2008-07-28 16:44:22 +00:00
|
|
|
/*
|
|
|
|
* AMD CPU Microcode Update Driver for Linux
|
2015-10-20 09:54:45 +00:00
|
|
|
*
|
|
|
|
* This driver allows to upgrade microcode on F10h AMD
|
|
|
|
* CPUs and later.
|
|
|
|
*
|
2011-12-02 17:09:23 +00:00
|
|
|
* Copyright (C) 2008-2011 Advanced Micro Devices Inc.
|
2016-10-25 09:55:22 +00:00
|
|
|
* 2013-2016 Borislav Petkov <bp@alien8.de>
|
2008-07-28 16:44:22 +00:00
|
|
|
*
|
|
|
|
* Author: Peter Oruba <peter.oruba@amd.com>
|
|
|
|
*
|
|
|
|
* Based on work by:
|
|
|
|
* Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
|
|
|
|
*
|
2015-10-20 09:54:45 +00:00
|
|
|
* early loader:
|
|
|
|
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
|
|
|
*
|
|
|
|
* Author: Jacob Shin <jacob.shin@amd.com>
|
|
|
|
* Fixes: Borislav Petkov <bp@suse.de>
|
2008-07-28 16:44:22 +00:00
|
|
|
*
|
2008-12-16 18:08:53 +00:00
|
|
|
* Licensed under the terms of the GNU General Public
|
2008-07-28 16:44:22 +00:00
|
|
|
* License version 2. See file COPYING for details.
|
2009-03-11 10:19:46 +00:00
|
|
|
*/
|
2015-10-20 09:54:46 +00:00
|
|
|
#define pr_fmt(fmt) "microcode: " fmt
|
2009-12-09 06:30:50 +00:00
|
|
|
|
2015-10-20 09:54:45 +00:00
|
|
|
#include <linux/earlycpio.h>
|
2009-03-11 10:19:46 +00:00
|
|
|
#include <linux/firmware.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <linux/vmalloc.h>
|
2015-10-20 09:54:45 +00:00
|
|
|
#include <linux/initrd.h>
|
2009-03-11 10:19:46 +00:00
|
|
|
#include <linux/kernel.h>
|
2008-07-28 16:44:22 +00:00
|
|
|
#include <linux/pci.h>
|
|
|
|
|
2015-10-20 09:54:45 +00:00
|
|
|
#include <asm/microcode_amd.h>
|
2008-07-28 16:44:22 +00:00
|
|
|
#include <asm/microcode.h>
|
2009-03-11 10:19:46 +00:00
|
|
|
#include <asm/processor.h>
|
2015-10-20 09:54:45 +00:00
|
|
|
#include <asm/setup.h>
|
|
|
|
#include <asm/cpu.h>
|
2009-03-11 10:19:46 +00:00
|
|
|
#include <asm/msr.h>
|
2008-07-28 16:44:22 +00:00
|
|
|
|
2008-09-11 21:27:52 +00:00
|
|
|
static struct equiv_cpu_entry *equiv_cpu_table;
|
2008-07-28 16:44:22 +00:00
|
|
|
|
2015-10-20 09:54:45 +00:00
|
|
|
/*
|
|
|
|
* This points to the current valid container of microcode patches which we will
|
2017-01-20 20:29:45 +00:00
|
|
|
* save from the initrd/builtin before jettisoning its contents. @mc is the
|
|
|
|
* microcode patch we found to match.
|
2015-10-20 09:54:45 +00:00
|
|
|
*/
|
2017-01-20 20:29:45 +00:00
|
|
|
static struct cont_desc {
|
|
|
|
struct microcode_amd *mc;
|
|
|
|
u32 psize;
|
|
|
|
u16 eq_id;
|
|
|
|
u8 *data;
|
|
|
|
size_t size;
|
2016-10-25 09:55:21 +00:00
|
|
|
} cont;
|
2015-10-20 09:54:45 +00:00
|
|
|
|
|
|
|
static u32 ucode_new_rev;
|
2016-06-06 15:10:49 +00:00
|
|
|
static u8 amd_ucode_patch[PATCH_MAX_SIZE];
|
2015-10-20 09:54:45 +00:00
|
|
|
static u16 this_equiv_id;
|
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
/*
|
|
|
|
* Microcode patch container file is prepended to the initrd in cpio
|
|
|
|
* format. See Documentation/x86/early-microcode.txt
|
|
|
|
*/
|
|
|
|
static const char
|
|
|
|
ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
|
2015-10-20 09:54:45 +00:00
|
|
|
|
|
|
|
static size_t compute_container_size(u8 *data, u32 total_size)
|
|
|
|
{
|
|
|
|
size_t size = 0;
|
|
|
|
u32 *header = (u32 *)data;
|
|
|
|
|
|
|
|
if (header[0] != UCODE_MAGIC ||
|
|
|
|
header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
|
|
|
|
header[2] == 0) /* size */
|
|
|
|
return size;
|
|
|
|
|
|
|
|
size = header[2] + CONTAINER_HDR_SZ;
|
|
|
|
total_size -= size;
|
|
|
|
data += size;
|
|
|
|
|
|
|
|
while (total_size) {
|
|
|
|
u16 patch_size;
|
|
|
|
|
|
|
|
header = (u32 *)data;
|
|
|
|
|
|
|
|
if (header[0] != UCODE_UCODE_TYPE)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Sanity-check patch size.
|
|
|
|
*/
|
|
|
|
patch_size = header[1];
|
|
|
|
if (patch_size > PATCH_MAX_SIZE)
|
|
|
|
break;
|
|
|
|
|
|
|
|
size += patch_size + SECTION_HDR_SIZE;
|
|
|
|
data += patch_size + SECTION_HDR_SIZE;
|
|
|
|
total_size -= patch_size + SECTION_HDR_SIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return size;
|
|
|
|
}
|
|
|
|
|
2017-01-20 20:29:43 +00:00
|
|
|
static u16 find_equiv_id(struct equiv_cpu_entry *equiv_table, u32 sig)
|
2016-10-25 09:55:19 +00:00
|
|
|
{
|
2017-01-20 20:29:43 +00:00
|
|
|
for (; equiv_table && equiv_table->installed_cpu; equiv_table++) {
|
|
|
|
if (sig == equiv_table->installed_cpu)
|
|
|
|
return equiv_table->equiv_cpu;
|
2016-10-25 09:55:19 +00:00
|
|
|
}
|
2017-01-20 20:29:43 +00:00
|
|
|
|
2016-10-25 09:55:19 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-10-20 09:54:45 +00:00
|
|
|
/*
|
2016-10-25 09:55:21 +00:00
|
|
|
* This scans the ucode blob for the proper container as we can have multiple
|
2016-12-18 16:44:11 +00:00
|
|
|
* containers glued together. Returns the equivalence ID from the equivalence
|
|
|
|
* table or 0 if none found.
