2005-04-16 22:20:36 +00:00
|
|
|
#ifndef _ASM_GENERIC_PGTABLE_H
|
|
|
|
#define _ASM_GENERIC_PGTABLE_H
|
|
|
|
|
2006-09-26 06:32:29 +00:00
|
|
|
#ifndef __ASSEMBLY__
|
2007-08-10 20:01:20 +00:00
|
|
|
#ifdef CONFIG_MMU
|
2006-09-26 06:32:29 +00:00
|
|
|
|
2011-02-27 05:41:35 +00:00
|
|
|
#include <linux/mm_types.h>
|
2011-11-24 01:12:59 +00:00
|
|
|
#include <linux/bug.h>
|
2011-02-27 05:41:35 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
2011-01-13 23:46:40 +00:00
|
|
|
extern int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
|
|
unsigned long address, pte_t *ptep,
|
|
|
|
pte_t entry, int dirty);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
|
|
|
|
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
|
|
|
|
unsigned long address, pmd_t *pmdp,
|
|
|
|
pmd_t entry, int dirty);
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
2011-01-13 23:46:40 +00:00
|
|
|
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
|
|
|
unsigned long address,
|
|
|
|
pte_t *ptep)
|
|
|
|
{
|
|
|
|
pte_t pte = *ptep;
|
|
|
|
int r = 1;
|
|
|
|
if (!pte_young(pte))
|
|
|
|
r = 0;
|
|
|
|
else
|
|
|
|
set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
|
|
unsigned long address,
|
|
|
|
pmd_t *pmdp)
|
|
|
|
{
|
|
|
|
pmd_t pmd = *pmdp;
|
|
|
|
int r = 1;
|
|
|
|
if (!pmd_young(pmd))
|
|
|
|
r = 0;
|
|
|
|
else
|
|
|
|
set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
|
|
unsigned long address,
|
|
|
|
pmd_t *pmdp)
|
|
|
|
{
|
|
|
|
BUG();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
|
2011-01-13 23:46:40 +00:00
|
|
|
int ptep_clear_flush_young(struct vm_area_struct *vma,
|
|
|
|
unsigned long address, pte_t *ptep);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
|
|
|
|
int pmdp_clear_flush_young(struct vm_area_struct *vma,
|
|
|
|
unsigned long address, pmd_t *pmdp);
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
2011-01-13 23:46:40 +00:00
|
|
|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
|
|
|
|
unsigned long address,
|
|
|
|
pte_t *ptep)
|
|
|
|
{
|
|
|
|
pte_t pte = *ptep;
|
|
|
|
pte_clear(mm, address, ptep);
|
|
|
|
return pte;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
|
|
|
|
unsigned long address,
|
|
|
|
pmd_t *pmdp)
|
|
|
|
{
|
|
|
|
pmd_t pmd = *pmdp;
|
|
|
|
pmd_clear(mm, address, pmdp);
|
|
|
|
return pmd;
|
2011-06-15 22:08:34 +00:00
|
|
|
}
|
2011-01-13 23:46:40 +00:00
|
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
|
[PATCH] x86: ptep_clear optimization
Add a new accessor for PTEs, which passes the full hint from the mmu_gather
struct; this allows architectures with hardware pagetables to optimize away
atomic PTE operations when destroying an address space. Removing the
locked operation should allow better pipelining of memory access in this
loop. I measured an average savings of 30-35 cycles per zap_pte_range on
the first 500 destructions on Pentium-M, but I believe the optimization
would win more on older processors which still assert the bus lock on xchg
for an exclusive cacheline.
Update: I made some new measurements, and this saves exactly 26 cycles over
ptep_get_and_clear on Pentium M. On P4, with a PAE kernel, this saves 180
cycles per ptep_get_and_clear, for a whopping 92160 cycles savings for a
full address space destruction.
pte_clear_full is not yet used, but is provided for future optimizations
(in particular, when running inside of a hypervisor that queues page table
updates, the full hint allows us to avoid queueing unnecessary page table
update for an address space in the process of being destroyed.
