Files
linux/tools/testing/selftests/bpf/progs/cgroup_hierarchical_stats.c

227 lines
6.0 KiB
C
Raw Normal View History

selftests/bpf: add a selftest for cgroup hierarchical stats collection Add a selftest that tests the whole workflow for collecting, aggregating (flushing), and displaying cgroup hierarchical stats. TL;DR: - Userspace program creates a cgroup hierarchy and induces memcg reclaim in parts of it. - Whenever reclaim happens, vmscan_start and vmscan_end update per-cgroup percpu readings, and tell rstat which (cgroup, cpu) pairs have updates. - When userspace tries to read the stats, vmscan_dump calls rstat to flush the stats, and outputs the stats in text format to userspace (similar to cgroupfs stats). - rstat calls vmscan_flush once for every (cgroup, cpu) pair that has updates, vmscan_flush aggregates cpu readings and propagates updates to parents. - Userspace program makes sure the stats are aggregated and read correctly. Detailed explanation: - The test loads tracing bpf programs, vmscan_start and vmscan_end, to measure the latency of cgroup reclaim. Per-cgroup readings are stored in percpu maps for efficiency. When a cgroup reading is updated on a cpu, cgroup_rstat_updated(cgroup, cpu) is called to add the cgroup to the rstat updated tree on that cpu. - A cgroup_iter program, vmscan_dump, is loaded and pinned to a file, for each cgroup. Reading this file invokes the program, which calls cgroup_rstat_flush(cgroup) to ask rstat to propagate the updates for all cpus and cgroups that have updates in this cgroup's subtree. Afterwards, the stats are exposed to the user. vmscan_dump returns 1 to terminate iteration early, so that we only expose stats for one cgroup per read. - An ftrace program, vmscan_flush, is also loaded and attached to bpf_rstat_flush. When rstat flushing is ongoing, vmscan_flush is invoked once for each (cgroup, cpu) pair that has updates. cgroups are popped from the rstat tree in a bottom-up fashion, so calls will always be made for cgroups that have updates before their parents. The program aggregates percpu readings to a total per-cgroup reading, and also propagates them to the parent cgroup. After rstat flushing is over, all cgroups will have correct updated hierarchical readings (including all cpus and all their descendants). - Finally, the test creates a cgroup hierarchy and induces memcg reclaim in parts of it, and makes sure that the stats collection, aggregation, and reading workflow works as expected. Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-6-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-24 16:31:17 -07:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Functions to manage eBPF programs attached to cgroup subsystems
*
* Copyright 2022 Google LLC.
*/
#include "vmlinux.h"
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#include <bpf/bpf_core_read.h>
char _license[] SEC("license") = "GPL";
/*
* Start times are stored per-task, not per-cgroup, as multiple tasks in one
* cgroup can perform reclaim concurrently.
*/
struct {
__uint(type, BPF_MAP_TYPE_TASK_STORAGE);
__uint(map_flags, BPF_F_NO_PREALLOC);
__type(key, int);
__type(value, __u64);
} vmscan_start_time SEC(".maps");
struct vmscan_percpu {
/* Previous percpu state, to figure out if we have new updates */
__u64 prev;
/* Current percpu state */
__u64 state;
};
struct vmscan {
/* State propagated through children, pending aggregation */
__u64 pending;
/* Total state, including all cpus and all children */
__u64 state;
};
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_HASH);
__uint(max_entries, 100);
__type(key, __u64);
__type(value, struct vmscan_percpu);
} pcpu_cgroup_vmscan_elapsed SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, 100);
__type(key, __u64);
__type(value, struct vmscan);
} cgroup_vmscan_elapsed SEC(".maps");
extern void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) __ksym;
extern void cgroup_rstat_flush(struct cgroup *cgrp) __ksym;
static struct cgroup *task_memcg(struct task_struct *task)
{
int cgrp_id;
#if __has_builtin(__builtin_preserve_enum_value)
cgrp_id = bpf_core_enum_value(enum cgroup_subsys_id, memory_cgrp_id);
#else
cgrp_id = memory_cgrp_id;
#endif
return task->cgroups->subsys[cgrp_id]->cgroup;
}
static uint64_t cgroup_id(struct cgroup *cgrp)
{
return cgrp->kn->id;
}
static int create_vmscan_percpu_elem(__u64 cg_id, __u64 state)
{
struct vmscan_percpu pcpu_init = {.state = state, .prev = 0};
return bpf_map_update_elem(&pcpu_cgroup_vmscan_elapsed, &cg_id,
&pcpu_init, BPF_NOEXIST);
}
static int create_vmscan_elem(__u64 cg_id, __u64 state, __u64 pending)
{
struct vmscan init = {.state = state, .pending = pending};
return bpf_map_update_elem(&cgroup_vmscan_elapsed, &cg_id,
&init, BPF_NOEXIST);
}
SEC("tp_btf/mm_vmscan_memcg_reclaim_begin")
int BPF_PROG(vmscan_start, int order, gfp_t gfp_flags)
{
struct task_struct *task = bpf_get_current_task_btf();
__u64 *start_time_ptr;
start_time_ptr = bpf_task_storage_get(&vmscan_start_time, task, 0,
BPF_LOCAL_STORAGE_GET_F_CREATE);
if (start_time_ptr)
*start_time_ptr = bpf_ktime_get_ns();
return 0;
}
SEC("tp_btf/mm_vmscan_memcg_reclaim_end")
int BPF_PROG(vmscan_end, unsigned long nr_reclaimed)
{
struct vmscan_percpu *pcpu_stat;
struct task_struct *current = bpf_get_current_task_btf();
struct cgroup *cgrp;
__u64 *start_time_ptr;
__u64 current_elapsed, cg_id;
__u64 end_time = bpf_ktime_get_ns();
/*
* cgrp is the first parent cgroup of current that has memcg enabled in
* its subtree_control, or NULL if memcg is disabled in the entire tree.