|
2015-10-20 09:54:45 +00:00
|
|
|
*/
|
2016-12-18 16:44:11 +00:00
|
|
|
static u16
|
2017-01-20 20:29:45 +00:00
|
|
|
find_proper_container(u8 *ucode, size_t size, struct cont_desc *desc)
|
2015-10-20 09:54:45 +00:00
|
|
|
{
|
2017-01-20 20:29:45 +00:00
|
|
|
struct cont_desc ret = { 0 };
|
2016-10-25 09:55:21 +00:00
|
|
|
u32 eax, ebx, ecx, edx;
|
2015-10-20 09:54:45 +00:00
|
|
|
struct equiv_cpu_entry *eq;
|
|
|
|
int offset, left;
|
2016-10-25 09:55:21 +00:00
|
|
|
u16 eq_id = 0;
|
|
|
|
u32 *header;
|
|
|
|
u8 *data;
|
2015-10-20 09:54:45 +00:00
|
|
|
|
|
|
|
data = ucode;
|
|
|
|
left = size;
|
|
|
|
header = (u32 *)data;
|
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
|
2015-10-20 09:54:45 +00:00
|
|
|
/* find equiv cpu table */
|
|
|
|
if (header[0] != UCODE_MAGIC ||
|
|
|
|
header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
|
|
|
|
header[2] == 0) /* size */
|
2016-12-18 16:44:11 +00:00
|
|
|
return eq_id;
|
2015-10-20 09:54:45 +00:00
|
|
|
|
|
|
|
eax = 0x00000001;
|
|
|
|
ecx = 0;
|
|
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
|
|
|
|
while (left > 0) {
|
|
|
|
eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);
|
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
ret.data = data;
|
2015-10-20 09:54:45 +00:00
|
|
|
|
|
|
|
/* Advance past the container header */
|
|
|
|
offset = header[2] + CONTAINER_HDR_SZ;
|
|
|
|
data += offset;
|
|
|
|
left -= offset;
|
|
|
|
|
|
|
|
eq_id = find_equiv_id(eq, eax);
|
|
|
|
if (eq_id) {
|
2016-10-25 09:55:21 +00:00
|
|
|
ret.size = compute_container_size(ret.data, left + offset);
|
2015-10-20 09:54:45 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* truncate how much we need to iterate over in the
|
|
|
|
* ucode update loop below
|
|
|
|
*/
|
2016-10-25 09:55:21 +00:00
|
|
|
left = ret.size - offset;
|
2016-12-18 16:44:11 +00:00
|
|
|
|
2017-01-20 20:29:45 +00:00
|
|
|
*desc = ret;
|
2016-12-18 16:44:11 +00:00
|
|
|
return eq_id;
|
2015-10-20 09:54:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* support multiple container files appended together. if this
|
|
|
|
* one does not have a matching equivalent cpu entry, we fast
|
|
|
|
* forward to the next container file.
|
|
|
|
*/
|
|
|
|
while (left > 0) {
|
|
|
|
header = (u32 *)data;
|
2016-10-25 09:55:21 +00:00
|
|
|
|
2015-10-20 09:54:45 +00:00
|
|
|
if (header[0] == UCODE_MAGIC &&
|
|
|
|
header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
|
|
|
|
break;
|
|
|
|
|
|
|
|
offset = header[1] + SECTION_HDR_SIZE;
|
|
|
|
data += offset;
|
|
|
|
left -= offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* mark where the next microcode container file starts */
|
|
|
|
offset = data - (u8 *)ucode;
|
|
|
|
ucode = data;
|
|
|
|
}
|
|
|
|
|
2016-12-18 16:44:11 +00:00
|
|
|
return eq_id;
|
2016-10-25 09:55:21 +00:00
|
|
|
}
|
|
|
|
|
2017-01-20 20:29:44 +00:00
|
|
|
static int __apply_microcode_amd(struct microcode_amd *mc)
|
2016-10-25 09:55:21 +00:00
|
|
|
{
|
|
|
|
u32 rev, dummy;
|
|
|
|
|
2017-01-20 20:29:44 +00:00
|
|
|
native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
|
2016-10-25 09:55:21 +00:00
|
|
|
|
|
|
|
/* verify patch application was successful */
|
|
|
|
native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
|
2017-01-20 20:29:44 +00:00
|
|
|
if (rev != mc->hdr.patch_id)
|
2016-10-25 09:55:21 +00:00
|
|
|
return -1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Early load occurs before we can vmalloc(). So we look for the microcode
|
|
|
|
* patch container file in initrd, traverse equivalent cpu table, look for a
|
|
|
|
* matching microcode patch, and update, all in initrd memory in place.
|
|
|
|
* When vmalloc() is available for use later -- on 64-bit during first AP load,
|
|
|
|
* and on 32-bit during save_microcode_in_initrd_amd() -- we can call
|
|
|
|
* load_microcode_amd() to save equivalent cpu table and microcode patches in
|
|
|
|
* kernel heap memory.
|
2016-12-18 16:44:12 +00:00
|
|
|
*
|
|
|
|
* Returns true if container found (sets @ret_cont), false otherwise.