This is not a huge win, but it does help a bit, and sets the stage for
further hypervisor optimization of the mm layer on all architectures.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Cc: Christoph Lameter <christoph@lameter.com>
Cc: <linux-mm@kvack.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-03 22:55:04 +00:00
|
|
|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
|
2011-01-13 23:46:40 +00:00
|
|
|
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
|
|
|
|
unsigned long address, pte_t *ptep,
|
|
|
|
int full)
|
|
|
|
{
|
|
|
|
pte_t pte;
|
|
|
|
pte = ptep_get_and_clear(mm, address, ptep);
|
|
|
|
return pte;
|
|
|
|
}
|
[PATCH] x86: ptep_clear optimization
Add a new accessor for PTEs, which passes the full hint from the mmu_gather
struct; this allows architectures with hardware pagetables to optimize away
atomic PTE operations when destroying an address space. Removing the
locked operation should allow better pipelining of memory access in this
loop. I measured an average savings of 30-35 cycles per zap_pte_range on
the first 500 destructions on Pentium-M, but I believe the optimization
would win more on older processors which still assert the bus lock on xchg
for an exclusive cacheline.
Update: I made some new measurements, and this saves exactly 26 cycles over
ptep_get_and_clear on Pentium M. On P4, with a PAE kernel, this saves 180
cycles per ptep_get_and_clear, for a whopping 92160 cycles savings for a
full address space destruction.
pte_clear_full is not yet used, but is provided for future optimizations
(in particular, when running inside of a hypervisor that queues page table
updates, the full hint allows us to avoid queueing unnecessary page table
update for an address space in the process of being destroyed.
This is not a huge win, but it does help a bit, and sets the stage for
further hypervisor optimization of the mm layer on all architectures.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Cc: Christoph Lameter <christoph@lameter.com>
Cc: <linux-mm@kvack.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-03 22:55:04 +00:00
|
|
|
#endif
|
|
|
|
|
2006-10-01 06:29:31 +00:00
|
|
|
/*
|
|
|
|
* Some architectures may be able to avoid expensive synchronization
|
|
|
|
* primitives when modifications are made to PTE's which are already
|
|
|
|
* not present, or in the process of an address space destruction.
|
|
|
|
*/
|
|
|
|
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
|
2011-01-13 23:46:40 +00:00
|
|
|
static inline void pte_clear_not_present_full(struct mm_struct *mm,
|
|
|
|
unsigned long address,
|
|
|
|
pte_t *ptep,
|
|
|
|
int full)
|
|
|
|
{
|
|
|
|
pte_clear(mm, address, ptep);
|
|
|
|
}
|
[PATCH] x86: ptep_clear optimization
Add a new accessor for PTEs, which passes the full hint from the mmu_gather
struct; this allows architectures with hardware pagetables to optimize away
atomic PTE operations when destroying an address space. Removing the
locked operation should allow better pipelining of memory access in this
loop. I measured an average savings of 30-35 cycles per zap_pte_range on
the first 500 destructions on Pentium-M, but I believe the optimization
would win more on older processors which still assert the bus lock on xchg
for an exclusive cacheline.
Update: I made some new measurements, and this saves exactly 26 cycles over
ptep_get_and_clear on Pentium M. On P4, with a PAE kernel, this saves 180
cycles per ptep_get_and_clear, for a whopping 92160 cycles savings for a
full address space destruction.
pte_clear_full is not yet used, but is provided for future optimizations
(in particular, when running inside of a hypervisor that queues page table
updates, the full hint allows us to avoid queueing unnecessary page table
update for an address space in the process of being destroyed.
