI spec:
|
||||
* pcc_nominal- Expected latency to process a command, in microseconds
|
||||
* pcc_mpar - The maximum number of periodic requests that the subspace
|
||||
* channel can support, reported in commands per minute. 0
|
||||
* indicates no limitation.
|
||||
* pcc_mrtt - The minimum amount of time that OSPM must wait after the
|
||||
* completion of a command before issuing the next command,
|
||||
* in microseconds.
|
||||
*/
|
||||
unsigned int latency_ns = 0;
|
||||
struct cpc_desc *cpc_desc;
|
||||
struct cpc_register_resource *desired_reg;
|
||||
|
||||
cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
|
||||
if (!cpc_desc)
|
||||
return CPUFREQ_ETERNAL;
|
||||
|
||||
desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
|
||||
if (!CPC_IN_PCC(desired_reg))
|
||||
return CPUFREQ_ETERNAL;
|
||||
|
||||
if (pcc_data.pcc_mpar)
|
||||
latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
|
||||
|
||||
latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
|
||||
latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
|
||||
|
||||
return latency_ns;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
|
||||
|
@ -245,8 +245,8 @@ static int __acpi_processor_start(struct acpi_device *device)
|
||||
return 0;
|
||||
|
||||
result = acpi_cppc_processor_probe(pr);
|
||||
if (result)
|
||||
return -ENODEV;
|
||||
if (result && !IS_ENABLED(CONFIG_ACPI_CPU_FREQ_PSS))
|
||||
dev_warn(&device->dev, "CPPC data invalid or not present\n");
|
||||
|
||||
if (!cpuidle_get_driver() || cpuidle_get_driver() == &acpi_idle_driver)
|
||||
acpi_processor_power_init(pr);
|
||||
|
@ -30,13 +30,13 @@
|
||||
* performance capabilities, desired performance level
|
||||
* requested etc.
|
||||
*/
|
||||
static struct cpudata **all_cpu_data;
|
||||
static struct cppc_cpudata **all_cpu_data;
|
||||
|
||||
static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
|
||||
unsigned int target_freq,
|
||||
unsigned int relation)
|
||||
{
|
||||
struct cpudata *cpu;
|
||||
struct cppc_cpudata *cpu;
|
||||
struct cpufreq_freqs freqs;
|
||||
int ret = 0;
|
||||
|
||||
@ -66,7 +66,7 @@ static int cppc_verify_policy(struct cpufreq_policy *policy)
|
||||
static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
|
||||
{
|
||||
int cpu_num = policy->cpu;
|
||||
struct cpudata *cpu = all_cpu_data[cpu_num];
|
||||
struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
|
||||
int ret;
|
||||
|
||||
cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
|
||||
@ -79,7 +79,7 @@ static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
|
||||
|
||||
static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct cpudata *cpu;
|
||||
struct cppc_cpudata *cpu;
|
||||
unsigned int cpu_num = policy->cpu;
|
||||
int ret = 0;
|
||||
|
||||
@ -98,6 +98,7 @@ static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
||||
policy->max = cpu->perf_caps.highest_perf;
|
||||
policy->cpuinfo.min_freq = policy->min;
|
||||
policy->cpuinfo.max_freq = policy->max;
|
||||
policy->cpuinfo.transition_latency = cppc_get_transition_latency(cpu_num);
|
||||
policy->shared_type = cpu->shared_type;
|
||||
|
||||
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
|
||||
@ -134,7 +135,7 @@ static struct cpufreq_driver cppc_cpufreq_driver = {
|
||||
static int __init cppc_cpufreq_init(void)
|
||||
{
|
||||
int i, ret = 0;
|
||||
struct cpudata *cpu;
|
||||
struct cppc_cpudata *cpu;
|
||||
|
||||
if (acpi_disabled)
|
||||
return -ENODEV;
|
||||
@ -144,7 +145,7 @@ static int __init cppc_cpufreq_init(void)
|
||||
return -ENOMEM;
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
all_cpu_data[i] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
|
||||
all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
|
||||
if (!all_cpu_data[i])
|
||||
goto out;
|
||||
|
||||
@ -175,7 +176,7 @@ out:
|
||||
|
||||
static void __exit cppc_cpufreq_exit(void)
|
||||
{
|
||||
struct cpudata *cpu;
|
||||
struct cppc_cpudata *cpu;
|
||||
int i;
|
||||
|
||||
cpufreq_unregister_driver(&cppc_cpufreq_driver);
|
||||
|
@ -59,6 +59,7 @@
|
||||
#include <linux/delay.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/mailbox_controller.h>
|
||||
@ -68,11 +69,16 @@
|
||||
#include "mailbox.h"
|
||||
|
||||
#define MAX_PCC_SUBSPACES 256
|
||||
#define MBOX_IRQ_NAME "pcc-mbox"
|
||||
|
||||
static struct mbox_chan *pcc_mbox_channels;
|
||||
|
||||
/* Array of cached virtual address for doorbell registers */
|
||||
static void __iomem **pcc_doorbell_vaddr;
|
||||
/* Array of cached virtual address for doorbell ack registers */
|
||||
static void __iomem **pcc_doorbell_ack_vaddr;
|
||||
/* Array of doorbell interrupts */
|
||||
static int *pcc_doorbell_irq;
|
||||
|
||||
static struct mbox_controller pcc_mbox_ctrl = {};
|
||||
/**
|
||||
@ -91,79 +97,6 @@ static struct mbox_chan *get_pcc_channel(int id)
|
||||
return &pcc_mbox_channels[id];
|
||||
}
|
||||
|
||||
/**
|
||||
* pcc_mbox_request_channel - PCC clients call this function to
|
||||
* request a pointer to their PCC subspace, from which they
|
||||
* can get the details of communicating with the remote.