|
2016-10-25 09:55:21 +00:00
|
|
|
*/
|
2016-12-18 16:44:12 +00:00
|
|
|
static bool apply_microcode_early_amd(void *ucode, size_t size, bool save_patch,
|
2017-01-20 20:29:45 +00:00
|
|
|
struct cont_desc *desc)
|
2016-10-25 09:55:21 +00:00
|
|
|
{
|
|
|
|
u8 (*patch)[PATCH_MAX_SIZE];
|
2016-12-18 16:44:12 +00:00
|
|
|
u32 rev, *header, *new_rev;
|
2017-01-20 20:29:45 +00:00
|
|
|
struct cont_desc ret;
|
2016-10-25 09:55:21 +00:00
|
|
|
int offset, left;
|
|
|
|
u16 eq_id = 0;
|
2016-12-18 16:44:12 +00:00
|
|
|
u8 *data;
|
2016-10-25 09:55:21 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_X86_32
|
|
|
|
new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
|
|
|
|
patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
|
|
|
|
#else
|
|
|
|
new_rev = &ucode_new_rev;
|
|
|
|
patch = &amd_ucode_patch;
|
|
|
|
#endif
|
2015-10-20 09:54:45 +00:00
|
|
|
|
|
|
|
if (check_current_patch_level(&rev, true))
|
2016-12-18 16:44:12 +00:00
|
|
|
return false;
|
2016-10-25 09:55:21 +00:00
|
|
|
|
2016-12-18 16:44:11 +00:00
|
|
|
eq_id = find_proper_container(ucode, size, &ret);
|
2016-10-25 09:55:21 +00:00
|
|
|
if (!eq_id)
|
2016-12-18 16:44:12 +00:00
|
|
|
return false;
|
2016-10-25 09:55:21 +00:00
|
|
|
|
|
|
|
this_equiv_id = eq_id;
|
|
|
|
header = (u32 *)ret.data;
|
|
|
|
|
|
|
|
/* We're pointing to an equiv table, skip over it. */
|
|
|
|
data = ret.data + header[2] + CONTAINER_HDR_SZ;
|
|
|
|
left = ret.size - (header[2] + CONTAINER_HDR_SZ);
|
2015-10-20 09:54:45 +00:00
|
|
|
|
|
|
|
while (left > 0) {
|
|
|
|
struct microcode_amd *mc;
|
|
|
|
|
|
|
|
header = (u32 *)data;
|
|
|
|
if (header[0] != UCODE_UCODE_TYPE || /* type */
|
|
|
|
header[1] == 0) /* size */
|
|
|
|
break;
|
|
|
|
|
|
|
|
mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);
|
|
|
|
|
|
|
|
if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) {
|
|
|
|
|
|
|
|
if (!__apply_microcode_amd(mc)) {
|
|
|
|
rev = mc->hdr.patch_id;
|
|
|
|
*new_rev = rev;
|
|
|
|
|
|
|
|
if (save_patch)
|
2016-10-25 09:55:21 +00:00
|
|
|
memcpy(patch, mc, min_t(u32, header[1], PATCH_MAX_SIZE));
|
2015-10-20 09:54:45 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
offset = header[1] + SECTION_HDR_SIZE;
|
|
|
|
data += offset;
|
|
|
|
left -= offset;
|
|
|
|
}
|
2016-12-18 16:44:12 +00:00
|
|
|
|
2017-01-20 20:29:45 +00:00
|
|
|
if (desc)
|
|
|
|
*desc = ret;
|
2016-12-18 16:44:12 +00:00
|
|
|
|
|
|
|
return true;
|
2015-10-20 09:54:45 +00:00
|
|
|
}
|
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
|
2015-10-20 09:54:45 +00:00
|
|
|
{
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
char fw_name[36] = "amd-ucode/microcode_amd.bin";
|
|
|
|
|
|
|
|
if (family >= 0x15)
|
|
|
|
snprintf(fw_name, sizeof(fw_name),
|
|
|
|
"amd-ucode/microcode_amd_fam%.2xh.bin", family);
|
|
|
|
|
|
|
|
return get_builtin_firmware(cp, fw_name);
|
|
|
|
#else
|
|
|
|
return false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init load_ucode_amd_bsp(unsigned int family)
|
|
|
|
{
|
2016-10-25 09:55:21 +00:00
|
|
|
struct ucode_cpu_info *uci;
|
2016-12-18 16:44:14 +00:00
|
|
|
u32 eax, ebx, ecx, edx;
|
2015-10-20 09:54:45 +00:00
|
|
|
struct cpio_data cp;
|
2016-10-25 09:55:21 +00:00
|
|
|
const char *path;
|
|
|
|
bool use_pa;
|
2015-10-20 09:54:45 +00:00
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
if (IS_ENABLED(CONFIG_X86_32)) {
|
|
|
|
uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
|
|
|
|
path = (const char *)__pa_nodebug(ucode_path);
|
|
|
|
use_pa = true;
|
|
|
|
} else {
|
|
|
|
uci = ucode_cpu_info;
|
|
|
|
path = ucode_path;
|
|
|
|
use_pa = false;
|
|
|
|
}
|
2015-10-20 09:54:45 +00:00
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
if (!get_builtin_microcode(&cp, family))
|
|
|
|
cp = find_microcode_in_initrd(path, use_pa);
|
2016-06-06 15:10:42 +00:00
|
|
|
|
|
|
|
if (!(cp.data && cp.size))
|
|
|
|
return;
|
2015-10-20 09:54:45 +00:00
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
/* Get BSP's CPUID.EAX(1), needed in load_microcode_amd() */
|
2016-12-18 16:44:14 +00:00
|
|
|
eax = 1;
|
|
|
|
ecx = 0;
|
|
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
uci->cpu_sig.sig = eax;
|
2015-10-20 09:54:45 +00:00
|
|
|
|
2016-12-18 16:44:12 +00:00
|
|
|
apply_microcode_early_amd(cp.data, cp.size, true, NULL);
|
2015-10-20 09:54:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_32
|
|
|
|
/*
|
|
|
|
* On 32-bit, since AP's early load occurs before paging is turned on, we
|
2016-10-25 09:55:15 +00:00
|
|
|
* cannot traverse cpu_equiv_table and microcode_cache in kernel heap memory.
|
|
|
|
* So during cold boot, AP will apply_ucode_in_initrd() just like the BSP.
|
|
|
|
* In save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
|
2015-10-20 09:54:45 +00:00
|
|
|
* which is used upon resume from suspend.
|
|
|
|
*/
|
2016-10-25 09:55:16 +00:00
|
|
|
void load_ucode_amd_ap(unsigned int family)
|
2015-10-20 09:54:45 +00:00
|
|
|
{
|
|
|
|
struct microcode_amd *mc;
|
2016-10-25 09:55:21 +00:00
|
|
|
struct cpio_data cp;
|
2015-10-20 09:54:45 +00:00
|
|
|
|
|
|
|
mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
|
|
|
|
if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
|
|
|
|
__apply_microcode_amd(mc);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
if (!get_builtin_microcode(&cp, family))
|
|
|
|
cp = find_microcode_in_initrd((const char *)__pa_nodebug(ucode_path), true);
|
2015-10-20 09:54:45 +00:00
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
if (!(cp.data && cp.size))
|
2015-10-20 09:54:45 +00:00
|
|
|
return;
|
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
/*
|
|
|
|
* This would set amd_ucode_patch above so that the following APs can
|
|
|
|
* use it directly instead of going down this path again.
|
|
|
|
*/
|
2016-12-18 16:44:12 +00:00
|
|
|
apply_microcode_early_amd(cp.data, cp.size, true, NULL);
|
2015-10-20 09:54:45 +00:00
|
|
|
}
|
|
|
|
#else
|
2016-10-25 09:55:16 +00:00
|
|
|
void load_ucode_amd_ap(unsigned int family)
|
2015-10-20 09:54:45 +00:00
|
|
|
{
|
|
|
|
struct equiv_cpu_entry *eq;
|
|
|
|
struct microcode_amd *mc;
|
|
|
|
u32 rev, eax;
|
|
|
|
u16 eq_id;
|
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
/* 64-bit runs with paging enabled, thus early==false. */
|
2015-10-20 09:54:45 +00:00
|
|
|
if (check_current_patch_level(&rev, false))
|
|
|
|
return;
|
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
/* First AP hasn't cached it yet, go through the blob. */
|
|
|
|
if (!cont.data) {
|
|
|
|
struct cpio_data cp = { NULL, 0, "" };
|
|
|
|
|
|
|
|
if (cont.size == -1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
reget:
|
|
|
|
if (!get_builtin_microcode(&cp, family)) {
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
|
|
cp = find_cpio_data(ucode_path, (void *)initrd_start,
|
|
|
|
initrd_end - initrd_start, NULL);
|
|
|
|
#endif
|
|
|
|
if (!(cp.data && cp.size)) {
|
|
|
|
/*
|
|
|
|
* Mark it so that other APs do not scan again
|
|
|
|
* for no real reason and slow down boot
|
|
|
|
* needlessly.