This is not a huge win, but it does help a bit, and sets the stage for
further hypervisor optimization of the mm layer on all architectures.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Cc: Christoph Lameter <christoph@lameter.com>
Cc: <linux-mm@kvack.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-03 22:55:04 +00:00
|
|
|
#endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
|
2011-01-13 23:46:40 +00:00
|
|
|
extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
|
|
|
|
unsigned long address,
|
|
|
|
pte_t *ptep);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
|
|
|
|
extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
|
|
|
|
unsigned long address,
|
|
|
|
pmd_t *pmdp);
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
|
2005-11-07 08:59:43 +00:00
|
|
|
struct mm_struct;
|
2005-04-16 22:20:36 +00:00
|
|
|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
|
|
|
|
{
|
|
|
|
pte_t old_pte = *ptep;
|
|
|
|
set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2011-01-13 23:46:40 +00:00
|
|
|
#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
|
|
|
|
unsigned long address, pmd_t *pmdp)
|
|
|
|
{
|
|
|
|
pmd_t old_pmd = *pmdp;
|
|
|
|
set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
|
|
|
|
}
|
|
|
|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
|
|
|
|
unsigned long address, pmd_t *pmdp)
|
|
|
|
{
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
|
2011-01-16 21:10:39 +00:00
|
|
|
extern pmd_t pmdp_splitting_flush(struct vm_area_struct *vma,
|
|
|
|
unsigned long address,
|
|
|
|
pmd_t *pmdp);
|
2011-01-13 23:46:40 +00:00
|
|
|
#endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
#ifndef __HAVE_ARCH_PTE_SAME
|
2011-01-13 23:46:40 +00:00
|
|
|
static inline int pte_same(pte_t pte_a, pte_t pte_b)
|
|
|
|
{
|
|
|
|
return pte_val(pte_a) == pte_val(pte_b);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PMD_SAME
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
|
|
|
{
|
|
|
|
return pmd_val(pmd_a) == pmd_val(pmd_b);
|
|
|
|
}
|
|
|
|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
|
|
|
{
|
|
|
|
BUG();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
|
2011-05-23 08:24:39 +00:00
|
|
|
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
|
|
|
|
#define page_test_and_clear_dirty(pfn, mapped) (0)
|
2007-04-27 14:01:57 +00:00
|
|
|
#endif
|
|
|
|
|
2011-05-23 08:24:39 +00:00
|
|
|
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
|
2005-06-22 00:15:13 +00:00
|
|
|
#define pte_maybe_dirty(pte) pte_dirty(pte)
|
|
|
|
#else
|
|
|
|
#define pte_maybe_dirty(pte) (1)
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
|
2011-05-23 08:24:39 +00:00
|
|
|
#define page_test_and_clear_young(pfn) (0)
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
|
|
|
|
#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
|
|
|
|
#endif
|
|
|
|
|
2006-06-02 00:47:25 +00:00
|
|
|
#ifndef __HAVE_ARCH_MOVE_PTE
|
2005-09-28 04:45:18 +00:00
|
|
|
#define move_pte(pte, prot, old_addr, new_addr) (pte)
|
|
|
|
#endif
|
|
|
|
|
x86, mm: Avoid unnecessary TLB flush
In x86, access and dirty bits are set automatically by CPU when CPU accesses
memory. When we go into the code path of below flush_tlb_fix_spurious_fault(),
we already set dirty bit for pte and don't need flush tlb. This might mean
tlb entry in some CPUs hasn't dirty bit set, but this doesn't matter. When
the CPUs do page write, they will automatically check the bit and no software
involved.
