linux/security/tomoyo/common.c

2252 lines
57 KiB
C
Raw Normal View History

Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
/*
* security/tomoyo/common.c
*
* Common functions for TOMOYO.
*
* Copyright (C) 2005-2009 NTT DATA CORPORATION
*
* Version: 2.2.0 2009/04/01
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*
*/
#include <linux/uaccess.h>
#include <linux/security.h>
#include <linux/hardirq.h>
#include "common.h"
/* Lock for protecting policy. */
DEFINE_MUTEX(tomoyo_policy_lock);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
/* Has loading policy done? */
bool tomoyo_policy_loaded;
/* String table for functionality that takes 4 modes. */
static const char *tomoyo_mode_4[4] = {
"disabled", "learning", "permissive", "enforcing"
};
/* String table for functionality that takes 2 modes. */
static const char *tomoyo_mode_2[4] = {
"disabled", "enabled", "enabled", "enabled"
};
/*
* tomoyo_control_array is a static data which contains
*
* (1) functionality name used by /sys/kernel/security/tomoyo/profile .
* (2) initial values for "struct tomoyo_profile".
* (3) max values for "struct tomoyo_profile".
*/
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
static struct {
const char *keyword;
unsigned int current_value;
const unsigned int max_value;
} tomoyo_control_array[TOMOYO_MAX_CONTROL_INDEX] = {
[TOMOYO_MAC_FOR_FILE] = { "MAC_FOR_FILE", 0, 3 },
[TOMOYO_MAX_ACCEPT_ENTRY] = { "MAX_ACCEPT_ENTRY", 2048, INT_MAX },
[TOMOYO_VERBOSE] = { "TOMOYO_VERBOSE", 1, 1 },
};
/*
* tomoyo_profile is a structure which is used for holding the mode of access
* controls. TOMOYO has 4 modes: disabled, learning, permissive, enforcing.
* An administrator can define up to 256 profiles.
* The ->profile of "struct tomoyo_domain_info" is used for remembering
* the profile's number (0 - 255) assigned to that domain.
*/
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
static struct tomoyo_profile {
unsigned int value[TOMOYO_MAX_CONTROL_INDEX];
const struct tomoyo_path_info *comment;
} *tomoyo_profile_ptr[TOMOYO_MAX_PROFILES];
/* Permit policy management by non-root user? */
static bool tomoyo_manage_by_non_root;
/* Utility functions. */
/* Open operation for /sys/kernel/security/tomoyo/ interface. */
static int tomoyo_open_control(const u8 type, struct file *file);
/* Close /sys/kernel/security/tomoyo/ interface. */
static int tomoyo_close_control(struct file *file);
/* Read operation for /sys/kernel/security/tomoyo/ interface. */
static int tomoyo_read_control(struct file *file, char __user *buffer,
const int buffer_len);
/* Write operation for /sys/kernel/security/tomoyo/ interface. */
static int tomoyo_write_control(struct file *file, const char __user *buffer,
const int buffer_len);
/**
* tomoyo_is_byte_range - Check whether the string isa \ooo style octal value.
*
* @str: Pointer to the string.
*
* Returns true if @str is a \ooo style octal value, false otherwise.
*
* TOMOYO uses \ooo style representation for 0x01 - 0x20 and 0x7F - 0xFF.
* This function verifies that \ooo is in valid range.
*/
static inline bool tomoyo_is_byte_range(const char *str)
{
return *str >= '0' && *str++ <= '3' &&
*str >= '0' && *str++ <= '7' &&
*str >= '0' && *str <= '7';
}
/**
* tomoyo_is_alphabet_char - Check whether the character is an alphabet.
*
* @c: The character to check.
*
* Returns true if @c is an alphabet character, false otherwise.
*/
static inline bool tomoyo_is_alphabet_char(const char c)
{
return (c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z');
}
/**
* tomoyo_make_byte - Make byte value from three octal characters.
*
* @c1: The first character.
* @c2: The second character.
* @c3: The third character.
*
* Returns byte value.
*/
static inline u8 tomoyo_make_byte(const u8 c1, const u8 c2, const u8 c3)
{
return ((c1 - '0') << 6) + ((c2 - '0') << 3) + (c3 - '0');
}
/**
* tomoyo_str_starts - Check whether the given string starts with the given keyword.
*
* @src: Pointer to pointer to the string.
* @find: Pointer to the keyword.
*
* Returns true if @src starts with @find, false otherwise.
*
* The @src is updated to point the first character after the @find
* if @src starts with @find.
*/
static bool tomoyo_str_starts(char **src, const char *find)
{
const int len = strlen(find);
char *tmp = *src;
if (strncmp(tmp, find, len))
return false;
tmp += len;
*src = tmp;
return true;
}
/**
* tomoyo_normalize_line - Format string.
*
* @buffer: The line to normalize.
*
* Leading and trailing whitespaces are removed.
* Multiple whitespaces are packed into single space.
*
* Returns nothing.
*/
static void tomoyo_normalize_line(unsigned char *buffer)
{
unsigned char *sp = buffer;
unsigned char *dp = buffer;
bool first = true;
while (tomoyo_is_invalid(*sp))
sp++;
while (*sp) {
if (!first)
*dp++ = ' ';
first = false;
while (tomoyo_is_valid(*sp))
*dp++ = *sp++;
while (tomoyo_is_invalid(*sp))
sp++;
}
*dp = '\0';
}
/**
* tomoyo_is_correct_path - Validate a pathname.
* @filename: The pathname to check.
* @start_type: Should the pathname start with '/'?
* 1 = must / -1 = must not / 0 = don't care
* @pattern_type: Can the pathname contain a wildcard?
* 1 = must / -1 = must not / 0 = don't care
* @end_type: Should the pathname end with '/'?
* 1 = must / -1 = must not / 0 = don't care
* @function: The name of function calling me.
*
* Check whether the given filename follows the naming rules.
* Returns true if @filename follows the naming rules, false otherwise.
*/
bool tomoyo_is_correct_path(const char *filename, const s8 start_type,
const s8 pattern_type, const s8 end_type,
const char *function)
{
const char *const start = filename;
bool in_repetition = false;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
bool contains_pattern = false;
unsigned char c;
unsigned char d;
unsigned char e;
const char *original_filename = filename;
if (!filename)
goto out;
c = *filename;
if (start_type == 1) { /* Must start with '/' */
if (c != '/')
goto out;
} else if (start_type == -1) { /* Must not start with '/' */
if (c == '/')
goto out;
}
if (c)
c = *(filename + strlen(filename) - 1);
if (end_type == 1) { /* Must end with '/' */
if (c != '/')
goto out;
} else if (end_type == -1) { /* Must not end with '/' */
if (c == '/')
goto out;
}
while (1) {
c = *filename++;
if (!c)
break;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (c == '\\') {
c = *filename++;
switch (c) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
case '\\': /* "\\" */
continue;
case '$': /* "\$" */
case '+': /* "\+" */
case '?': /* "\?" */
case '*': /* "\*" */
case '@': /* "\@" */
case 'x': /* "\x" */
case 'X': /* "\X" */
case 'a': /* "\a" */
case 'A': /* "\A" */
case '-': /* "\-" */
if (pattern_type == -1)
break; /* Must not contain pattern */
contains_pattern = true;
continue;
case '{': /* "/\{" */
if (filename - 3 < start ||
*(filename - 3) != '/')
break;
if (pattern_type == -1)
break; /* Must not contain pattern */
contains_pattern = true;
in_repetition = true;
continue;
case '}': /* "\}/" */
if (*filename != '/')
break;
if (!in_repetition)
break;
in_repetition = false;
continue;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
case '0': /* "\ooo" */
case '1':
case '2':
case '3':
d = *filename++;
if (d < '0' || d > '7')
break;
e = *filename++;
if (e < '0' || e > '7')
break;
c = tomoyo_make_byte(c, d, e);
if (tomoyo_is_invalid(c))
continue; /* pattern is not \000 */
}
goto out;
} else if (in_repetition && c == '/') {
goto out;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
} else if (tomoyo_is_invalid(c)) {
goto out;
}
}
if (pattern_type == 1) { /* Must contain pattern */
if (!contains_pattern)
goto out;
}
if (in_repetition)
goto out;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
return true;
out:
printk(KERN_DEBUG "%s: Invalid pathname '%s'\n", function,
original_filename);
return false;
}
/**
* tomoyo_is_correct_domain - Check whether the given domainname follows the naming rules.