|
|
|
|
*/
|
|
|
|
cont.size = -1;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-12-18 16:44:12 +00:00
|
|
|
if (!apply_microcode_early_amd(cp.data, cp.size, false, &cont)) {
|
2016-10-25 09:55:21 +00:00
|
|
|
cont.size = -1;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
2016-08-17 11:33:14 +00:00
|
|
|
|
2015-10-20 09:54:45 +00:00
|
|
|
eax = cpuid_eax(0x00000001);
|
2016-10-25 09:55:21 +00:00
|
|
|
eq = (struct equiv_cpu_entry *)(cont.data + CONTAINER_HDR_SZ);
|
2015-10-20 09:54:45 +00:00
|
|
|
|
|
|
|
eq_id = find_equiv_id(eq, eax);
|
|
|
|
if (!eq_id)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (eq_id == this_equiv_id) {
|
|
|
|
mc = (struct microcode_amd *)amd_ucode_patch;
|
|
|
|
|
|
|
|
if (mc && rev < mc->hdr.patch_id) {
|
|
|
|
if (!__apply_microcode_amd(mc))
|
|
|
|
ucode_new_rev = mc->hdr.patch_id;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
/*
|
|
|
|
* AP has a different equivalence ID than BSP, looks like
|
|
|
|
* mixed-steppings silicon so go through the ucode blob anew.
|
|
|
|
*/
|
2016-10-25 09:55:21 +00:00
|
|
|
goto reget;
|
2015-10-20 09:54:45 +00:00
|
|
|
}
|
|
|
|
}
|
2016-10-25 09:55:21 +00:00
|
|
|
#endif /* CONFIG_X86_32 */
|
2015-10-20 09:54:45 +00:00
|
|
|
|
2016-10-25 09:55:19 +00:00
|
|
|
static enum ucode_state
|
|
|
|
load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size);
|
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
int __init save_microcode_in_initrd_amd(unsigned int fam)
|
2015-10-20 09:54:45 +00:00
|
|
|
{
|
|
|
|
enum ucode_state ret;
|
2016-10-25 09:55:21 +00:00
|
|
|
int retval = 0;
|
|
|
|
u16 eq_id;
|
2015-10-20 09:54:45 +00:00
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
if (!cont.data) {
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32) && (cont.size != -1)) {
|
|
|
|
struct cpio_data cp = { NULL, 0, "" };
|
2015-10-20 09:54:45 +00:00
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
|
|
cp = find_cpio_data(ucode_path, (void *)initrd_start,
|
|
|
|
initrd_end - initrd_start, NULL);
|
2015-10-20 09:54:45 +00:00
|
|
|
#endif
|
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
if (!(cp.data && cp.size)) {
|
|
|
|
cont.size = -1;
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
2015-10-20 09:54:45 +00:00
|
|
|
|
2016-12-18 16:44:11 +00:00
|
|
|
eq_id = find_proper_container(cp.data, cp.size, &cont);
|
2016-10-25 09:55:21 +00:00
|
|
|
if (!eq_id) {
|
|
|
|
cont.size = -1;
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
2016-08-17 11:33:14 +00:00
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
} else
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
2015-10-20 09:54:45 +00:00
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
ret = load_microcode_amd(smp_processor_id(), fam, cont.data, cont.size);
|
2015-10-20 09:54:45 +00:00
|
|
|
if (ret != UCODE_OK)
|
|
|
|
retval = -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This will be freed any msec now, stash patches for the current
|
|
|
|
* family and switch to patch cache for cpu hotplug, etc later.
|
|
|
|
*/
|
2016-10-25 09:55:21 +00:00
|
|
|
cont.data = NULL;
|
|
|
|
cont.size = 0;
|
2015-10-20 09:54:45 +00:00
|
|
|
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
void reload_ucode_amd(void)
|
|
|
|
{
|
|
|
|
struct microcode_amd *mc;
|
|
|
|
u32 rev;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* early==false because this is a syscore ->resume path and by
|
|
|
|
* that time paging is long enabled.
|
|
|
|
*/
|
|
|
|
if (check_current_patch_level(&rev, false))
|
|
|
|
return;
|
|
|
|
|
|
|
|
mc = (struct microcode_amd *)amd_ucode_patch;
|
2016-10-25 09:55:21 +00:00
|
|
|
if (!mc)
|
|
|
|
return;
|
2015-10-20 09:54:45 +00:00
|
|
|
|
2016-10-25 09:55:21 +00:00
|
|
|
if (rev < mc->hdr.patch_id) {
|
2015-10-20 09:54:45 +00:00
|
|
|
if (!__apply_microcode_amd(mc)) {
|
|
|
|
ucode_new_rev = mc->hdr.patch_id;
|
2016-02-03 11:33:34 +00:00
|
|
|
pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
|
2015-10-20 09:54:45 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2013-05-30 19:09:18 +00:00
|
|
|
static u16 __find_equiv_id(unsigned int cpu)
|
2012-08-01 12:55:01 +00:00
|
|
|
{
|
|
|
|
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
|
2013-05-30 19:09:18 +00:00
|
|
|
return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
|
2012-08-01 12:55:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
|
|
|
|
{
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
BUG_ON(!equiv_cpu_table);
|
|
|
|
|
|
|
|
while (equiv_cpu_table[i].equiv_cpu != 0) {
|
|
|
|
if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
|
|
|
|
return equiv_cpu_table[i].installed_cpu;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-08-01 13:38:18 +00:00
|
|
|
/*
|
|
|
|
* a small, trivial cache of per-family ucode patches
|
|
|
|
*/
|
|
|
|
static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
|
|
|
|
{
|
|
|
|
struct ucode_patch *p;
|
|
|
|
|
2016-10-25 09:55:15 +00:00
|
|
|
list_for_each_entry(p, µcode_cache, plist)
|
2012-08-01 13:38:18 +00:00
|
|
|
if (p->equiv_cpu == equiv_cpu)
|
|
|
|
return p;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void update_cache(struct ucode_patch *new_patch)
|
|
|
|
{
|
|
|
|
struct ucode_patch *p;
|
|
|
|
|
2016-10-25 09:55:15 +00:00
|
|
|
list_for_each_entry(p, µcode_cache, plist) {
|
2012-08-01 13:38:18 +00:00
|
|
|
if (p->equiv_cpu == new_patch->equiv_cpu) {
|
|
|
|
if (p->patch_id >= new_patch->patch_id)
|
|
|
|
/* we already have the latest patch */
|
|
|
|
return;
|
|
|
|
|
|
|
|
list_replace(&p->plist, &new_patch->plist);
|
|
|
|
kfree(p->data);
|
|
|
|
kfree(p);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* no patch found, add it */
|
2016-10-25 09:55:15 +00:00
|
|
|
list_add_tail(&new_patch->plist, µcode_cache);
|
2012-08-01 13:38:18 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void free_cache(void)
|
|
|
|
{
|
2012-09-05 12:30:42 +00:00
|
|
|