On the other hand, flush tlb in below position is harmful. Test creates CPU
number of threads, each thread writes to a same but random address in same vma
range and we measure the total time. Under a 4 socket system, original time is
1.96s, while with the patch, the time is 0.8s. Under a 2 socket system, there is
20% time cut too. perf shows a lot of time are taking to send ipi/handle ipi for
tlb flush.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
LKML-Reference: <20100816011655.GA362@sli10-desk.sh.intel.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Andrea Archangeli <aarcange@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-16 01:16:55 +00:00
|
|
|
#ifndef flush_tlb_fix_spurious_fault
|
|
|
|
#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
|
|
|
|
#endif
|
|
|
|
|
2009-06-23 11:51:19 +00:00
|
|
|
#ifndef pgprot_noncached
|
|
|
|
#define pgprot_noncached(prot) (prot)
|
|
|
|
#endif
|
|
|
|
|
2008-12-18 19:41:32 +00:00
|
|
|
#ifndef pgprot_writecombine
|
|
|
|
#define pgprot_writecombine pgprot_noncached
|
|
|
|
#endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
2005-04-19 20:29:17 +00:00
|
|
|
* When walking page tables, get the address of the next boundary,
|
|
|
|
* or the end address of the range if that comes earlier. Although no
|
|
|
|
* vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#define pgd_addr_end(addr, end) \
|
|
|
|
({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
|
|
|
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
|
|
|
})
|
|
|
|
|
|
|
|
#ifndef pud_addr_end
|
|
|
|
#define pud_addr_end(addr, end) \
|
|
|
|
({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
|
|
|
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
|
|
|
})
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef pmd_addr_end
|
|
|
|
#define pmd_addr_end(addr, end) \
|
|
|
|
({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
|
|
|
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
|
|
|
})
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When walking page tables, we usually want to skip any p?d_none entries;
|
|
|
|
* and any p?d_bad entries - reporting the error before resetting to none.
|
|
|
|
* Do the tests inline, but report and clear the bad entry in mm/memory.c.
|
|
|
|
*/
|
|
|
|
void pgd_clear_bad(pgd_t *);
|
|
|
|
void pud_clear_bad(pud_t *);
|
|
|
|
void pmd_clear_bad(pmd_t *);
|
|
|
|
|
|
|
|
static inline int pgd_none_or_clear_bad(pgd_t *pgd)
|
|
|
|
{
|
|
|
|
if (pgd_none(*pgd))
|
|
|
|
return 1;
|
|
|
|
if (unlikely(pgd_bad(*pgd))) {
|
|
|
|
pgd_clear_bad(pgd);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int pud_none_or_clear_bad(pud_t *pud)
|
|
|
|
{
|
|
|
|
if (pud_none(*pud))
|
|
|
|
return 1;
|
|
|
|
if (unlikely(pud_bad(*pud))) {
|
|
|
|
pud_clear_bad(pud);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int pmd_none_or_clear_bad(pmd_t *pmd)
|
|
|
|
{
|
|
|
|
if (pmd_none(*pmd))
|
|
|
|
return 1;
|
|
|
|
if (unlikely(pmd_bad(*pmd))) {
|
|
|
|
pmd_clear_bad(pmd);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
2007-08-10 20:01:20 +00:00
|
|
|
|
mm: add a ptep_modify_prot transaction abstraction
This patch adds an API for doing read-modify-write updates to a pte's
protection bits which may race against hardware updates to the pte.
After reading the pte, the hardware may asynchonously set the accessed
or dirty bits on a pte, which would be lost when writing back the
modified pte value.
The existing technique to handle this race is to use
ptep_get_and_clear() atomically fetch the old pte value and clear it
in memory. This has the effect of marking the pte as non-present,
which will prevent the hardware from updating its state. When the new
value is written back, the pte will be present again, and the hardware
can resume updating the access/dirty flags.
When running in a virtualized environment, pagetable updates are
relatively expensive, since they generally involve some trap into the
hypervisor. To mitigate the cost of these updates, we tend to batch
them.
However, because of the atomic nature of ptep_get_and_clear(), it is
inherently non-batchable. This new interface allows batching by
giving the underlying implementation enough information to open a
transaction between the read and write phases:
ptep_modify_prot_start() returns the current pte value, and puts the
pte entry into a state where either the hardware will not update the
pte, or if it does, the updates will be preserved on commit.
ptep_modify_prot_commit() writes back the updated pte, makes sure that
any hardware updates made since ptep_modify_prot_start() are
preserved.
ptep_modify_prot_start() and _commit() must be exactly paired, and
used while holding the appropriate pte lock. They do not protect
against other software updates of the pte in any way.
