forked from Minki/linux
drm/doc: Clarify the dumb object interfaces
- This is _not_ a generic interface to create gem objects, but just an interface to make early boot services (like boot splash) with a generic KMS userspace driver possible. Hence it's better to move the documentation for this from the GEM section to the KMS section, next to the creation of framebuffer objects. - Make it really clear that the returned handle isn't necessarily a GEM object (it can also be e.g. a TTM handle when running on top of vmwgfx). - Add a paragraph to make it clear that this is just for unaccelarated userspace - gpu drivers need to have their own buffer object creation ioctl which is hardware specific. v2: Clarify that the documentation doesn't just apply to GEM-based drivers only but is now generally valid, as suggested by David. v3: Polish the intro sentence a bit and one s/objects/handles/ for clarification, both suggested by Laurent. v4: More text polish from Laurent's review. v5: More typo fixes from Dieter. Cc: Dieter Nützel <Dieter@nuetzel-hh.de> Cc: David Herrmann <dh.herrmann@gmail.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
This commit is contained in:
parent
786a7828bc
commit
065a5027dc
@ -829,62 +829,6 @@ char *date;</synopsis>
|
||||
faults can implement their own mmap file operation handler.
|
||||
</para>
|
||||
</sect3>
|
||||
<sect3>
|
||||
<title>Dumb GEM Objects</title>
|
||||
<para>
|
||||
The GEM API doesn't standardize GEM objects creation and leaves it to
|
||||
driver-specific ioctls. While not an issue for full-fledged graphics
|
||||
stacks that include device-specific userspace components (in libdrm for
|
||||
instance), this limit makes DRM-based early boot graphics unnecessarily
|
||||
complex.
|
||||
</para>
|
||||
<para>
|
||||
Dumb GEM objects partly alleviate the problem by providing a standard
|
||||
API to create dumb buffers suitable for scanout, which can then be used
|
||||
to create KMS frame buffers.
|
||||
</para>
|
||||
<para>
|
||||
To support dumb GEM objects drivers must implement the
|
||||
<methodname>dumb_create</methodname>,
|
||||
<methodname>dumb_destroy</methodname> and
|
||||
<methodname>dumb_map_offset</methodname> operations.
|
||||
</para>
|
||||
<itemizedlist>
|
||||
<listitem>
|
||||
<synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
|
||||
struct drm_mode_create_dumb *args);</synopsis>
|
||||
<para>
|
||||
The <methodname>dumb_create</methodname> operation creates a GEM
|
||||
object suitable for scanout based on the width, height and depth
|
||||
from the struct <structname>drm_mode_create_dumb</structname>
|
||||
argument. It fills the argument's <structfield>handle</structfield>,
|
||||
<structfield>pitch</structfield> and <structfield>size</structfield>
|
||||
fields with a handle for the newly created GEM object and its line
|
||||
pitch and size in bytes.
|
||||
</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
|
||||
uint32_t handle);</synopsis>
|
||||
<para>
|
||||
The <methodname>dumb_destroy</methodname> operation destroys a dumb
|
||||
GEM object created by <methodname>dumb_create</methodname>.
|
||||
</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
|
||||
uint32_t handle, uint64_t *offset);</synopsis>
|
||||
<para>
|
||||
The <methodname>dumb_map_offset</methodname> operation associates an
|
||||
mmap fake offset with the GEM object given by the handle and returns
|
||||
it. Drivers must use the
|
||||
<function>drm_gem_create_mmap_offset</function> function to
|
||||
associate the fake offset as described in
|
||||
<xref linkend="drm-gem-objects-mapping"/>.
|
||||
</para>
|
||||
</listitem>
|
||||
</itemizedlist>
|
||||
</sect3>
|
||||
<sect3>
|
||||
<title>Memory Coherency</title>
|
||||
<para>
|
||||
@ -968,9 +912,11 @@ int max_width, max_height;</synopsis>
|
||||
Frame buffers rely on the underneath memory manager for low-level memory
|
||||
operations. When creating a frame buffer applications pass a memory
|
||||
handle (or a list of memory handles for multi-planar formats) through
|
||||
the <parameter>drm_mode_fb_cmd2</parameter> argument. This document
|
||||
assumes that the driver uses GEM, those handles thus reference GEM
|
||||
objects.
|
||||
the <parameter>drm_mode_fb_cmd2</parameter> argument. For drivers using
|
||||
GEM as their userspace buffer management interface this would be a GEM
|
||||
handle. Drivers are however free to use their own backing storage object
|
||||
handles, e.g. vmwgfx directly exposes special TTM handles to userspace
|
||||
and so expects TTM handles in the create ioctl and not GEM handles.