struct ucode_patch *p, *tmp;
|
2012-08-01 13:38:18 +00:00
|
|
|
|
2016-10-25 09:55:15 +00:00
|
|
|
list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
|
2012-08-01 13:38:18 +00:00
|
|
|
__list_del(p->plist.prev, p->plist.next);
|
|
|
|
kfree(p->data);
|
|
|
|
kfree(p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ucode_patch *find_patch(unsigned int cpu)
|
|
|
|
{
|
|
|
|
u16 equiv_id;
|
|
|
|
|
2013-05-30 19:09:18 +00:00
|
|
|
equiv_id = __find_equiv_id(cpu);
|
2012-08-01 13:38:18 +00:00
|
|
|
if (!equiv_id)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return cache_find_patch(equiv_id);
|
|
|
|
}
|
|
|
|
|
2008-08-19 22:22:26 +00:00
|
|
|
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
|
2008-07-28 16:44:22 +00:00
|
|
|
{
|
2010-01-22 20:34:56 +00:00
|
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
2013-05-30 19:09:19 +00:00
|
|
|
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
|
|
|
|
struct ucode_patch *p;
|
2008-07-28 16:44:22 +00:00
|
|
|
|
2012-07-25 18:06:54 +00:00
|
|
|
csig->sig = cpuid_eax(0x00000001);
|
2011-10-17 14:34:36 +00:00
|
|
|
csig->rev = c->microcode;
|
2013-05-30 19:09:19 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* a patch could have been loaded early, set uci->mc so that
|
|
|
|
* mc_bp_resume() can call apply_microcode()
|
|
|
|
*/
|
|
|
|
p = find_patch(cpu);
|
|
|
|
if (p && (p->patch_id == csig->rev))
|
|
|
|
uci->mc = p->data;
|
|
|
|
|
2011-01-05 17:13:19 +00:00
|
|
|
pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
|
|
|
|
|
2008-08-19 22:22:26 +00:00
|
|
|
return 0;
|
2008-07-28 16:44:22 +00:00
|
|
|
}
|
|
|
|
|
2013-08-08 17:38:18 +00:00
|
|
|
static unsigned int verify_patch_size(u8 family, u32 patch_size,
|
x86, microcode, AMD: Simplify ucode verification
Basically, what we did until now is take out a chunk of the firmware
image, vmalloc space for it and inspect it before application. And
repeat.
This patch changes all that so that we look at each ucode patch from
the firmware image, check it for sanity and copy it to local buffer for
application only once and if it passes all checks. Thus, vmalloc-ing for
each piece is gone, we can do proper size checking only of the patch
which is destined for the CPU of the current machine instead of each
single patch, which is clearly wrong.
Oh yeah, simplify and cleanup the code while at it, along with adding
comments as to what actually happens.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-02 17:02:17 +00:00
|
|
|
unsigned int size)
|
2008-07-28 16:44:22 +00:00
|
|
|
{
|
x86, microcode, AMD: Simplify ucode verification
Basically, what we did until now is take out a chunk of the firmware
image, vmalloc space for it and inspect it before application. And
repeat.
This patch changes all that so that we look at each ucode patch from
the firmware image, check it for sanity and copy it to local buffer for
application only once and if it passes all checks. Thus, vmalloc-ing for
each piece is gone, we can do proper size checking only of the patch
which is destined for the CPU of the current machine instead of each
single patch, which is clearly wrong.
Oh yeah, simplify and cleanup the code while at it, along with adding
comments as to what actually happens.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-02 17:02:17 +00:00
|
|
|
u32 max_size;
|
|
|
|
|
|
|
|
#define F1XH_MPB_MAX_SIZE 2048
|
|
|
|
#define F14H_MPB_MAX_SIZE 1824
|
|
|
|
#define F15H_MPB_MAX_SIZE 4096
|
2012-11-15 18:41:50 +00:00
|
|
|
#define F16H_MPB_MAX_SIZE 3458
|
x86, microcode, AMD: Simplify ucode verification
Basically, what we did until now is take out a chunk of the firmware
image, vmalloc space for it and inspect it before application. And
repeat.
This patch changes all that so that we look at each ucode patch from
the firmware image, check it for sanity and copy it to local buffer for
application only once and if it passes all checks. Thus, vmalloc-ing for
each piece is gone, we can do proper size checking only of the patch
which is destined for the CPU of the current machine instead of each
single patch, which is clearly wrong.
Oh yeah, simplify and cleanup the code while at it, along with adding
comments as to what actually happens.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-02 17:02:17 +00:00
|
|
|
|
2013-08-08 17:38:18 +00:00
|
|
|
switch (family) {
|
x86, microcode, AMD: Simplify ucode verification
Basically, what we did until now is take out a chunk of the firmware
image, vmalloc space for it and inspect it before application. And
repeat.
This patch changes all that so that we look at each ucode patch from
the firmware image, check it for sanity and copy it to local buffer for
application only once and if it passes all checks. Thus, vmalloc-ing for
each piece is gone, we can do proper size checking only of the patch
which is destined for the CPU of the current machine instead of each
single patch, which is clearly wrong.
Oh yeah, simplify and cleanup the code while at it, along with adding
comments as to what actually happens.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-02 17:02:17 +00:00
|
|
|
case 0x14:
|
|
|
|
max_size = F14H_MPB_MAX_SIZE;
|
|
|
|
break;
|
|
|
|
case 0x15:
|
|
|
|
max_size = F15H_MPB_MAX_SIZE;
|
|
|
|
break;
|
2012-11-15 18:41:50 +00:00
|
|
|
case 0x16:
|
|
|
|
max_size = F16H_MPB_MAX_SIZE;
|
|
|
|
break;
|
x86, microcode, AMD: Simplify ucode verification
Basically, what we did until now is take out a chunk of the firmware
image, vmalloc space for it and inspect it before application. And
repeat.
This patch changes all that so that we look at each ucode patch from
the firmware image, check it for sanity and copy it to local buffer for
application only once and if it passes all checks. Thus, vmalloc-ing for
each piece is gone, we can do proper size checking only of the patch
which is destined for the CPU of the current machine instead of each
single patch, which is clearly wrong.