* @domainname: The domainname to check.
* @function: The name of function calling me.
*
* Returns true if @domainname follows the naming rules, false otherwise.
*/
bool tomoyo_is_correct_domain(const unsigned char *domainname,
const char *function)
{
unsigned char c;
unsigned char d;
unsigned char e;
const char *org_domainname = domainname;
if (!domainname || strncmp(domainname, TOMOYO_ROOT_NAME,
TOMOYO_ROOT_NAME_LEN))
goto out;
domainname += TOMOYO_ROOT_NAME_LEN;
if (!*domainname)
return true;
do {
if (*domainname++ != ' ')
goto out;
if (*domainname++ != '/')
goto out;
while ((c = *domainname) != '\0' && c != ' ') {
domainname++;
if (c == '\\') {
c = *domainname++;
switch ((c)) {
case '\\': /* "\\" */
continue;
case '0': /* "\ooo" */
case '1':
case '2':
case '3':
d = *domainname++;
if (d < '0' || d > '7')
break;
e = *domainname++;
if (e < '0' || e > '7')
break;
c = tomoyo_make_byte(c, d, e);
if (tomoyo_is_invalid(c))
/* pattern is not \000 */
continue;
}
goto out;
} else if (tomoyo_is_invalid(c)) {
goto out;
}
}
} while (*domainname);
return true;
out:
printk(KERN_DEBUG "%s: Invalid domainname '%s'\n", function,
org_domainname);
return false;
}
/**
* tomoyo_is_domain_def - Check whether the given token can be a domainname.
*
* @buffer: The token to check.
*
* Returns true if @buffer possibly be a domainname, false otherwise.
*/
bool tomoyo_is_domain_def(const unsigned char *buffer)
{
return !strncmp(buffer, TOMOYO_ROOT_NAME, TOMOYO_ROOT_NAME_LEN);
}
/**
* tomoyo_find_domain - Find a domain by the given name.
*
* @domainname: The domainname to find.
*
* Returns pointer to "struct tomoyo_domain_info" if found, NULL otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
struct tomoyo_domain_info *tomoyo_find_domain(const char *domainname)
{
struct tomoyo_domain_info *domain;
struct tomoyo_path_info name;
name.name = domainname;
tomoyo_fill_path_info(&name);
list_for_each_entry_rcu(domain, &tomoyo_domain_list, list) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (!domain->is_deleted &&
!tomoyo_pathcmp(&name, domain->domainname))
return domain;
}
return NULL;
}
/**
* tomoyo_const_part_length - Evaluate the initial length without a pattern in a token.
*
* @filename: The string to evaluate.
*
* Returns the initial length without a pattern in @filename.
*/
static int tomoyo_const_part_length(const char *filename)
{
char c;
int len = 0;
if (!filename)
return 0;
while ((c = *filename++) != '\0') {
if (c != '\\') {
len++;
continue;
}
c = *filename++;
switch (c) {
case '\\': /* "\\" */
len += 2;
continue;
case '0': /* "\ooo" */
case '1':
case '2':
case '3':
c = *filename++;
if (c < '0' || c > '7')
break;
c = *filename++;
if (c < '0' || c > '7')
break;
len += 4;
continue;
}
break;
}
return len;
}
/**
* tomoyo_fill_path_info - Fill in "struct tomoyo_path_info" members.
*
* @ptr: Pointer to "struct tomoyo_path_info" to fill in.
*
* The caller sets "struct tomoyo_path_info"->name.
*/
void tomoyo_fill_path_info(struct tomoyo_path_info *ptr)
{
const char *name = ptr->name;
const int len = strlen(name);
ptr->const_len = tomoyo_const_part_length(name);
ptr->is_dir = len && (name[len - 1] == '/');
ptr->is_patterned = (ptr->const_len < len);
ptr->hash = full_name_hash(name, len);
}
/**
* tomoyo_file_matches_pattern2 - Pattern matching without '/' character
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
* and "\-" pattern.
*
* @filename: The start of string to check.
* @filename_end: The end of string to check.
* @pattern: The start of pattern to compare.
* @pattern_end: The end of pattern to compare.
*
* Returns true if @filename matches @pattern, false otherwise.
*/
static bool tomoyo_file_matches_pattern2(const char *filename,
const char *filename_end,
const char *pattern,
const char *pattern_end)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
{
while (filename < filename_end && pattern < pattern_end) {
char c;
if (*pattern != '\\') {
if (*filename++ != *pattern++)
return false;
continue;
}
c = *filename;
pattern++;
switch (*pattern) {
int i;
int j;
case '?':
if (c == '/') {
return false;
} else if (c == '\\') {
if (filename[1] == '\\')
filename++;
else if (tomoyo_is_byte_range(filename + 1))
filename += 3;
else
return false;
}
break;
case '\\':
if (c != '\\')
return false;
if (*++filename != '\\')
return false;
break;
case '+':
if (!isdigit(c))
return false;
break;
case 'x':
if (!isxdigit(c))
return false;
break;
case 'a':
if (!tomoyo_is_alphabet_char(c))
return false;
break;
case '0':
case '1':
case '2':
case '3':
if (c == '\\' && tomoyo_is_byte_range(filename + 1)
&& strncmp(filename + 1, pattern, 3) == 0) {
filename += 3;
pattern += 2;
break;
}
return false; /* Not matched. */
case '*':
case '@':
for (i = 0; i <= filename_end - filename; i++) {
if (tomoyo_file_matches_pattern2(
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
filename + i, filename_end,
pattern + 1, pattern_end))
return true;
c = filename[i];
if (c == '.' && *pattern == '@')
break;
if (c != '\\')
continue;
if (filename[i + 1] == '\\')
i++;
else if (tomoyo_is_byte_range(filename + i + 1))
i += 3;
else
break; /* Bad pattern. */
}
return false; /* Not matched. */
default:
j = 0;
c = *pattern;
if (c == '$') {
while (isdigit(filename[j]))
j++;
} else if (c == 'X') {
while (isxdigit(filename[j]))
j++;
} else if (c == 'A') {
while (tomoyo_is_alphabet_char(filename[j]))
j++;
}
for (i = 1; i <= j; i++) {
if (tomoyo_file_matches_pattern2(
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
filename + i, filename_end,
pattern + 1, pattern_end))
return true;
}
return false; /* Not matched or bad pattern. */
}
filename++;
pattern++;
}
while (*pattern == '\\' &&
(*(pattern + 1) == '*' || *(pattern + 1) == '@'))
pattern += 2;
return filename == filename_end && pattern == pattern_end;
}
/**
* tomoyo_file_matches_pattern - Pattern matching without without '/' character.