The current implementations of ptep_modify_prot_start and _commit are
functionally unchanged from before: _start() uses ptep_get_and_clear()
fetch the pte and zero the entry, preventing any hardware updates.
_commit() simply writes the new pte value back knowing that the
hardware has not updated the pte in the meantime.
The only current user of this interface is mprotect
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-16 11:30:00 +00:00
|
|
|
static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
|
|
|
|
unsigned long addr,
|
|
|
|
pte_t *ptep)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Get the current pte state, but zero it out to make it
|
|
|
|
* non-present, preventing the hardware from asynchronously
|
|
|
|
* updating it.
|
|
|
|
*/
|
|
|
|
return ptep_get_and_clear(mm, addr, ptep);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
|
|
|
|
unsigned long addr,
|
|
|
|
pte_t *ptep, pte_t pte)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The pte is non-present, so there's no hardware state to
|
|
|
|
* preserve.
|
|
|
|
*/
|
|
|
|
set_pte_at(mm, addr, ptep, pte);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
|
|
|
|
/*
|
|
|
|
* Start a pte protection read-modify-write transaction, which
|
|
|
|
* protects against asynchronous hardware modifications to the pte.
|
|
|
|
* The intention is not to prevent the hardware from making pte
|
|
|
|
* updates, but to prevent any updates it may make from being lost.
|
|
|
|
*
|
|
|
|
* This does not protect against other software modifications of the
|
|
|
|
* pte; the appropriate pte lock must be held over the transation.
|
|
|
|
*
|
|
|
|
* Note that this interface is intended to be batchable, meaning that
|
|
|
|
* ptep_modify_prot_commit may not actually update the pte, but merely
|
|
|
|
* queue the update to be done at some later time. The update must be
|
|
|
|
* actually committed before the pte lock is released, however.
|
|
|
|
*/
|
|
|
|
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
|
|
|
|
unsigned long addr,
|
|
|
|
pte_t *ptep)
|
|
|
|
{
|
|
|
|
return __ptep_modify_prot_start(mm, addr, ptep);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Commit an update to a pte, leaving any hardware-controlled bits in
|
|
|
|
* the PTE unmodified.
|
|
|
|
*/
|
|
|
|
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
|
|
|
|
unsigned long addr,
|
|
|
|
pte_t *ptep, pte_t pte)
|
|
|
|
{
|
|
|
|
__ptep_modify_prot_commit(mm, addr, ptep, pte);
|
|
|
|
}
|
|
|
|
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
|
2008-07-15 20:28:46 +00:00
|
|
|
#endif /* CONFIG_MMU */
|
mm: add a ptep_modify_prot transaction abstraction
This patch adds an API for doing read-modify-write updates to a pte's
protection bits which may race against hardware updates to the pte.
After reading the pte, the hardware may asynchonously set the accessed
or dirty bits on a pte, which would be lost when writing back the
modified pte value.
The existing technique to handle this race is to use
ptep_get_and_clear() atomically fetch the old pte value and clear it
in memory. This has the effect of marking the pte as non-present,
which will prevent the hardware from updating its state. When the new
value is written back, the pte will be present again, and the hardware
can resume updating the access/dirty flags.
When running in a virtualized environment, pagetable updates are
relatively expensive, since they generally involve some trap into the
hypervisor. To mitigate the cost of these updates, we tend to batch
them.
However, because of the atomic nature of ptep_get_and_clear(), it is
inherently non-batchable. This new interface allows batching by
giving the underlying implementation enough information to open a
transaction between the read and write phases:
ptep_modify_prot_start() returns the current pte value, and puts the
pte entry into a state where either the hardware will not update the
pte, or if it does, the updates will be preserved on commit.
ptep_modify_prot_commit() writes back the updated pte, makes sure that
any hardware updates made since ptep_modify_prot_start() are
preserved.
ptep_modify_prot_start() and _commit() must be exactly paired, and
used while holding the appropriate pte lock. They do not protect
against other software updates of the pte in any way.