Oh yeah, simplify and cleanup the code while at it, along with adding
comments as to what actually happens.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-02 17:02:17 +00:00
|
|
|
default:
|
|
|
|
max_size = F1XH_MPB_MAX_SIZE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (patch_size > min_t(u32, size, max_size)) {
|
|
|
|
pr_err("patch size mismatch\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return patch_size;
|
|
|
|
}
|
|
|
|
|
2015-10-12 09:22:42 +00:00
|
|
|
/*
|
|
|
|
* Those patch levels cannot be updated to newer ones and thus should be final.
|
|
|
|
*/
|
|
|
|
static u32 final_levels[] = {
|
|
|
|
0x01000098,
|
|
|
|
0x0100009f,
|
|
|
|
0x010000af,
|
|
|
|
0, /* T-101 terminator */
|
|
|
|
};
|
|
|
|
|
2015-10-12 09:22:41 +00:00
|
|
|
/*
|
|
|
|
* Check the current patch level on this CPU.
|
|
|
|
*
|
|
|
|
* @rev: Use it to return the patch level. It is set to 0 in the case of
|
|
|
|
* error.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* - true: if update should stop
|
|
|
|
* - false: otherwise
|
|
|
|
*/
|
2015-10-12 09:22:42 +00:00
|
|
|
bool check_current_patch_level(u32 *rev, bool early)
|
2015-10-12 09:22:41 +00:00
|
|
|
{
|
2015-10-12 09:22:42 +00:00
|
|
|
u32 lvl, dummy, i;
|
|
|
|
bool ret = false;
|
|
|
|
u32 *levels;
|
|
|
|
|
|
|
|
native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
|
|
|
|
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32) && early)
|
|
|
|
levels = (u32 *)__pa_nodebug(&final_levels);
|
|
|
|
else
|
|
|
|
levels = final_levels;
|
|
|
|
|
|
|
|
for (i = 0; levels[i]; i++) {
|
|
|
|
if (lvl == levels[i]) {
|
|
|
|
lvl = 0;
|
|
|
|
ret = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2015-10-12 09:22:41 +00:00
|
|
|
|
2015-10-12 09:22:42 +00:00
|
|
|
if (rev)
|
|
|
|
*rev = lvl;
|
2015-10-12 09:22:41 +00:00
|
|
|
|
2015-10-12 09:22:42 +00:00
|
|
|
return ret;
|
2015-10-12 09:22:41 +00:00
|
|
|
}
|
|
|
|
|
2016-10-25 09:55:19 +00:00
|
|
|
static int apply_microcode_amd(int cpu)
|
2008-07-28 16:44:22 +00:00
|
|
|
{
|
2011-10-17 14:34:36 +00:00
|
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
2012-08-01 14:16:13 +00:00
|
|
|
struct microcode_amd *mc_amd;
|
|
|
|
struct ucode_cpu_info *uci;
|
|
|
|
struct ucode_patch *p;
|
2015-10-12 09:22:41 +00:00
|
|
|
u32 rev;
|
2012-08-01 14:16:13 +00:00
|
|
|
|
|
|
|
BUG_ON(raw_smp_processor_id() != cpu);
|
2008-07-28 16:44:22 +00:00
|
|
|
|
2012-08-01 14:16:13 +00:00
|
|
|
uci = ucode_cpu_info + cpu;
|
2008-07-28 16:44:22 +00:00
|
|
|
|
2012-08-01 14:16:13 +00:00
|
|
|
p = find_patch(cpu);
|
|
|
|
if (!p)
|
2009-05-11 21:48:27 +00:00
|
|
|
return 0;
|
2008-07-28 16:44:22 +00:00
|
|
|
|
2012-08-01 14:16:13 +00:00
|
|
|
mc_amd = p->data;
|
|
|
|
uci->mc = p->data;
|
|
|
|
|
2015-10-12 09:22:42 +00:00
|
|
|
if (check_current_patch_level(&rev, false))
|
2015-10-12 09:22:41 +00:00
|
|
|
return -1;
|
2008-07-28 16:44:22 +00:00
|
|
|
|
2012-06-20 14:17:51 +00:00
|
|
|
/* need to apply patch? */
|
|
|
|
if (rev >= mc_amd->hdr.patch_id) {
|
|
|
|
c->microcode = rev;
|
2010-09-30 00:27:12 +00:00
|
|
|
uci->cpu_sig.rev = rev;
|
2012-06-20 14:17:51 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-07-23 20:58:23 +00:00
|
|
|
if (__apply_microcode_amd(mc_amd)) {
|
2011-01-05 17:13:19 +00:00
|
|
|
pr_err("CPU%d: update failed for patch_level=0x%08x\n",
|
2013-05-30 19:09:18 +00:00
|
|
|
cpu, mc_amd->hdr.patch_id);
|
2013-07-23 20:58:23 +00:00
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
|
|
|
|
mc_amd->hdr.patch_id);
|
2008-07-28 16:44:22 +00:00
|
|
|
|
2013-05-30 19:09:18 +00:00
|
|
|
uci->cpu_sig.rev = mc_amd->hdr.patch_id;
|
|
|
|
c->microcode = mc_amd->hdr.patch_id;
|
2009-05-11 21:48:27 +00:00
|
|
|
|
|
|
|
return 0;
|
2008-07-28 16:44:22 +00:00
|
|
|
}
|
|
|
|
|
2008-12-16 18:14:05 +00:00
|
|
|
static int install_equiv_cpu_table(const u8 *buf)
|
2008-07-28 16:44:22 +00:00
|
|
|
{
|
2010-12-30 21:10:12 +00:00
|
|
|
unsigned int *ibuf = (unsigned int *)buf;
|
|
|
|
unsigned int type = ibuf[1];
|
|
|
|
unsigned int size = ibuf[2];
|
2008-07-28 16:44:22 +00:00
|
|
|
|
2010-12-30 21:10:12 +00:00
|
|
|
if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
|
2011-01-05 17:13:19 +00:00
|
|
|
pr_err("empty section/"
|
|
|
|
"invalid type field in container file section header\n");
|
2010-12-30 21:10:12 +00:00
|
|
|
return -EINVAL;
|
2008-07-28 16:44:22 +00:00
|
|
|
}
|
|
|
|
|
2010-11-08 23:08:11 +00:00
|
|
|
equiv_cpu_table = vmalloc(size);
|
2008-07-28 16:44:22 +00:00
|
|
|
if (!equiv_cpu_table) {
|
2009-12-09 06:30:50 +00:00
|
|
|
pr_err("failed to allocate equivalent CPU table\n");
|
2010-12-30 21:10:12 +00:00
|
|
|
return -ENOMEM;
|
2008-07-28 16:44:22 +00:00
|
|
|
}
|
|
|
|
|
2012-07-20 12:12:21 +00:00
|
|
|
memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
|
2008-07-28 16:44:22 +00:00
|
|
|
|
2011-06-15 13:34:57 +00:00
|
|
|
/* add header length */
|
|
|
|
return size + CONTAINER_HDR_SZ;
|
2008-07-28 16:44:22 +00:00
|
|
|
}
|
|
|
|
|
2008-09-11 21:27:52 +00:00
|
|
|
static void free_equiv_cpu_table(void)
|
2008-07-28 16:44:22 +00:00
|
|
|
{
|
2009-06-07 14:30:36 +00:00
|
|
|
vfree(equiv_cpu_table);
|
|
|
|
equiv_cpu_table = NULL;
|
2008-09-11 21:27:52 +00:00
|
|
|
}
|
2008-07-28 16:44:22 +00:00
|
|
|
|
2012-08-01 14:16:13 +00:00
|
|
|
static void cleanup(void)
|
2008-09-11 21:27:52 +00:00
|
|
|
{
|
2012-08-01 14:16:13 +00:00
|
|
|
free_equiv_cpu_table();
|
|
|
|
free_cache();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We return the current size even if some of the checks failed so that
|
|
|
|
* we can skip over the next patch. If we return a negative value, we
|
|
|
|
* signal a grave error like a memory allocation has failed and the
|
|
|
|
* driver cannot continue functioning normally. In such cases, we tear
|
|
|
|
* down everything we've used up so far and exit.