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*
* @filename: The start of string to check.
* @filename_end: The end of string to check.
* @pattern: The start of pattern to compare.
* @pattern_end: The end of pattern to compare.
*
* Returns true if @filename matches @pattern, false otherwise.
*/
static bool tomoyo_file_matches_pattern(const char *filename,
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
const char *filename_end,
const char *pattern,
const char *pattern_end)
{
const char *pattern_start = pattern;
bool first = true;
bool result;
while (pattern < pattern_end - 1) {
/* Split at "\-" pattern. */
if (*pattern++ != '\\' || *pattern++ != '-')
continue;
result = tomoyo_file_matches_pattern2(filename,
filename_end,
pattern_start,
pattern - 2);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (first)
result = !result;
if (result)
return false;
first = false;
pattern_start = pattern;
}
result = tomoyo_file_matches_pattern2(filename, filename_end,
pattern_start, pattern_end);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
return first ? result : !result;
}
/**
* tomoyo_path_matches_pattern2 - Do pathname pattern matching.
*
* @f: The start of string to check.
* @p: The start of pattern to compare.
*
* Returns true if @f matches @p, false otherwise.
*/
static bool tomoyo_path_matches_pattern2(const char *f, const char *p)
{
const char *f_delimiter;
const char *p_delimiter;
while (*f && *p) {
f_delimiter = strchr(f, '/');
if (!f_delimiter)
f_delimiter = f + strlen(f);
p_delimiter = strchr(p, '/');
if (!p_delimiter)
p_delimiter = p + strlen(p);
if (*p == '\\' && *(p + 1) == '{')
goto recursive;
if (!tomoyo_file_matches_pattern(f, f_delimiter, p,
p_delimiter))
return false;
f = f_delimiter;
if (*f)
f++;
p = p_delimiter;
if (*p)
p++;
}
/* Ignore trailing "\*" and "\@" in @pattern. */
while (*p == '\\' &&
(*(p + 1) == '*' || *(p + 1) == '@'))
p += 2;
return !*f && !*p;
recursive:
/*
* The "\{" pattern is permitted only after '/' character.
* This guarantees that below "*(p - 1)" is safe.
* Also, the "\}" pattern is permitted only before '/' character
* so that "\{" + "\}" pair will not break the "\-" operator.
*/
if (*(p - 1) != '/' || p_delimiter <= p + 3 || *p_delimiter != '/' ||
*(p_delimiter - 1) != '}' || *(p_delimiter - 2) != '\\')
return false; /* Bad pattern. */
do {
/* Compare current component with pattern. */
if (!tomoyo_file_matches_pattern(f, f_delimiter, p + 2,
p_delimiter - 2))
break;
/* Proceed to next component. */
f = f_delimiter;
if (!*f)
break;
f++;
/* Continue comparison. */
if (tomoyo_path_matches_pattern2(f, p_delimiter + 1))
return true;
f_delimiter = strchr(f, '/');
} while (f_delimiter);
return false; /* Not matched. */
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
/**
* tomoyo_path_matches_pattern - Check whether the given filename matches the given pattern.
*
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
* @filename: The filename to check.
* @pattern: The pattern to compare.
*
* Returns true if matches, false otherwise.
*
* The following patterns are available.
* \\ \ itself.
* \ooo Octal representation of a byte.
* \* Zero or more repetitions of characters other than '/'.
* \@ Zero or more repetitions of characters other than '/' or '.'.
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
* \? 1 byte character other than '/'.
* \$ One or more repetitions of decimal digits.
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
* \+ 1 decimal digit.
* \X One or more repetitions of hexadecimal digits.
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
* \x 1 hexadecimal digit.
* \A One or more repetitions of alphabet characters.
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
* \a 1 alphabet character.
*
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
* \- Subtraction operator.
*
* /\{dir\}/ '/' + 'One or more repetitions of dir/' (e.g. /dir/ /dir/dir/
* /dir/dir/dir/ ).
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
bool tomoyo_path_matches_pattern(const struct tomoyo_path_info *filename,
const struct tomoyo_path_info *pattern)
{
const char *f = filename->name;
const char *p = pattern->name;
const int len = pattern->const_len;
/* If @pattern doesn't contain pattern, I can use strcmp(). */
if (!pattern->is_patterned)
return !tomoyo_pathcmp(filename, pattern);
/* Don't compare directory and non-directory. */
if (filename->is_dir != pattern->is_dir)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
return false;
/* Compare the initial length without patterns. */
if (strncmp(f, p, len))
return false;
f += len;
p += len;
return tomoyo_path_matches_pattern2(f, p);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
}
/**
* tomoyo_io_printf - Transactional printf() to "struct tomoyo_io_buffer" structure.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @fmt: The printf()'s format string, followed by parameters.
*
* Returns true if output was written, false otherwise.
*
* The snprintf() will truncate, but tomoyo_io_printf() won't.
*/
bool tomoyo_io_printf(struct tomoyo_io_buffer *head, const char *fmt, ...)
{
va_list args;
int len;
int pos = head->read_avail;
int size = head->readbuf_size - pos;
if (size <= 0)
return false;
va_start(args, fmt);
len = vsnprintf(head->read_buf + pos, size, fmt, args);
va_end(args);
if (pos + len >= head->readbuf_size)
return false;
head->read_avail += len;
return true;
}
/**
* tomoyo_get_exe - Get tomoyo_realpath() of current process.
*
* Returns the tomoyo_realpath() of current process on success, NULL otherwise.
*
* This function uses kzalloc(), so the caller must call kfree()
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
* if this function didn't return NULL.
*/
static const char *tomoyo_get_exe(void)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
const char *cp = NULL;
if (!mm)
return NULL;
down_read(&mm->mmap_sem);
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if ((vma->vm_flags & VM_EXECUTABLE) && vma->vm_file) {
cp = tomoyo_realpath_from_path(&vma->vm_file->f_path);
break;
}
}
up_read(&mm->mmap_sem);
return cp;
}
/**
* tomoyo_get_msg - Get warning message.
*
* @is_enforce: Is it enforcing mode?
*
* Returns "ERROR" or "WARNING".
*/
const char *tomoyo_get_msg(const bool is_enforce)
{
if (is_enforce)
return "ERROR";
else
return "WARNING";
}
/**
* tomoyo_check_flags - Check mode for specified functionality.
*
* @domain: Pointer to "struct tomoyo_domain_info".
* @index: The functionality to check mode.
*
* TOMOYO checks only process context.
* This code disables TOMOYO's enforcement in case the function is called from
* interrupt context.
*/
unsigned int tomoyo_check_flags(const struct tomoyo_domain_info *domain,
const u8 index)
{
const u8 profile = domain->profile;
if (WARN_ON(in_interrupt()))
return 0;
return tomoyo_policy_loaded && index < TOMOYO_MAX_CONTROL_INDEX
#if TOMOYO_MAX_PROFILES != 256
&& profile < TOMOYO_MAX_PROFILES
#endif
&& tomoyo_profile_ptr[profile] ?
tomoyo_profile_ptr[profile]->value[index] : 0;
}
/**
* tomoyo_verbose_mode - Check whether TOMOYO is verbose mode.
*
* @domain: Pointer to "struct tomoyo_domain_info".