The current implementations of ptep_modify_prot_start and _commit are
functionally unchanged from before: _start() uses ptep_get_and_clear()
fetch the pte and zero the entry, preventing any hardware updates.
_commit() simply writes the new pte value back knowing that the
hardware has not updated the pte in the meantime.
The only current user of this interface is mprotect
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-16 11:30:00 +00:00
|
|
|
|
2007-08-10 20:01:20 +00:00
|
|
|
/*
|
|
|
|
* A facility to provide lazy MMU batching. This allows PTE updates and
|
|
|
|
* page invalidations to be delayed until a call to leave lazy MMU mode
|
|
|
|
* is issued. Some architectures may benefit from doing this, and it is
|
|
|
|
* beneficial for both shadow and direct mode hypervisors, which may batch
|
|
|
|
* the PTE updates which happen during this window. Note that using this
|
|
|
|
* interface requires that read hazards be removed from the code. A read
|
|
|
|
* hazard could result in the direct mode hypervisor case, since the actual
|
|
|
|
* write to the page tables may not yet have taken place, so reads though
|
|
|
|
* a raw PTE pointer after it has been modified are not guaranteed to be
|
|
|
|
* up to date. This mode can only be entered and left under the protection of
|
|
|
|
* the page table locks for all page tables which may be modified. In the UP
|
|
|
|
* case, this is required so that preemption is disabled, and in the SMP case,
|
|
|
|
* it must synchronize the delayed page table writes properly on other CPUs.
|
|
|
|
*/
|
|
|
|
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
|
|
|
|
#define arch_enter_lazy_mmu_mode() do {} while (0)
|
|
|
|
#define arch_leave_lazy_mmu_mode() do {} while (0)
|
|
|
|
#define arch_flush_lazy_mmu_mode() do {} while (0)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
2009-02-18 07:24:03 +00:00
|
|
|
* A facility to provide batching of the reload of page tables and
|
|
|
|
* other process state with the actual context switch code for
|
|
|
|
* paravirtualized guests. By convention, only one of the batched
|
|
|
|
* update (lazy) modes (CPU, MMU) should be active at any given time,
|
|
|
|
* entry should never be nested, and entry and exits should always be
|
|
|
|
* paired. This is for sanity of maintaining and reasoning about the
|
|
|
|
* kernel code. In this case, the exit (end of the context switch) is
|
|
|
|
* in architecture-specific code, and so doesn't need a generic
|
|
|
|
* definition.
|
2007-08-10 20:01:20 +00:00
|
|
|
*/
|
2009-02-18 07:24:03 +00:00
|
|
|
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
|
2009-02-18 19:18:57 +00:00
|
|
|
#define arch_start_context_switch(prev) do {} while (0)
|
2007-08-10 20:01:20 +00:00
|
|
|
#endif
|
|
|
|
|
2008-12-19 21:47:29 +00:00
|
|
|
#ifndef __HAVE_PFNMAP_TRACKING
|
|
|
|
/*
|
|
|
|
* Interface that can be used by architecture code to keep track of
|
|
|
|
* memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
|
|
|
|
*
|
|
|
|
* track_pfn_vma_new is called when a _new_ pfn mapping is being established
|
|
|
|
* for physical range indicated by pfn and size.
|
|
|
|
*/
|
2009-01-10 00:13:11 +00:00
|
|
|
static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
|
2008-12-19 21:47:29 +00:00
|
|
|
unsigned long pfn, unsigned long size)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Interface that can be used by architecture code to keep track of
|
|
|
|
* memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
|
|
|
|
*
|
|
|
|
* track_pfn_vma_copy is called when vma that is covering the pfnmap gets
|
|
|
|
* copied through copy_page_range().
|
|
|
|
*/
|
|
|
|
static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Interface that can be used by architecture code to keep track of
|
|
|
|
* memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
|
|
|
|
*
|
|
|
|
* untrack_pfn_vma is called while unmapping a pfnmap for a region.
|
|
|
|
* untrack can be called for a specific region indicated by pfn and size or
|
|
|
|
* can be for the entire vma (in which case size can be zero).