|
|
|
|
*/
|
2013-08-08 17:38:18 +00:00
|
|
|
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
|
2012-08-01 14:16:13 +00:00
|
|
|
{
|
|
|
|
struct microcode_header_amd *mc_hdr;
|
|
|
|
struct ucode_patch *patch;
|
|
|
|
unsigned int patch_size, crnt_size, ret;
|
|
|
|
u32 proc_fam;
|
|
|
|
u16 proc_id;
|
|
|
|
|
|
|
|
patch_size = *(u32 *)(fw + 4);
|
|
|
|
crnt_size = patch_size + SECTION_HDR_SIZE;
|
|
|
|
mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
|
|
|
|
proc_id = mc_hdr->processor_rev_id;
|
|
|
|
|
|
|
|
proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
|
|
|
|
if (!proc_fam) {
|
|
|
|
pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
|
|
|
|
return crnt_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* check if patch is for the current family */
|
|
|
|
proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
|
2013-08-08 17:38:18 +00:00
|
|
|
if (proc_fam != family)
|
2012-08-01 14:16:13 +00:00
|
|
|
return crnt_size;
|
|
|
|
|
|
|
|
if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
|
|
|
|
pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
|
|
|
|
mc_hdr->patch_id);
|
|
|
|
return crnt_size;
|
|
|
|
}
|
|
|
|
|
2013-08-08 17:38:18 +00:00
|
|
|
ret = verify_patch_size(family, patch_size, leftover);
|
2012-08-01 14:16:13 +00:00
|
|
|
if (!ret) {
|
|
|
|
pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
|
|
|
|
return crnt_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
patch = kzalloc(sizeof(*patch), GFP_KERNEL);
|
|
|
|
if (!patch) {
|
|
|
|
pr_err("Patch allocation failure.\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2016-02-16 08:43:20 +00:00
|
|
|
patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
|
2012-08-01 14:16:13 +00:00
|
|
|
if (!patch->data) {
|
|
|
|
pr_err("Patch data allocation failure.\n");
|
|
|
|
kfree(patch);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&patch->plist);
|
|
|
|
patch->patch_id = mc_hdr->patch_id;
|
|
|
|
patch->equiv_cpu = proc_id;
|
|
|
|
|
2013-11-29 13:58:44 +00:00
|
|
|
pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
|
|
|
|
__func__, patch->patch_id, proc_id);
|
|
|
|
|
2012-08-01 14:16:13 +00:00
|
|
|
/* ... and add to cache. */
|
|
|
|
update_cache(patch);
|
|
|
|
|
|
|
|
return crnt_size;
|
|
|
|
}
|
|
|
|
|
2013-08-08 17:38:18 +00:00
|
|
|
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
|
|
|
|
size_t size)
|
2012-08-01 14:16:13 +00:00
|
|
|
{
|
|
|
|
enum ucode_state ret = UCODE_ERROR;
|
|
|
|
unsigned int leftover;
|
|
|
|
u8 *fw = (u8 *)data;
|
|
|
|
int crnt_size = 0;
|
2011-02-18 09:17:16 +00:00
|
|
|
int offset;
|
2008-07-28 16:44:22 +00:00
|
|
|
|
2012-08-01 14:16:13 +00:00
|
|
|
offset = install_equiv_cpu_table(data);
|
2010-12-30 21:10:12 +00:00
|
|
|
if (offset < 0) {
|
2009-12-09 06:30:50 +00:00
|
|
|
pr_err("failed to create equivalent cpu table\n");
|
2012-08-01 14:16:13 +00:00
|
|
|
return ret;
|
2008-07-28 16:44:22 +00:00
|
|
|
}
|
2012-08-01 14:16:13 +00:00
|
|
|
fw += offset;
|
2008-09-11 21:27:52 +00:00
|
|
|
leftover = size - offset;
|
|
|
|
|
2012-08-01 14:16:13 +00:00
|
|
|
if (*(u32 *)fw != UCODE_UCODE_TYPE) {
|
x86, microcode, AMD: Simplify ucode verification
Basically, what we did until now is take out a chunk of the firmware
image, vmalloc space for it and inspect it before application. And
repeat.
This patch changes all that so that we look at each ucode patch from
the firmware image, check it for sanity and copy it to local buffer for
application only once and if it passes all checks. Thus, vmalloc-ing for
each piece is gone, we can do proper size checking only of the patch
which is destined for the CPU of the current machine instead of each
single patch, which is clearly wrong.
Oh yeah, simplify and cleanup the code while at it, along with adding
comments as to what actually happens.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-02 17:02:17 +00:00
|
|
|
pr_err("invalid type field in container file section header\n");
|
2012-08-01 14:16:13 +00:00
|
|
|
free_equiv_cpu_table();
|
|
|
|
return ret;
|
x86, microcode, AMD: Simplify ucode verification
Basically, what we did until now is take out a chunk of the firmware
image, vmalloc space for it and inspect it before application. And
repeat.
This patch changes all that so that we look at each ucode patch from
the firmware image, check it for sanity and copy it to local buffer for
application only once and if it passes all checks. Thus, vmalloc-ing for
each piece is gone, we can do proper size checking only of the patch
which is destined for the CPU of the current machine instead of each
single patch, which is clearly wrong.
Oh yeah, simplify and cleanup the code while at it, along with adding
comments as to what actually happens.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-02 17:02:17 +00:00
|
|
|
}
|
2008-09-11 21:27:52 +00:00
|
|
|
|
x86, microcode, AMD: Simplify ucode verification
Basically, what we did until now is take out a chunk of the firmware
image, vmalloc space for it and inspect it before application. And
repeat.
This patch changes all that so that we look at each ucode patch from
the firmware image, check it for sanity and copy it to local buffer for
application only once and if it passes all checks. Thus, vmalloc-ing for
each piece is gone, we can do proper size checking only of the patch
which is destined for the CPU of the current machine instead of each
single patch, which is clearly wrong.