*
* Returns true if domain policy violation warning should be printed to
* console.
*/
bool tomoyo_verbose_mode(const struct tomoyo_domain_info *domain)
{
return tomoyo_check_flags(domain, TOMOYO_VERBOSE) != 0;
}
/**
* tomoyo_domain_quota_is_ok - Check for domain's quota.
*
* @domain: Pointer to "struct tomoyo_domain_info".
*
* Returns true if the domain is not exceeded quota, false otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
bool tomoyo_domain_quota_is_ok(struct tomoyo_domain_info * const domain)
{
unsigned int count = 0;
struct tomoyo_acl_info *ptr;
if (!domain)
return true;
list_for_each_entry_rcu(ptr, &domain->acl_info_list, list) {
switch (ptr->type) {
struct tomoyo_single_path_acl_record *acl;
u32 perm;
u8 i;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
case TOMOYO_TYPE_SINGLE_PATH_ACL:
acl = container_of(ptr,
struct tomoyo_single_path_acl_record,
head);
perm = acl->perm | (((u32) acl->perm_high) << 16);
for (i = 0; i < TOMOYO_MAX_SINGLE_PATH_OPERATION; i++)
if (perm & (1 << i))
count++;
if (perm & (1 << TOMOYO_TYPE_READ_WRITE_ACL))
count -= 2;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
break;
case TOMOYO_TYPE_DOUBLE_PATH_ACL:
perm = container_of(ptr,
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
struct tomoyo_double_path_acl_record,
head)->perm;
for (i = 0; i < TOMOYO_MAX_DOUBLE_PATH_OPERATION; i++)
if (perm & (1 << i))
count++;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
break;
}
}
if (count < tomoyo_check_flags(domain, TOMOYO_MAX_ACCEPT_ENTRY))
return true;
if (!domain->quota_warned) {
domain->quota_warned = true;
printk(KERN_WARNING "TOMOYO-WARNING: "
"Domain '%s' has so many ACLs to hold. "
"Stopped learning mode.\n", domain->domainname->name);
}
return false;
}
/**
* tomoyo_find_or_assign_new_profile - Create a new profile.
*
* @profile: Profile number to create.
*
* Returns pointer to "struct tomoyo_profile" on success, NULL otherwise.
*/
static struct tomoyo_profile *tomoyo_find_or_assign_new_profile(const unsigned
int profile)
{
static DEFINE_MUTEX(lock);
struct tomoyo_profile *ptr = NULL;
int i;
if (profile >= TOMOYO_MAX_PROFILES)
return NULL;
mutex_lock(&lock);
ptr = tomoyo_profile_ptr[profile];
if (ptr)
goto ok;
ptr = kmalloc(sizeof(*ptr), GFP_KERNEL);
if (!tomoyo_memory_ok(ptr)) {
kfree(ptr);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
goto ok;
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
for (i = 0; i < TOMOYO_MAX_CONTROL_INDEX; i++)
ptr->value[i] = tomoyo_control_array[i].current_value;
mb(); /* Avoid out-of-order execution. */
tomoyo_profile_ptr[profile] = ptr;
ok:
mutex_unlock(&lock);
return ptr;
}
/**
* tomoyo_write_profile - Write to profile table.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, negative value otherwise.
*/
static int tomoyo_write_profile(struct tomoyo_io_buffer *head)
{
char *data = head->write_buf;
unsigned int i;
unsigned int value;
char *cp;
struct tomoyo_profile *profile;
unsigned long num;
cp = strchr(data, '-');
if (cp)
*cp = '\0';
if (strict_strtoul(data, 10, &num))
return -EINVAL;
if (cp)
data = cp + 1;
profile = tomoyo_find_or_assign_new_profile(num);
if (!profile)
return -EINVAL;
cp = strchr(data, '=');
if (!cp)
return -EINVAL;
*cp = '\0';
if (!strcmp(data, "COMMENT")) {
const struct tomoyo_path_info *old_comment = profile->comment;
profile->comment = tomoyo_get_name(cp + 1);
tomoyo_put_name(old_comment);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
return 0;
}
for (i = 0; i < TOMOYO_MAX_CONTROL_INDEX; i++) {
if (strcmp(data, tomoyo_control_array[i].keyword))
continue;
if (sscanf(cp + 1, "%u", &value) != 1) {
int j;
const char **modes;
switch (i) {
case TOMOYO_VERBOSE:
modes = tomoyo_mode_2;
break;
default:
modes = tomoyo_mode_4;
break;
}
for (j = 0; j < 4; j++) {
if (strcmp(cp + 1, modes[j]))
continue;
value = j;
break;
}
if (j == 4)
return -EINVAL;
} else if (value > tomoyo_control_array[i].max_value) {
value = tomoyo_control_array[i].max_value;
}
profile->value[i] = value;
return 0;
}
return -EINVAL;
}
/**
* tomoyo_read_profile - Read from profile table.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0.
*/
static int tomoyo_read_profile(struct tomoyo_io_buffer *head)
{
static const int total = TOMOYO_MAX_CONTROL_INDEX + 1;
int step;
if (head->read_eof)
return 0;
for (step = head->read_step; step < TOMOYO_MAX_PROFILES * total;
step++) {
const u8 index = step / total;
u8 type = step % total;
const struct tomoyo_profile *profile
= tomoyo_profile_ptr[index];
head->read_step = step;
if (!profile)
continue;
if (!type) { /* Print profile' comment tag. */
if (!tomoyo_io_printf(head, "%u-COMMENT=%s\n",
index, profile->comment ?
profile->comment->name : ""))
break;
continue;
}
type--;
if (type < TOMOYO_MAX_CONTROL_INDEX) {
const unsigned int value = profile->value[type];
const char **modes = NULL;
const char *keyword
= tomoyo_control_array[type].keyword;
switch (tomoyo_control_array[type].max_value) {
case 3:
modes = tomoyo_mode_4;
break;
case 1:
modes = tomoyo_mode_2;
break;
}
if (modes) {
if (!tomoyo_io_printf(head, "%u-%s=%s\n", index,
keyword, modes[value]))
break;
} else {
if (!tomoyo_io_printf(head, "%u-%s=%u\n", index,
keyword, value))
break;
}
}
}
if (step == TOMOYO_MAX_PROFILES * total)
head->read_eof = true;
return 0;
}
/*
* tomoyo_policy_manager_list is used for holding list of domainnames or
* programs which are permitted to modify configuration via
* /sys/kernel/security/tomoyo/ interface.
*
* An entry is added by
*
* # echo '<kernel> /sbin/mingetty /bin/login /bin/bash' > \
* /sys/kernel/security/tomoyo/manager
* (if you want to specify by a domainname)
*
* or
*
* # echo '/usr/lib/ccs/editpolicy' > /sys/kernel/security/tomoyo/manager
* (if you want to specify by a program's location)
*
* and is deleted by
*
* # echo 'delete <kernel> /sbin/mingetty /bin/login /bin/bash' > \
* /sys/kernel/security/tomoyo/manager
*
* or
*
* # echo 'delete /usr/lib/ccs/editpolicy' > \
* /sys/kernel/security/tomoyo/manager
*
* and all entries are retrieved by
*
* # cat /sys/kernel/security/tomoyo/manager
*/
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
static LIST_HEAD(tomoyo_policy_manager_list);
/**
* tomoyo_update_manager_entry - Add a manager entry.
*
* @manager: The path to manager or the domainnamme.
* @is_delete: True if it is a delete request.