|
||||
* @cl: Pointer to Mailbox client, so we know where to bind the
|
||||
* Channel.
|
||||
* @subspace_id: The PCC Subspace index as parsed in the PCC client
|
||||
* ACPI package. This is used to lookup the array of PCC
|
||||
* subspaces as parsed by the PCC Mailbox controller.
|
||||
*
|
||||
* Return: Pointer to the Mailbox Channel if successful or
|
||||
* ERR_PTR.
|
||||
*/
|
||||
struct mbox_chan *pcc_mbox_request_channel(struct mbox_client *cl,
|
||||
int subspace_id)
|
||||
{
|
||||
struct device *dev = pcc_mbox_ctrl.dev;
|
||||
struct mbox_chan *chan;
|
||||
unsigned long flags;
|
||||
|
||||
/*
|
||||
* Each PCC Subspace is a Mailbox Channel.
|
||||
* The PCC Clients get their PCC Subspace ID
|
||||
* from their own tables and pass it here.
|
||||
* This returns a pointer to the PCC subspace
|
||||
* for the Client to operate on.
|
||||
*/
|
||||
chan = get_pcc_channel(subspace_id);
|
||||
|
||||
if (IS_ERR(chan) || chan->cl) {
|
||||
dev_err(dev, "Channel not found for idx: %d\n", subspace_id);
|
||||
return ERR_PTR(-EBUSY);
|
||||
}
|
||||
|
||||
spin_lock_irqsave(&chan->lock, flags);
|
||||
chan->msg_free = 0;
|
||||
chan->msg_count = 0;
|
||||
chan->active_req = NULL;
|
||||
chan->cl = cl;
|
||||
init_completion(&chan->tx_complete);
|
||||
|
||||
if (chan->txdone_method == TXDONE_BY_POLL && cl->knows_txdone)
|
||||
chan->txdone_method |= TXDONE_BY_ACK;
|
||||
|
||||
spin_unlock_irqrestore(&chan->lock, flags);
|
||||
|
||||
return chan;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(pcc_mbox_request_channel);
|
||||
|
||||
/**
|
||||
* pcc_mbox_free_channel - Clients call this to free their Channel.
|
||||
*
|
||||
* @chan: Pointer to the mailbox channel as returned by
|
||||
* pcc_mbox_request_channel()
|
||||
*/
|
||||
void pcc_mbox_free_channel(struct mbox_chan *chan)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
if (!chan || !chan->cl)
|
||||
return;
|
||||
|
||||
spin_lock_irqsave(&chan->lock, flags);
|
||||
chan->cl = NULL;
|
||||
chan->active_req = NULL;
|
||||
if (chan->txdone_method == (TXDONE_BY_POLL | TXDONE_BY_ACK))
|
||||
chan->txdone_method = TXDONE_BY_POLL;
|
||||
|
||||
spin_unlock_irqrestore(&chan->lock, flags);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(pcc_mbox_free_channel);
|
||||
|
||||
/*
|
||||
* PCC can be used with perf critical drivers such as CPPC
|
||||
* So it makes sense to locally cache the virtual address and
|
||||
@ -224,6 +157,167 @@ static int write_register(void __iomem *vaddr, u64 val, unsigned int bit_width)
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/**
|
||||
* pcc_map_interrupt - Map a PCC subspace GSI to a linux IRQ number
|
||||
* @interrupt: GSI number.