|
||||
</para>
|
||||
<para>
|
||||
Drivers must first validate the requested frame buffer parameters passed
|
||||
@ -992,7 +938,7 @@ int max_width, max_height;</synopsis>
|
||||
</para>
|
||||
|
||||
<para>
|
||||
The initailization of the new framebuffer instance is finalized with a
|
||||
The initialization of the new framebuffer instance is finalized with a
|
||||
call to <function>drm_framebuffer_init</function> which takes a pointer
|
||||
to DRM frame buffer operations (struct
|
||||
<structname>drm_framebuffer_funcs</structname>). Note that this function
|
||||
@ -1051,6 +997,71 @@ int max_width, max_height;</synopsis>
|
||||
unload time with
|
||||
<function>drm_framebuffer_unregister_private</function>.
|
||||
</sect2>
|
||||
<sect2>
|
||||
<title>Dumb Buffer Objects</title>
|
||||
<para>
|
||||
The KMS API doesn't standardize backing storage object creation and
|
||||
leaves it to driver-specific ioctls. Furthermore actually creating a
|
||||
buffer object even for GEM-based drivers is done through a
|
||||
driver-specific ioctl - GEM only has a common userspace interface for
|
||||
sharing and destroying objects. While not an issue for full-fledged
|
||||
graphics stacks that include device-specific userspace components (in
|
||||
libdrm for instance), this limit makes DRM-based early boot graphics
|
||||
unnecessarily complex.
|
||||
</para>
|
||||
<para>
|
||||
Dumb objects partly alleviate the problem by providing a standard
|
||||
API to create dumb buffers suitable for scanout, which can then be used
|
||||
to create KMS frame buffers.
|
||||
</para>
|
||||
<para>
|
||||
To support dumb objects drivers must implement the
|
||||
<methodname>dumb_create</methodname>,
|
||||
<methodname>dumb_destroy</methodname> and
|
||||
<methodname>dumb_map_offset</methodname> operations.
|
||||
</para>
|
||||
<itemizedlist>
|
||||
<listitem>
|
||||
<synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
|
||||
struct drm_mode_create_dumb *args);</synopsis>
|
||||
<para>
|
||||
The <methodname>dumb_create</methodname> operation creates a driver
|
||||
object (GEM or TTM handle) suitable for scanout based on the
|
||||
width, height and depth from the struct
|
||||
<structname>drm_mode_create_dumb</structname> argument. It fills the
|
||||
argument's <structfield>handle</structfield>,
|
||||
<structfield>pitch</structfield> and <structfield>size</structfield>
|
||||
fields with a handle for the newly created object and its line
|
||||
pitch and size in bytes.
|
||||
</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
|
||||
uint32_t handle);</synopsis>
|
||||
<para>
|
||||
The <methodname>dumb_destroy</methodname> operation destroys a dumb
|
||||
object created by <methodname>dumb_create</methodname>.
|
||||
</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
|
||||
uint32_t handle, uint64_t *offset);</synopsis>
|
||||
<para>
|
||||
The <methodname>dumb_map_offset</methodname> operation associates an
|
||||
mmap fake offset with the object given by the handle and returns
|
||||
it. Drivers must use the
|
||||
<function>drm_gem_create_mmap_offset</function> function to
|
||||
associate the fake offset as described in
|
||||
<xref linkend="drm-gem-objects-mapping"/>.
|
||||
</para>
|
||||
</listitem>
|
||||
</itemizedlist>
|
||||
<para>
|
||||
Note that dumb objects may not be used for gpu acceleration, as has been
|
||||
attempted on some ARM embedded platforms. Such drivers really must have
|
||||
a hardware-specific ioctl to allocate suitable buffer objects.
|
||||
</para>
|
||||
</sect2>
|
||||
<sect2>
|
||||
<title>Output Polling</title>
|
||||
<synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis>
|
||||
@ -2134,7 +2145,7 @@ void intel_crt_init(struct drm_device *dev)
|
||||
set the <structfield>display_info</structfield>
|
||||
<structfield>width_mm</structfield> and
|
||||
<structfield>height_mm</structfield> fields if they haven't been set
|
||||
already (for instance at initilization time when a fixed-size panel is
|
||||
already (for instance at initialization time when a fixed-size panel is
|
||||
attached to the connector). The mode <structfield>width_mm</structfield>
|
||||
and <structfield>height_mm</structfield> fields are only used internally
|
||||
during EDID parsing and should not be set when creating modes manually.
|
||||
|
Loading…
Reference in New Issue
Block a user