*
* Returns 0 on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_update_manager_entry(const char *manager,
const bool is_delete)
{
struct tomoyo_policy_manager_entry *entry = NULL;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
struct tomoyo_policy_manager_entry *ptr;
const struct tomoyo_path_info *saved_manager;
int error = is_delete ? -ENOENT : -ENOMEM;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
bool is_domain = false;
if (tomoyo_is_domain_def(manager)) {
if (!tomoyo_is_correct_domain(manager, __func__))
return -EINVAL;
is_domain = true;
} else {
if (!tomoyo_is_correct_path(manager, 1, -1, -1, __func__))
return -EINVAL;
}
saved_manager = tomoyo_get_name(manager);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (!saved_manager)
return -ENOMEM;
if (!is_delete)
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
mutex_lock(&tomoyo_policy_lock);
list_for_each_entry_rcu(ptr, &tomoyo_policy_manager_list, list) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (ptr->manager != saved_manager)
continue;
ptr->is_deleted = is_delete;
error = 0;
break;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
}
if (!is_delete && error && tomoyo_memory_ok(entry)) {
entry->manager = saved_manager;
saved_manager = NULL;
entry->is_domain = is_domain;
list_add_tail_rcu(&entry->list, &tomoyo_policy_manager_list);
entry = NULL;
error = 0;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
}
mutex_unlock(&tomoyo_policy_lock);
tomoyo_put_name(saved_manager);
kfree(entry);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
return error;
}
/**
* tomoyo_write_manager_policy - Write manager policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_write_manager_policy(struct tomoyo_io_buffer *head)
{
char *data = head->write_buf;
bool is_delete = tomoyo_str_starts(&data, TOMOYO_KEYWORD_DELETE);
if (!strcmp(data, "manage_by_non_root")) {
tomoyo_manage_by_non_root = !is_delete;
return 0;
}
return tomoyo_update_manager_entry(data, is_delete);
}
/**
* tomoyo_read_manager_policy - Read manager policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_read_manager_policy(struct tomoyo_io_buffer *head)
{
struct list_head *pos;
bool done = true;
if (head->read_eof)
return 0;
list_for_each_cookie(pos, head->read_var2,
&tomoyo_policy_manager_list) {
struct tomoyo_policy_manager_entry *ptr;
ptr = list_entry(pos, struct tomoyo_policy_manager_entry,
list);
if (ptr->is_deleted)
continue;
done = tomoyo_io_printf(head, "%s\n", ptr->manager->name);
if (!done)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
break;
}
head->read_eof = done;
return 0;
}
/**
* tomoyo_is_policy_manager - Check whether the current process is a policy manager.
*
* Returns true if the current process is permitted to modify policy
* via /sys/kernel/security/tomoyo/ interface.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static bool tomoyo_is_policy_manager(void)
{
struct tomoyo_policy_manager_entry *ptr;
const char *exe;
const struct task_struct *task = current;
const struct tomoyo_path_info *domainname = tomoyo_domain()->domainname;
bool found = false;
if (!tomoyo_policy_loaded)
return true;
if (!tomoyo_manage_by_non_root && (task->cred->uid || task->cred->euid))
return false;
list_for_each_entry_rcu(ptr, &tomoyo_policy_manager_list, list) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (!ptr->is_deleted && ptr->is_domain
&& !tomoyo_pathcmp(domainname, ptr->manager)) {
found = true;
break;
}
}
if (found)
return true;
exe = tomoyo_get_exe();
if (!exe)
return false;
list_for_each_entry_rcu(ptr, &tomoyo_policy_manager_list, list) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (!ptr->is_deleted && !ptr->is_domain
&& !strcmp(exe, ptr->manager->name)) {
found = true;
break;
}
}
if (!found) { /* Reduce error messages. */
static pid_t last_pid;
const pid_t pid = current->pid;
if (last_pid != pid) {
printk(KERN_WARNING "%s ( %s ) is not permitted to "
"update policies.\n", domainname->name, exe);
last_pid = pid;
}
}
kfree(exe);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
return found;
}
/**
* tomoyo_is_select_one - Parse select command.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @data: String to parse.
*
* Returns true on success, false otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static bool tomoyo_is_select_one(struct tomoyo_io_buffer *head,
const char *data)
{
unsigned int pid;
struct tomoyo_domain_info *domain = NULL;
if (sscanf(data, "pid=%u", &pid) == 1) {
struct task_struct *p;
read_lock(&tasklist_lock);
p = find_task_by_vpid(pid);
if (p)
domain = tomoyo_real_domain(p);
read_unlock(&tasklist_lock);
} else if (!strncmp(data, "domain=", 7)) {
if (tomoyo_is_domain_def(data + 7))
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
domain = tomoyo_find_domain(data + 7);
} else
return false;
head->write_var1 = domain;
/* Accessing read_buf is safe because head->io_sem is held. */
if (!head->read_buf)
return true; /* Do nothing if open(O_WRONLY). */
head->read_avail = 0;
tomoyo_io_printf(head, "# select %s\n", data);
head->read_single_domain = true;
head->read_eof = !domain;
if (domain) {
struct tomoyo_domain_info *d;
head->read_var1 = NULL;
list_for_each_entry_rcu(d, &tomoyo_domain_list, list) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (d == domain)
break;
head->read_var1 = &d->list;
}
head->read_var2 = NULL;
head->read_bit = 0;
head->read_step = 0;
if (domain->is_deleted)
tomoyo_io_printf(head, "# This is a deleted domain.\n");
}
return true;
}
/**
* tomoyo_delete_domain - Delete a domain.
*
* @domainname: The name of domain.
*
* Returns 0.
*
* Caller holds tomoyo_read_lock().
*/
static int tomoyo_delete_domain(char *domainname)
{
struct tomoyo_domain_info *domain;
struct tomoyo_path_info name;
name.name = domainname;
tomoyo_fill_path_info(&name);
mutex_lock(&tomoyo_policy_lock);
/* Is there an active domain? */
list_for_each_entry_rcu(domain, &tomoyo_domain_list, list) {
/* Never delete tomoyo_kernel_domain */
if (domain == &tomoyo_kernel_domain)
continue;
if (domain->is_deleted ||
tomoyo_pathcmp(domain->domainname, &name))
continue;
domain->is_deleted = true;
break;
}
mutex_unlock(&tomoyo_policy_lock);
return 0;
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
/**
* tomoyo_write_domain_policy - Write domain policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_write_domain_policy(struct tomoyo_io_buffer *head)
{
char *data = head->write_buf;
struct tomoyo_domain_info *domain = head->write_var1;
bool is_delete = false;
bool is_select = false;
unsigned int profile;
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_DELETE))
is_delete = true;
else if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_SELECT))
is_select = true;
if (is_select && tomoyo_is_select_one(head, data))
return 0;
/* Don't allow updating policies by non manager programs. */
if (!tomoyo_is_policy_manager())
return -EPERM;
if (tomoyo_is_domain_def(data)) {
domain = NULL;
if (is_delete)
tomoyo_delete_domain(data);
else if (is_select)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
domain = tomoyo_find_domain(data);
else
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
domain = tomoyo_find_or_assign_new_domain(data, 0);
head->write_var1 = domain;
return 0;
}
if (!domain)
return -EINVAL;
if (sscanf(data, TOMOYO_KEYWORD_USE_PROFILE "%u", &profile) == 1
&& profile < TOMOYO_MAX_PROFILES) {
if (tomoyo_profile_ptr[profile] || !tomoyo_policy_loaded)
domain->profile = (u8) profile;
return 0;
}
if (!strcmp(data, TOMOYO_KEYWORD_IGNORE_GLOBAL_ALLOW_READ)) {
domain->ignore_global_allow_read = !is_delete;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
return 0;
}
return tomoyo_write_file_policy(data, domain, is_delete);
}
/**
* tomoyo_print_single_path_acl - Print a single path ACL entry.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @ptr: Pointer to "struct tomoyo_single_path_acl_record".