|
||||
* @flags: interrupt flags
|
||||
*
|
||||
* Returns: a valid linux IRQ number on success
|
||||
* 0 or -EINVAL on failure
|
||||
*/
|
||||
static int pcc_map_interrupt(u32 interrupt, u32 flags)
|
||||
{
|
||||
int trigger, polarity;
|
||||
|
||||
if (!interrupt)
|
||||
return 0;
|
||||
|
||||
trigger = (flags & ACPI_PCCT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
|
||||
: ACPI_LEVEL_SENSITIVE;
|
||||
|
||||
polarity = (flags & ACPI_PCCT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
|
||||
: ACPI_ACTIVE_HIGH;
|
||||
|
||||
return acpi_register_gsi(NULL, interrupt, trigger, polarity);
|
||||
}
|
||||
|
||||
/**
|
||||
* pcc_mbox_irq - PCC mailbox interrupt handler
|
||||
*/
|
||||
static irqreturn_t pcc_mbox_irq(int irq, void *p)
|
||||
{
|
||||
struct acpi_generic_address *doorbell_ack;
|
||||
struct acpi_pcct_hw_reduced *pcct_ss;
|
||||
struct mbox_chan *chan = p;
|
||||
u64 doorbell_ack_preserve;
|
||||
u64 doorbell_ack_write;
|
||||
u64 doorbell_ack_val;
|
||||
int ret;
|
||||
|
||||
pcct_ss = chan->con_priv;
|
||||
|
||||
mbox_chan_received_data(chan, NULL);
|
||||
|
||||
if (pcct_ss->header.type == ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE_TYPE2) {
|
||||
struct acpi_pcct_hw_reduced_type2 *pcct2_ss = chan->con_priv;
|
||||
u32 id = chan - pcc_mbox_channels;
|
||||
|
||||
doorbell_ack = &pcct2_ss->doorbell_ack_register;
|
||||
doorbell_ack_preserve = pcct2_ss->ack_preserve_mask;
|
||||
doorbell_ack_write = pcct2_ss->ack_write_mask;
|
||||
|
||||
ret = read_register(pcc_doorbell_ack_vaddr[id],
|
||||
&doorbell_ack_val,
|
||||
doorbell_ack->bit_width);
|
||||
if (ret)
|
||||
return IRQ_NONE;
|
||||
|
||||
ret = write_register(pcc_doorbell_ack_vaddr[id],
|
||||
(doorbell_ack_val & doorbell_ack_preserve)
|
||||
| doorbell_ack_write,
|
||||
doorbell_ack->bit_width);
|
||||
if (ret)
|
||||
return IRQ_NONE;
|
||||
}
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
/**
|
||||
* pcc_mbox_request_channel - PCC clients call this function to
|
||||
* request a pointer to their PCC subspace, from which they
|
||||
* can get the details of communicating with the remote.
|
||||
* @cl: Pointer to Mailbox client, so we know where to bind the
|
||||
* Channel.
|
||||
* @subspace_id: The PCC Subspace index as parsed in the PCC client
|
||||
* ACPI package. This is used to lookup the array of PCC
|
||||
* subspaces as parsed by the PCC Mailbox controller.
|
||||
*
|
||||
* Return: Pointer to the Mailbox Channel if successful or
|
||||
* ERR_PTR.
|
||||
*/
|
||||
struct mbox_chan *pcc_mbox_request_channel(struct mbox_client *cl,
|
||||
int subspace_id)
|
||||
{
|
||||
struct device *dev = pcc_mbox_ctrl.dev;
|
||||
struct mbox_chan *chan;
|
||||
unsigned long flags;
|
||||
|
||||
/*
|
||||
* Each PCC Subspace is a Mailbox Channel.
|
||||
* The PCC Clients get their PCC Subspace ID
|
||||
* from their own tables and pass it here.
|
||||
* This returns a pointer to the PCC subspace
|
||||
* for the Client to operate on.