* In a cgroup hierarchy like this:
* a
* / \
* b c
* If "a" has memcg enabled, while "b" doesn't, then processes in "b"
* will accumulate their stats directly to "a". This makes sure that no
* stats are lost from processes in leaf cgroups that don't have memcg
* enabled, but only exposes stats for cgroups that have memcg enabled.
*/
cgrp = task_memcg(current);
if (!cgrp)
return 0;
cg_id = cgroup_id(cgrp);
start_time_ptr = bpf_task_storage_get(&vmscan_start_time, current, 0,
BPF_LOCAL_STORAGE_GET_F_CREATE);
if (!start_time_ptr)
return 0;
current_elapsed = end_time - *start_time_ptr;
pcpu_stat = bpf_map_lookup_elem(&pcpu_cgroup_vmscan_elapsed,
&cg_id);
if (pcpu_stat)
pcpu_stat->state += current_elapsed;
else if (create_vmscan_percpu_elem(cg_id, current_elapsed))
return 0;
cgroup_rstat_updated(cgrp, bpf_get_smp_processor_id());
return 0;
}
SEC("fentry/bpf_rstat_flush")
int BPF_PROG(vmscan_flush, struct cgroup *cgrp, struct cgroup *parent, int cpu)
{
struct vmscan_percpu *pcpu_stat;
struct vmscan *total_stat, *parent_stat;
__u64 cg_id = cgroup_id(cgrp);
__u64 parent_cg_id = parent ? cgroup_id(parent) : 0;
__u64 *pcpu_vmscan;
__u64 state;
__u64 delta = 0;
/* Add CPU changes on this level since the last flush */
pcpu_stat = bpf_map_lookup_percpu_elem(&pcpu_cgroup_vmscan_elapsed,
&cg_id, cpu);
if (pcpu_stat) {
state = pcpu_stat->state;
delta += state - pcpu_stat->prev;
pcpu_stat->prev = state;
}
total_stat = bpf_map_lookup_elem(&cgroup_vmscan_elapsed, &cg_id);
if (!total_stat) {
if (create_vmscan_elem(cg_id, delta, 0))
return 0;
goto update_parent;
}
/* Collect pending stats from subtree */
if (total_stat->pending) {
delta += total_stat->pending;
total_stat->pending = 0;
}
/* Propagate changes to this cgroup's total */
total_stat->state += delta;
update_parent:
/* Skip if there are no changes to propagate, or no parent */
if (!delta || !parent_cg_id)
return 0;
/* Propagate changes to cgroup's parent */
parent_stat = bpf_map_lookup_elem(&cgroup_vmscan_elapsed,
&parent_cg_id);
if (parent_stat)
parent_stat->pending += delta;
else
create_vmscan_elem(parent_cg_id, 0, delta);
return 0;
}
SEC("iter.s/cgroup")
int BPF_PROG(dump_vmscan, struct bpf_iter_meta *meta, struct cgroup *cgrp)
{
struct seq_file *seq = meta->seq;
struct vmscan *total_stat;
__u64 cg_id = cgrp ? cgroup_id(cgrp) : 0;
/* Do nothing for the terminal call */
if (!cg_id)
return 1;
/* Flush the stats to make sure we get the most updated numbers */
cgroup_rstat_flush(cgrp);
total_stat = bpf_map_lookup_elem(&cgroup_vmscan_elapsed, &cg_id);
if (!total_stat) {
BPF_SEQ_PRINTF(seq, "cg_id: %llu, total_vmscan_delay: 0\n",
cg_id);
} else {
BPF_SEQ_PRINTF(seq, "cg_id: %llu, total_vmscan_delay: %llu\n",
cg_id, total_stat->state);
}
/*
* We only dump stats for one cgroup here, so return 1 to stop
* iteration after the first cgroup.
*/
return 1;
}