*
* Returns true on success, false otherwise.
*/
static bool tomoyo_print_single_path_acl(struct tomoyo_io_buffer *head,
struct tomoyo_single_path_acl_record *
ptr)
{
int pos;
u8 bit;
const char *atmark = "";
const char *filename;
const u32 perm = ptr->perm | (((u32) ptr->perm_high) << 16);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
filename = ptr->filename->name;
for (bit = head->read_bit; bit < TOMOYO_MAX_SINGLE_PATH_OPERATION;
bit++) {
const char *msg;
if (!(perm & (1 << bit)))
continue;
/* Print "read/write" instead of "read" and "write". */
if ((bit == TOMOYO_TYPE_READ_ACL ||
bit == TOMOYO_TYPE_WRITE_ACL)
&& (perm & (1 << TOMOYO_TYPE_READ_WRITE_ACL)))
continue;
msg = tomoyo_sp2keyword(bit);
pos = head->read_avail;
if (!tomoyo_io_printf(head, "allow_%s %s%s\n", msg,
atmark, filename))
goto out;
}
head->read_bit = 0;
return true;
out:
head->read_bit = bit;
head->read_avail = pos;
return false;
}
/**
* tomoyo_print_double_path_acl - Print a double path ACL entry.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @ptr: Pointer to "struct tomoyo_double_path_acl_record".
*
* Returns true on success, false otherwise.
*/
static bool tomoyo_print_double_path_acl(struct tomoyo_io_buffer *head,
struct tomoyo_double_path_acl_record *
ptr)
{
int pos;
const char *atmark1 = "";
const char *atmark2 = "";
const char *filename1;
const char *filename2;
const u8 perm = ptr->perm;
u8 bit;
filename1 = ptr->filename1->name;
filename2 = ptr->filename2->name;
for (bit = head->read_bit; bit < TOMOYO_MAX_DOUBLE_PATH_OPERATION;
bit++) {
const char *msg;
if (!(perm & (1 << bit)))
continue;
msg = tomoyo_dp2keyword(bit);
pos = head->read_avail;
if (!tomoyo_io_printf(head, "allow_%s %s%s %s%s\n", msg,
atmark1, filename1, atmark2, filename2))
goto out;
}
head->read_bit = 0;
return true;
out:
head->read_bit = bit;
head->read_avail = pos;
return false;
}
/**
* tomoyo_print_entry - Print an ACL entry.
*
* @head: Pointer to "struct tomoyo_io_buffer".
* @ptr: Pointer to an ACL entry.
*
* Returns true on success, false otherwise.
*/
static bool tomoyo_print_entry(struct tomoyo_io_buffer *head,
struct tomoyo_acl_info *ptr)
{
const u8 acl_type = ptr->type;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (acl_type == TOMOYO_TYPE_SINGLE_PATH_ACL) {
struct tomoyo_single_path_acl_record *acl
= container_of(ptr,
struct tomoyo_single_path_acl_record,
head);
return tomoyo_print_single_path_acl(head, acl);
}
if (acl_type == TOMOYO_TYPE_DOUBLE_PATH_ACL) {
struct tomoyo_double_path_acl_record *acl
= container_of(ptr,
struct tomoyo_double_path_acl_record,
head);
return tomoyo_print_double_path_acl(head, acl);
}
BUG(); /* This must not happen. */
return false;
}
/**
* tomoyo_read_domain_policy - Read domain policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_read_domain_policy(struct tomoyo_io_buffer *head)
{
struct list_head *dpos;
struct list_head *apos;
bool done = true;
if (head->read_eof)
return 0;
if (head->read_step == 0)
head->read_step = 1;
list_for_each_cookie(dpos, head->read_var1, &tomoyo_domain_list) {
struct tomoyo_domain_info *domain;
const char *quota_exceeded = "";
const char *transition_failed = "";
const char *ignore_global_allow_read = "";
domain = list_entry(dpos, struct tomoyo_domain_info, list);
if (head->read_step != 1)
goto acl_loop;
if (domain->is_deleted && !head->read_single_domain)
continue;
/* Print domainname and flags. */
if (domain->quota_warned)
quota_exceeded = "quota_exceeded\n";
if (domain->transition_failed)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
transition_failed = "transition_failed\n";
if (domain->ignore_global_allow_read)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
ignore_global_allow_read
= TOMOYO_KEYWORD_IGNORE_GLOBAL_ALLOW_READ "\n";
done = tomoyo_io_printf(head, "%s\n" TOMOYO_KEYWORD_USE_PROFILE
"%u\n%s%s%s\n",
domain->domainname->name,
domain->profile, quota_exceeded,
transition_failed,
ignore_global_allow_read);
if (!done)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
break;
head->read_step = 2;
acl_loop:
if (head->read_step == 3)
goto tail_mark;
/* Print ACL entries in the domain. */
list_for_each_cookie(apos, head->read_var2,
&domain->acl_info_list) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
struct tomoyo_acl_info *ptr
= list_entry(apos, struct tomoyo_acl_info,
list);
done = tomoyo_print_entry(head, ptr);
if (!done)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
break;
}
if (!done)
break;
head->read_step = 3;
tail_mark:
done = tomoyo_io_printf(head, "\n");
if (!done)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
break;
head->read_step = 1;
if (head->read_single_domain)
break;
}
head->read_eof = done;
return 0;
}
/**
* tomoyo_write_domain_profile - Assign profile for specified domain.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, -EINVAL otherwise.
*
* This is equivalent to doing
*
* ( echo "select " $domainname; echo "use_profile " $profile ) |
* /usr/lib/ccs/loadpolicy -d
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_write_domain_profile(struct tomoyo_io_buffer *head)
{
char *data = head->write_buf;
char *cp = strchr(data, ' ');
struct tomoyo_domain_info *domain;
unsigned long profile;
if (!cp)
return -EINVAL;
*cp = '\0';
domain = tomoyo_find_domain(cp + 1);
if (strict_strtoul(data, 10, &profile))
return -EINVAL;
if (domain && profile < TOMOYO_MAX_PROFILES
&& (tomoyo_profile_ptr[profile] || !tomoyo_policy_loaded))
domain->profile = (u8) profile;
return 0;
}
/**
* tomoyo_read_domain_profile - Read only domainname and profile.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns list of profile number and domainname pairs.
*
* This is equivalent to doing
*
* grep -A 1 '^<kernel>' /sys/kernel/security/tomoyo/domain_policy |
* awk ' { if ( domainname == "" ) { if ( $1 == "<kernel>" )
* domainname = $0; } else if ( $1 == "use_profile" ) {
* print $2 " " domainname; domainname = ""; } } ; '
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_read_domain_profile(struct tomoyo_io_buffer *head)
{
struct list_head *pos;
bool done = true;
if (head->read_eof)
return 0;
list_for_each_cookie(pos, head->read_var1, &tomoyo_domain_list) {
struct tomoyo_domain_info *domain;
domain = list_entry(pos, struct tomoyo_domain_info, list);
if (domain->is_deleted)
continue;
done = tomoyo_io_printf(head, "%u %s\n", domain->profile,
domain->domainname->name);
if (!done)
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
break;
}
head->read_eof = done;
return 0;
}
/**
* tomoyo_write_pid: Specify PID to obtain domainname.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0.