|
||||
*/
|
||||
chan = get_pcc_channel(subspace_id);
|
||||
|
||||
if (IS_ERR(chan) || chan->cl) {
|
||||
dev_err(dev, "Channel not found for idx: %d\n", subspace_id);
|
||||
return ERR_PTR(-EBUSY);
|
||||
}
|
||||
|
||||
spin_lock_irqsave(&chan->lock, flags);
|
||||
chan->msg_free = 0;
|
||||
chan->msg_count = 0;
|
||||
chan->active_req = NULL;
|
||||
chan->cl = cl;
|
||||
init_completion(&chan->tx_complete);
|
||||
|
||||
if (chan->txdone_method == TXDONE_BY_POLL && cl->knows_txdone)
|
||||
chan->txdone_method |= TXDONE_BY_ACK;
|
||||
|
||||
if (pcc_doorbell_irq[subspace_id] > 0) {
|
||||
int rc;
|
||||
|
||||
rc = devm_request_irq(dev, pcc_doorbell_irq[subspace_id],
|
||||
pcc_mbox_irq, 0, MBOX_IRQ_NAME, chan);
|
||||
if (unlikely(rc)) {
|
||||
dev_err(dev, "failed to register PCC interrupt %d\n",
|
||||
pcc_doorbell_irq[subspace_id]);
|
||||
chan = ERR_PTR(rc);
|
||||
}
|
||||
}
|
||||
|
||||
spin_unlock_irqrestore(&chan->lock, flags);
|
||||
|
||||
return chan;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(pcc_mbox_request_channel);
|
||||
|
||||
/**
|
||||
* pcc_mbox_free_channel - Clients call this to free their Channel.
|
||||
*
|
||||
* @chan: Pointer to the mailbox channel as returned by
|
||||
* pcc_mbox_request_channel()
|
||||
*/
|
||||
void pcc_mbox_free_channel(struct mbox_chan *chan)
|
||||
{
|
||||
u32 id = chan - pcc_mbox_channels;
|
||||
unsigned long flags;
|
||||
|
||||
if (!chan || !chan->cl)
|
||||
return;
|
||||
|
||||
if (id >= pcc_mbox_ctrl.num_chans) {
|
||||
pr_debug("pcc_mbox_free_channel: Invalid mbox_chan passed\n");
|
||||
return;
|
||||
}
|
||||
|
||||
spin_lock_irqsave(&chan->lock, flags);
|
||||
chan->cl = NULL;
|
||||
chan->active_req = NULL;
|
||||
if (chan->txdone_method == (TXDONE_BY_POLL | TXDONE_BY_ACK))
|
||||
chan->txdone_method = TXDONE_BY_POLL;
|
||||
|
||||
if (pcc_doorbell_irq[id] > 0)
|
||||
devm_free_irq(chan->mbox->dev, pcc_doorbell_irq[id], chan);
|
||||
|
||||
spin_unlock_irqrestore(&chan->lock, flags);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(pcc_mbox_free_channel);
|
||||
|
||||
|
||||
/**
|
||||
* pcc_send_data - Called from Mailbox Controller code. Used
|
||||
* here only to ring the channel doorbell. The PCC client
|
||||
@ -296,8 +390,10 @@ static int parse_pcc_subspace(struct acpi_subtable_header *header,
|
||||
if (pcc_mbox_ctrl.num_chans <= MAX_PCC_SUBSPACES) {
|
||||
pcct_ss = (struct acpi_pcct_hw_reduced *) header;
|
||||
|
||||
if (pcct_ss->header.type !=
|
||||
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE) {
|
||||
if ((pcct_ss->header.type !=
|
||||
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE)
|
||||
&& (pcct_ss->header.type !=
|
||||
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE_TYPE2)) {
|
||||
pr_err("Incorrect PCC Subspace type detected\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
@ -306,6 +402,43 @@ static int parse_pcc_subspace(struct acpi_subtable_header *header,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* pcc_parse_subspace_irq - Parse the PCC IRQ and PCC ACK register
|
||||
* There should be one entry per PCC client.
|
||||
* @id: PCC subspace index.
|
||||
* @pcct_ss: Pointer to the ACPI subtable header under the PCCT.
|
||||
*
|
||||
* Return: 0 for Success, else errno.
|
||||
*
|
||||
* This gets called for each entry in the PCC table.