Oh yeah, simplify and cleanup the code while at it, along with adding
comments as to what actually happens.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-02 17:02:17 +00:00
|
|
|
while (leftover) {
|
2013-08-08 17:38:18 +00:00
|
|
|
crnt_size = verify_and_add_patch(family, fw, leftover);
|
2012-08-01 14:16:13 +00:00
|
|
|
if (crnt_size < 0)
|
|
|
|
return ret;
|
2011-12-07 16:26:56 +00:00
|
|
|
|
2012-08-01 14:16:13 +00:00
|
|
|
fw += crnt_size;
|
|
|
|
leftover -= crnt_size;
|
2008-07-28 16:44:22 +00:00
|
|
|
}
|
2008-09-11 21:27:52 +00:00
|
|
|
|
2012-08-01 14:16:13 +00:00
|
|
|
return UCODE_OK;
|
2008-09-11 21:27:52 +00:00
|
|
|
}
|
|
|
|
|
2016-10-25 09:55:19 +00:00
|
|
|
static enum ucode_state
|
|
|
|
load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size)
|
2013-05-30 19:09:18 +00:00
|
|
|
{
|
|
|
|
enum ucode_state ret;
|
|
|
|
|
|
|
|
/* free old equiv table */
|
|
|
|
free_equiv_cpu_table();
|
|
|
|
|
2013-08-08 17:38:18 +00:00
|
|
|
ret = __load_microcode_amd(family, data, size);
|
2013-05-30 19:09:18 +00:00
|
|
|
|
|
|
|
if (ret != UCODE_OK)
|
|
|
|
cleanup();
|
|
|
|
|
2015-10-20 09:54:45 +00:00
|
|
|
#ifdef CONFIG_X86_32
|
2013-05-30 19:09:19 +00:00
|
|
|
/* save BSP's matching patch for early load */
|
2014-12-01 10:12:21 +00:00
|
|
|
if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) {
|
|
|
|
struct ucode_patch *p = find_patch(cpu);
|
2013-05-30 19:09:19 +00:00
|
|
|
if (p) {
|
2013-11-29 13:58:44 +00:00
|
|
|
memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
|
|
|
|
memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
|
|
|
|
PATCH_MAX_SIZE));
|
2013-05-30 19:09:19 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
2013-05-30 19:09:18 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2012-01-20 16:44:12 +00:00
|
|
|
/*
|
|
|
|
* AMD microcode firmware naming convention, up to family 15h they are in
|
|
|
|
* the legacy file:
|
|
|
|
*
|
|
|
|
* amd-ucode/microcode_amd.bin
|
|
|
|
*
|
|
|
|
* This legacy file is always smaller than 2K in size.
|
|
|
|
*
|
2012-08-01 14:16:13 +00:00
|
|
|
* Beginning with family 15h, they are in family-specific firmware files:
|
2012-01-20 16:44:12 +00:00
|
|
|
*
|
|
|
|
* amd-ucode/microcode_amd_fam15h.bin
|
|
|
|
* amd-ucode/microcode_amd_fam16h.bin
|
|
|
|
* ...
|
|
|
|
*
|
|
|
|
* These might be larger than 2K.
|
|
|
|
*/
|
2012-07-26 13:51:00 +00:00
|
|
|
static enum ucode_state request_microcode_amd(int cpu, struct device *device,
|
|
|
|
bool refresh_fw)
|
2008-09-11 21:27:52 +00:00
|
|
|
{
|
2012-01-20 16:44:12 +00:00
|
|
|
char fw_name[36] = "amd-ucode/microcode_amd.bin";
|
|
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
2012-08-01 14:16:13 +00:00
|
|
|
enum ucode_state ret = UCODE_NFOUND;
|
|
|
|
const struct firmware *fw;
|
|
|
|
|
|
|
|
/* reload ucode container only on the boot cpu */
|
|
|
|
if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
|
|
|
|
return UCODE_OK;
|
2012-01-20 16:44:12 +00:00
|
|
|
|
|
|
|
if (c->x86 >= 0x15)
|
|
|
|
snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
|
2008-09-11 21:27:52 +00:00
|
|
|
|
2013-12-02 14:38:17 +00:00
|
|
|
if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
|
2013-11-12 16:39:43 +00:00
|
|
|
pr_debug("failed to load file %s\n", fw_name);
|
2010-12-30 20:06:01 +00:00
|
|
|
goto out;
|
2010-01-22 20:34:56 +00:00
|
|
|
}
|
2008-09-11 21:27:52 +00:00
|
|
|
|
2010-12-30 20:06:01 +00:00
|
|
|
ret = UCODE_ERROR;
|
|
|
|
if (*(u32 *)fw->data != UCODE_MAGIC) {
|
2011-01-05 17:13:19 +00:00
|
|
|
pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
|
2010-12-30 20:06:01 +00:00
|
|
|
goto fw_release;
|
2009-10-29 13:45:52 +00:00
|
|
|
}
|
|
|
|
|
2014-12-01 10:12:21 +00:00
|
|
|
ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size);
|
2008-09-11 21:27:52 +00:00
|
|
|
|
2012-08-01 14:16:13 +00:00
|
|
|
fw_release:
|
2010-12-30 20:06:01 +00:00
|
|
|
release_firmware(fw);
|
2010-01-22 20:34:56 +00:00
|
|
|
|
2012-08-01 14:16:13 +00:00
|
|
|
out:
|
2008-09-11 21:27:52 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2009-05-11 21:48:27 +00:00
|
|
|
static enum ucode_state
|
|
|
|
request_microcode_user(int cpu, const void __user *buf, size_t size)
|
2008-09-11 21:27:52 +00:00
|
|
|
{
|
2009-05-11 21:48:27 +00:00
|
|
|
return UCODE_ERROR;
|
2008-07-28 16:44:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void microcode_fini_cpu_amd(int cpu)
|
|
|
|
{
|
|
|
|
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
|
|
|
|
|
2008-09-23 10:08:44 +00:00
|
|
|
uci->mc = NULL;
|
2008-07-28 16:44:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct microcode_ops microcode_amd_ops = {
|
2008-09-11 21:27:52 +00:00
|
|
|
.request_microcode_user = request_microcode_user,
|
2010-12-30 20:06:01 +00:00
|
|
|
.request_microcode_fw = request_microcode_amd,
|
2008-07-28 16:44:22 +00:00
|
|
|
.collect_cpu_info = collect_cpu_info_amd,
|
|
|
|
.apply_microcode = apply_microcode_amd,
|
|
|
|
.microcode_fini_cpu = microcode_fini_cpu_amd,
|
|
|
|
};
|
|
|
|
|
2008-09-23 10:08:44 +00:00
|
|
|
struct microcode_ops * __init init_amd_microcode(void)
|
2008-07-28 16:44:22 +00:00
|
|
|
{
|
2015-10-20 09:54:44 +00:00
|
|
|
struct cpuinfo_x86 *c = &boot_cpu_data;
|
2012-04-12 14:51:57 +00:00
|
|
|
|
|
|
|
if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
|
2016-02-02 03:45:02 +00:00
|
|
|
pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
|
2012-04-12 14:51:57 +00:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2016-02-03 11:33:44 +00:00
|
|
|
if (ucode_new_rev)
|
|
|
|
pr_info_once("microcode updated early to new patch_level=0x%08x\n",
|
|
|
|
ucode_new_rev);
|
|
|
|
|
2008-09-23 10:08:44 +00:00
|
|
|
return µcode_amd_ops;
|
2008-07-28 16:44:22 +00:00
|
|
|
}
|
2011-12-02 15:50:04 +00:00
|
|
|
|
|
|
|
void __exit exit_amd_microcode(void)
|
|
|
|
{
|
2012-08-01 14:16:13 +00:00
|
|
|
cleanup();
|
2011-12-02 15:50:04 +00:00
|
|
|
}
|