*/
static int tomoyo_write_pid(struct tomoyo_io_buffer *head)
{
unsigned long pid;
/* No error check. */
strict_strtoul(head->write_buf, 10, &pid);
head->read_step = (int) pid;
head->read_eof = false;
return 0;
}
/**
* tomoyo_read_pid - Get domainname of the specified PID.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns the domainname which the specified PID is in on success,
* empty string otherwise.
* The PID is specified by tomoyo_write_pid() so that the user can obtain
* using read()/write() interface rather than sysctl() interface.
*/
static int tomoyo_read_pid(struct tomoyo_io_buffer *head)
{
if (head->read_avail == 0 && !head->read_eof) {
const int pid = head->read_step;
struct task_struct *p;
struct tomoyo_domain_info *domain = NULL;
read_lock(&tasklist_lock);
p = find_task_by_vpid(pid);
if (p)
domain = tomoyo_real_domain(p);
read_unlock(&tasklist_lock);
if (domain)
tomoyo_io_printf(head, "%d %u %s", pid, domain->profile,
domain->domainname->name);
head->read_eof = true;
}
return 0;
}
/**
* tomoyo_write_exception_policy - Write exception policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_write_exception_policy(struct tomoyo_io_buffer *head)
{
char *data = head->write_buf;
bool is_delete = tomoyo_str_starts(&data, TOMOYO_KEYWORD_DELETE);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_KEEP_DOMAIN))
return tomoyo_write_domain_keeper_policy(data, false,
is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_NO_KEEP_DOMAIN))
return tomoyo_write_domain_keeper_policy(data, true, is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_INITIALIZE_DOMAIN))
return tomoyo_write_domain_initializer_policy(data, false,
is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_NO_INITIALIZE_DOMAIN))
return tomoyo_write_domain_initializer_policy(data, true,
is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_ALIAS))
return tomoyo_write_alias_policy(data, is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_ALLOW_READ))
return tomoyo_write_globally_readable_policy(data, is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_FILE_PATTERN))
return tomoyo_write_pattern_policy(data, is_delete);
if (tomoyo_str_starts(&data, TOMOYO_KEYWORD_DENY_REWRITE))
return tomoyo_write_no_rewrite_policy(data, is_delete);
return -EINVAL;
}
/**
* tomoyo_read_exception_policy - Read exception policy.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns 0 on success, -EINVAL otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_read_exception_policy(struct tomoyo_io_buffer *head)
{
if (!head->read_eof) {
switch (head->read_step) {
case 0:
head->read_var2 = NULL;
head->read_step = 1;
case 1:
if (!tomoyo_read_domain_keeper_policy(head))
break;
head->read_var2 = NULL;
head->read_step = 2;
case 2:
if (!tomoyo_read_globally_readable_policy(head))
break;
head->read_var2 = NULL;
head->read_step = 3;
case 3:
head->read_var2 = NULL;
head->read_step = 4;
case 4:
if (!tomoyo_read_domain_initializer_policy(head))
break;
head->read_var2 = NULL;
head->read_step = 5;
case 5:
if (!tomoyo_read_alias_policy(head))
break;
head->read_var2 = NULL;
head->read_step = 6;
case 6:
head->read_var2 = NULL;
head->read_step = 7;
case 7:
if (!tomoyo_read_file_pattern(head))
break;
head->read_var2 = NULL;
head->read_step = 8;
case 8:
if (!tomoyo_read_no_rewrite_policy(head))
break;
head->read_var2 = NULL;
head->read_step = 9;
case 9:
head->read_eof = true;
break;
default:
return -EINVAL;
}
}
return 0;
}
/* path to policy loader */
static const char *tomoyo_loader = "/sbin/tomoyo-init";
/**
* tomoyo_policy_loader_exists - Check whether /sbin/tomoyo-init exists.
*
* Returns true if /sbin/tomoyo-init exists, false otherwise.
*/
static bool tomoyo_policy_loader_exists(void)
{
/*
* Don't activate MAC if the policy loader doesn't exist.
* If the initrd includes /sbin/init but real-root-dev has not
* mounted on / yet, activating MAC will block the system since
* policies are not loaded yet.
* Thus, let do_execve() call this function everytime.
*/
struct path path;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (kern_path(tomoyo_loader, LOOKUP_FOLLOW, &path)) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
printk(KERN_INFO "Not activating Mandatory Access Control now "
"since %s doesn't exist.\n", tomoyo_loader);
return false;
}
path_put(&path);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
return true;
}
/**
* tomoyo_load_policy - Run external policy loader to load policy.
*
* @filename: The program about to start.
*
* This function checks whether @filename is /sbin/init , and if so
* invoke /sbin/tomoyo-init and wait for the termination of /sbin/tomoyo-init
* and then continues invocation of /sbin/init.
* /sbin/tomoyo-init reads policy files in /etc/tomoyo/ directory and
* writes to /sys/kernel/security/tomoyo/ interfaces.
*
* Returns nothing.
*/
void tomoyo_load_policy(const char *filename)
{
char *argv[2];
char *envp[3];
if (tomoyo_policy_loaded)
return;
/*
* Check filename is /sbin/init or /sbin/tomoyo-start.
* /sbin/tomoyo-start is a dummy filename in case where /sbin/init can't
* be passed.
* You can create /sbin/tomoyo-start by
* "ln -s /bin/true /sbin/tomoyo-start".
*/
if (strcmp(filename, "/sbin/init") &&
strcmp(filename, "/sbin/tomoyo-start"))
return;
if (!tomoyo_policy_loader_exists())
return;
printk(KERN_INFO "Calling %s to load policy. Please wait.\n",
tomoyo_loader);
argv[0] = (char *) tomoyo_loader;
argv[1] = NULL;
envp[0] = "HOME=/";
envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
envp[2] = NULL;
call_usermodehelper(argv[0], argv, envp, 1);
printk(KERN_INFO "TOMOYO: 2.2.0 2009/04/01\n");
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
printk(KERN_INFO "Mandatory Access Control activated.\n");
tomoyo_policy_loaded = true;
{ /* Check all profiles currently assigned to domains are defined. */
struct tomoyo_domain_info *domain;
list_for_each_entry_rcu(domain, &tomoyo_domain_list, list) {
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
const u8 profile = domain->profile;
if (tomoyo_profile_ptr[profile])
continue;
panic("Profile %u (used by '%s') not defined.\n",
profile, domain->domainname->name);
}
}
}
/**
* tomoyo_read_version: Get version.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns version information.
*/
static int tomoyo_read_version(struct tomoyo_io_buffer *head)
{
if (!head->read_eof) {
tomoyo_io_printf(head, "2.2.0");
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
head->read_eof = true;
}
return 0;
}
/**
* tomoyo_read_self_domain - Get the current process's domainname.
*
* @head: Pointer to "struct tomoyo_io_buffer".
*
* Returns the current process's domainname.
*/
static int tomoyo_read_self_domain(struct tomoyo_io_buffer *head)
{
if (!head->read_eof) {
/*
* tomoyo_domain()->domainname != NULL
* because every process belongs to a domain and
* the domain's name cannot be NULL.