|
||||
*/
|
||||
static int pcc_parse_subspace_irq(int id,
|
||||
struct acpi_pcct_hw_reduced *pcct_ss)
|
||||
{
|
||||
pcc_doorbell_irq[id] = pcc_map_interrupt(pcct_ss->doorbell_interrupt,
|
||||
(u32)pcct_ss->flags);
|
||||
if (pcc_doorbell_irq[id] <= 0) {
|
||||
pr_err("PCC GSI %d not registered\n",
|
||||
pcct_ss->doorbell_interrupt);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (pcct_ss->header.type
|
||||
== ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE_TYPE2) {
|
||||
struct acpi_pcct_hw_reduced_type2 *pcct2_ss = (void *)pcct_ss;
|
||||
|
||||
pcc_doorbell_ack_vaddr[id] = acpi_os_ioremap(
|
||||
pcct2_ss->doorbell_ack_register.address,
|
||||
pcct2_ss->doorbell_ack_register.bit_width / 8);
|
||||
if (!pcc_doorbell_ack_vaddr[id]) {
|
||||
pr_err("Failed to ioremap PCC ACK register\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* acpi_pcc_probe - Parse the ACPI tree for the PCCT.
|
||||
*
|
||||
@ -316,7 +449,9 @@ static int __init acpi_pcc_probe(void)
|
||||
acpi_size pcct_tbl_header_size;
|
||||
struct acpi_table_header *pcct_tbl;
|
||||
struct acpi_subtable_header *pcct_entry;
|
||||
int count, i;
|
||||
struct acpi_table_pcct *acpi_pcct_tbl;
|
||||
int count, i, rc;
|
||||
int sum = 0;
|
||||
acpi_status status = AE_OK;
|
||||
|
||||
/* Search for PCCT */
|
||||
@ -333,37 +468,66 @@ static int __init acpi_pcc_probe(void)
|
||||
sizeof(struct acpi_table_pcct),
|
||||
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE,
|
||||
parse_pcc_subspace, MAX_PCC_SUBSPACES);
|
||||
sum += (count > 0) ? count : 0;
|
||||
|
||||
if (count <= 0) {
|
||||
count = acpi_table_parse_entries(ACPI_SIG_PCCT,
|
||||
sizeof(struct acpi_table_pcct),
|
||||
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE_TYPE2,
|
||||
parse_pcc_subspace, MAX_PCC_SUBSPACES);
|
||||
sum += (count > 0) ? count : 0;
|
||||
|
||||
if (sum == 0 || sum >= MAX_PCC_SUBSPACES) {
|
||||
pr_err("Error parsing PCC subspaces from PCCT\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
pcc_mbox_channels = kzalloc(sizeof(struct mbox_chan) *
|
||||
count, GFP_KERNEL);
|
||||
|
||||
sum, GFP_KERNEL);
|
||||
if (!pcc_mbox_channels) {
|
||||
pr_err("Could not allocate space for PCC mbox channels\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
pcc_doorbell_vaddr = kcalloc(count, sizeof(void *), GFP_KERNEL);
|
||||
pcc_doorbell_vaddr = kcalloc(sum, sizeof(void *), GFP_KERNEL);
|
||||
if (!pcc_doorbell_vaddr) {
|
||||
kfree(pcc_mbox_channels);
|
||||
return -ENOMEM;
|
||||
rc = -ENOMEM;
|
||||
goto err_free_mbox;
|
||||
}
|
||||
|
||||
pcc_doorbell_ack_vaddr = kcalloc(sum, sizeof(void *), GFP_KERNEL);
|
||||
if (!pcc_doorbell_ack_vaddr) {
|
||||
rc = -ENOMEM;
|
||||
goto err_free_db_vaddr;
|
||||
}
|
||||
|
||||
pcc_doorbell_irq = kcalloc(sum, sizeof(int), GFP_KERNEL);
|
||||
if (!pcc_doorbell_irq) {
|
||||
rc = -ENOMEM;
|
||||
goto err_free_db_ack_vaddr;
|
||||
}
|
||||
|
||||
/* Point to the first PCC subspace entry */
|
||||
pcct_entry = (struct acpi_subtable_header *) (
|
||||
(unsigned long) pcct_tbl + sizeof(struct acpi_table_pcct));
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
acpi_pcct_tbl = (struct acpi_table_pcct *) pcct_tbl;
|
||||
if (acpi_pcct_tbl->flags & ACPI_PCCT_DOORBELL)
|
||||
pcc_mbox_ctrl.txdone_irq = true;
|
||||
|
||||
for (i = 0; i < sum; i++) {
|
||||
struct acpi_generic_address *db_reg;