|
|
|
|
*/
|
|
|
|
static inline void untrack_pfn_vma(struct vm_area_struct *vma,
|
|
|
|
unsigned long pfn, unsigned long size)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#else
|
2009-01-10 00:13:11 +00:00
|
|
|
extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
|
2008-12-19 21:47:29 +00:00
|
|
|
unsigned long pfn, unsigned long size);
|
|
|
|
extern int track_pfn_vma_copy(struct vm_area_struct *vma);
|
|
|
|
extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
|
|
|
|
unsigned long size);
|
|
|
|
#endif
|
|
|
|
|
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
|
2011-01-13 23:46:40 +00:00
|
|
|
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
static inline int pmd_trans_huge(pmd_t pmd)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static inline int pmd_trans_splitting(pmd_t pmd)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2011-01-13 23:46:40 +00:00
|
|
|
#ifndef __HAVE_ARCH_PMD_WRITE
|
|
|
|
static inline int pmd_write(pmd_t pmd)
|
|
|
|
{
|
|
|
|
BUG();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* __HAVE_ARCH_PMD_WRITE */
|
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
|
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function is meant to be used by sites walking pagetables with
|
|
|
|
* the mmap_sem hold in read mode to protect against MADV_DONTNEED and
|
|
|
|
* transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
|
|
|
|
* into a null pmd and the transhuge page fault can convert a null pmd
|
|
|
|
* into an hugepmd or into a regular pmd (if the hugepage allocation
|
|
|
|
* fails). While holding the mmap_sem in read mode the pmd becomes
|
|
|
|
* stable and stops changing under us only if it's not null and not a
|
|
|
|
* transhuge pmd. When those races occurs and this function makes a
|
|
|
|
* difference vs the standard pmd_none_or_clear_bad, the result is
|
|
|
|
* undefined so behaving like if the pmd was none is safe (because it
|
|
|
|
* can return none anyway). The compiler level barrier() is critically
|
|
|
|
* important to compute the two checks atomically on the same pmdval.
|
|
|
|
*/
|
|
|
|
static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
|
|
|
|
{
|
|
|
|
/* depend on compiler for an atomic pmd read */
|
|
|
|
pmd_t pmdval = *pmd;
|
|
|
|
/*
|
|
|
|
* The barrier will stabilize the pmdval in a register or on
|
|
|
|
* the stack so that it will stop changing under the code.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
barrier();
|
|
|
|
#endif
|
|
|
|
if (pmd_none(pmdval))
|
|
|
|
return 1;
|
|
|
|
if (unlikely(pmd_bad(pmdval))) {
|
|
|
|
if (!pmd_trans_huge(pmdval))
|
|
|
|
pmd_clear_bad(pmd);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is a noop if Transparent Hugepage Support is not built into
|
|
|
|
* the kernel. Otherwise it is equivalent to
|
|
|
|
* pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
|
|
|
|
* places that already verified the pmd is not none and they want to
|
|
|
|
* walk ptes while holding the mmap sem in read mode (write mode don't
|
|
|
|
* need this). If THP is not enabled, the pmd can't go away under the
|
|
|
|
* code even if MADV_DONTNEED runs, but if THP is enabled we need to
|
|
|
|
* run a pmd_trans_unstable before walking the ptes after
|
|
|
|
* split_huge_page_pmd returns (because it may have run when the pmd
|
|
|
|
* become null, but then a page fault can map in a THP and not a
|
|
|
|
* regular page).
|
|
|
|
*/
|
|
|
|
static inline int pmd_trans_unstable(pmd_t *pmd)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
return pmd_none_or_trans_huge_or_clear_bad(pmd);
|
|
|
|
#else
|
|
|
|
return 0;
|
2011-01-13 23:46:40 +00:00
|
|
|
#endif
|
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* CONFIG_MMU */
|
2011-01-13 23:46:40 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
|
|
|
|
#endif /* _ASM_GENERIC_PGTABLE_H */
|