|
||||
struct acpi_pcct_hw_reduced *pcct_ss;
|
||||
pcc_mbox_channels[i].con_priv = pcct_entry;
|
||||
|
||||
pcct_ss = (struct acpi_pcct_hw_reduced *) pcct_entry;
|
||||
|
||||
if (pcc_mbox_ctrl.txdone_irq) {
|
||||
rc = pcc_parse_subspace_irq(i, pcct_ss);
|
||||
if (rc < 0)
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* If doorbell is in system memory cache the virt address */
|
||||
pcct_ss = (struct acpi_pcct_hw_reduced *)pcct_entry;
|
||||
db_reg = &pcct_ss->doorbell_register;
|
||||
if (db_reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
|
||||
pcc_doorbell_vaddr[i] = acpi_os_ioremap(db_reg->address,
|
||||
@ -372,11 +536,21 @@ static int __init acpi_pcc_probe(void)
|
||||
((unsigned long) pcct_entry + pcct_entry->length);
|
||||
}
|
||||
|
||||
pcc_mbox_ctrl.num_chans = count;
|
||||
pcc_mbox_ctrl.num_chans = sum;
|
||||
|
||||
pr_info("Detected %d PCC Subspaces\n", pcc_mbox_ctrl.num_chans);
|
||||
|
||||
return 0;
|
||||
|
||||
err:
|
||||
kfree(pcc_doorbell_irq);
|
||||
err_free_db_ack_vaddr:
|
||||
kfree(pcc_doorbell_ack_vaddr);
|
||||
err_free_db_vaddr:
|
||||
kfree(pcc_doorbell_vaddr);
|
||||
err_free_mbox:
|
||||
kfree(pcc_mbox_channels);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -24,7 +24,9 @@
|
||||
#define CPPC_NUM_ENT 21
|
||||
#define CPPC_REV 2
|
||||
|
||||
#define PCC_CMD_COMPLETE 1
|
||||
#define PCC_CMD_COMPLETE_MASK (1 << 0)
|
||||
#define PCC_ERROR_MASK (1 << 2)
|
||||
|
||||
#define MAX_CPC_REG_ENT 19
|
||||
|
||||
/* CPPC specific PCC commands. */
|
||||
@ -49,6 +51,7 @@ struct cpc_reg {
|
||||
*/
|
||||
struct cpc_register_resource {
|
||||
acpi_object_type type;
|
||||
u64 __iomem *sys_mem_vaddr;
|
||||
union {
|
||||
struct cpc_reg reg;
|
||||
u64 int_value;
|
||||
@ -60,8 +63,11 @@ struct cpc_desc {
|
||||
int num_entries;
|
||||
int version;
|
||||
int cpu_id;
|
||||
int write_cmd_status;
|
||||
int write_cmd_id;
|
||||
struct cpc_register_resource cpc_regs[MAX_CPC_REG_ENT];
|
||||
struct acpi_psd_package domain_info;
|
||||
struct kobject kobj;
|
||||
};
|
||||
|
||||
/* These are indexes into the per-cpu cpc_regs[]. Order is important. */
|
||||
@ -96,7 +102,6 @@ enum cppc_regs {
|
||||
struct cppc_perf_caps {
|
||||
u32 highest_perf;
|
||||
u32 nominal_perf;
|
||||
u32 reference_perf;
|
||||
u32 lowest_perf;
|
||||
};
|
||||
|
||||
@ -108,13 +113,13 @@ struct cppc_perf_ctrls {
|
||||
|
||||
struct cppc_perf_fb_ctrs {
|
||||
u64 reference;
|
||||
u64 prev_reference;
|
||||
u64 delivered;
|
||||
u64 prev_delivered;
|
||||
u64 reference_perf;
|
||||
u64 ctr_wrap_time;
|
||||
};
|
||||
|
||||
/* Per CPU container for runtime CPPC management. */
|
||||
struct cpudata {
|
||||
struct cppc_cpudata {
|
||||
int cpu;
|
||||
struct cppc_perf_caps perf_caps;
|
||||
struct cppc_perf_ctrls perf_ctrls;
|
||||
@ -127,6 +132,7 @@ struct cpudata {
|
||||
extern int cppc_get_perf_ctrs(int cpu, struct cppc_perf_fb_ctrs *perf_fb_ctrs);
|
||||
extern int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls);
|
||||
extern int cppc_get_perf_caps(int cpu, struct cppc_perf_caps *caps);
|
||||
extern int acpi_get_psd_map(struct cpudata **);
|
||||
extern int acpi_get_psd_map(struct cppc_cpudata **);
|
||||
extern unsigned int cppc_get_transition_latency(int cpu);
|
||||
|
||||
#endif /* _CPPC_ACPI_H*/
|
||||
|
Loading…
Reference in New Issue
Block a user