*/
tomoyo_io_printf(head, "%s", tomoyo_domain()->domainname->name);
head->read_eof = true;
}
return 0;
}
/**
* tomoyo_open_control - open() for /sys/kernel/security/tomoyo/ interface.
*
* @type: Type of interface.
* @file: Pointer to "struct file".
*
* Associates policy handler and returns 0 on success, -ENOMEM otherwise.
*
* Caller acquires tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_open_control(const u8 type, struct file *file)
{
struct tomoyo_io_buffer *head = kzalloc(sizeof(*head), GFP_KERNEL);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (!head)
return -ENOMEM;
mutex_init(&head->io_sem);
switch (type) {
case TOMOYO_DOMAINPOLICY:
/* /sys/kernel/security/tomoyo/domain_policy */
head->write = tomoyo_write_domain_policy;
head->read = tomoyo_read_domain_policy;
break;
case TOMOYO_EXCEPTIONPOLICY:
/* /sys/kernel/security/tomoyo/exception_policy */
head->write = tomoyo_write_exception_policy;
head->read = tomoyo_read_exception_policy;
break;
case TOMOYO_SELFDOMAIN:
/* /sys/kernel/security/tomoyo/self_domain */
head->read = tomoyo_read_self_domain;
break;
case TOMOYO_DOMAIN_STATUS:
/* /sys/kernel/security/tomoyo/.domain_status */
head->write = tomoyo_write_domain_profile;
head->read = tomoyo_read_domain_profile;
break;
case TOMOYO_PROCESS_STATUS:
/* /sys/kernel/security/tomoyo/.process_status */
head->write = tomoyo_write_pid;
head->read = tomoyo_read_pid;
break;
case TOMOYO_VERSION:
/* /sys/kernel/security/tomoyo/version */
head->read = tomoyo_read_version;
head->readbuf_size = 128;
break;
case TOMOYO_MEMINFO:
/* /sys/kernel/security/tomoyo/meminfo */
head->write = tomoyo_write_memory_quota;
head->read = tomoyo_read_memory_counter;
head->readbuf_size = 512;
break;
case TOMOYO_PROFILE:
/* /sys/kernel/security/tomoyo/profile */
head->write = tomoyo_write_profile;
head->read = tomoyo_read_profile;
break;
case TOMOYO_MANAGER:
/* /sys/kernel/security/tomoyo/manager */
head->write = tomoyo_write_manager_policy;
head->read = tomoyo_read_manager_policy;
break;
}
if (!(file->f_mode & FMODE_READ)) {
/*
* No need to allocate read_buf since it is not opened
* for reading.
*/
head->read = NULL;
} else {
if (!head->readbuf_size)
head->readbuf_size = 4096 * 2;
head->read_buf = kzalloc(head->readbuf_size, GFP_KERNEL);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (!head->read_buf) {
kfree(head);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
return -ENOMEM;
}
}
if (!(file->f_mode & FMODE_WRITE)) {
/*
* No need to allocate write_buf since it is not opened
* for writing.
*/
head->write = NULL;
} else if (head->write) {
head->writebuf_size = 4096 * 2;
head->write_buf = kzalloc(head->writebuf_size, GFP_KERNEL);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
if (!head->write_buf) {
kfree(head->read_buf);
kfree(head);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
return -ENOMEM;
}
}
head->reader_idx = tomoyo_read_lock();
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
file->private_data = head;
/*
* Call the handler now if the file is
* /sys/kernel/security/tomoyo/self_domain
* so that the user can use
* cat < /sys/kernel/security/tomoyo/self_domain"
* to know the current process's domainname.
*/
if (type == TOMOYO_SELFDOMAIN)
tomoyo_read_control(file, NULL, 0);
return 0;
}
/**
* tomoyo_read_control - read() for /sys/kernel/security/tomoyo/ interface.
*
* @file: Pointer to "struct file".
* @buffer: Poiner to buffer to write to.
* @buffer_len: Size of @buffer.
*
* Returns bytes read on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_read_control(struct file *file, char __user *buffer,
const int buffer_len)
{
int len = 0;
struct tomoyo_io_buffer *head = file->private_data;
char *cp;
if (!head->read)
return -ENOSYS;
if (mutex_lock_interruptible(&head->io_sem))
return -EINTR;
/* Call the policy handler. */
len = head->read(head);
if (len < 0)
goto out;
/* Write to buffer. */
len = head->read_avail;
if (len > buffer_len)
len = buffer_len;
if (!len)
goto out;
/* head->read_buf changes by some functions. */
cp = head->read_buf;
if (copy_to_user(buffer, cp, len)) {
len = -EFAULT;
goto out;
}
head->read_avail -= len;
memmove(cp, cp + len, head->read_avail);
out:
mutex_unlock(&head->io_sem);
return len;
}
/**
* tomoyo_write_control - write() for /sys/kernel/security/tomoyo/ interface.
*
* @file: Pointer to "struct file".
* @buffer: Pointer to buffer to read from.
* @buffer_len: Size of @buffer.
*
* Returns @buffer_len on success, negative value otherwise.
*
* Caller holds tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_write_control(struct file *file, const char __user *buffer,
const int buffer_len)
{
struct tomoyo_io_buffer *head = file->private_data;
int error = buffer_len;
int avail_len = buffer_len;
char *cp0 = head->write_buf;
if (!head->write)
return -ENOSYS;
if (!access_ok(VERIFY_READ, buffer, buffer_len))
return -EFAULT;
/* Don't allow updating policies by non manager programs. */
if (head->write != tomoyo_write_pid &&
head->write != tomoyo_write_domain_policy &&
!tomoyo_is_policy_manager())
return -EPERM;
if (mutex_lock_interruptible(&head->io_sem))
return -EINTR;
/* Read a line and dispatch it to the policy handler. */
while (avail_len > 0) {
char c;
if (head->write_avail >= head->writebuf_size - 1) {
error = -ENOMEM;
break;
} else if (get_user(c, buffer)) {
error = -EFAULT;
break;
}
buffer++;
avail_len--;
cp0[head->write_avail++] = c;
if (c != '\n')
continue;
cp0[head->write_avail - 1] = '\0';
head->write_avail = 0;
tomoyo_normalize_line(cp0);
head->write(head);
}
mutex_unlock(&head->io_sem);
return error;
}
/**
* tomoyo_close_control - close() for /sys/kernel/security/tomoyo/ interface.
*
* @file: Pointer to "struct file".
*
* Releases memory and returns 0.
*
* Caller looses tomoyo_read_lock().
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
*/
static int tomoyo_close_control(struct file *file)
{
struct tomoyo_io_buffer *head = file->private_data;
tomoyo_read_unlock(head->reader_idx);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
/* Release memory used for policy I/O. */
kfree(head->read_buf);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
head->read_buf = NULL;
kfree(head->write_buf);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
head->write_buf = NULL;
kfree(head);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
head = NULL;
file->private_data = NULL;
return 0;
}
/**
* tomoyo_open - open() for /sys/kernel/security/tomoyo/ interface.
*
* @inode: Pointer to "struct inode".
* @file: Pointer to "struct file".
*
* Returns 0 on success, negative value otherwise.
*/
static int tomoyo_open(struct inode *inode, struct file *file)
{
const int key = ((u8 *) file->f_path.dentry->d_inode->i_private)
- ((u8 *) NULL);
return tomoyo_open_control(key, file);
}
/**
* tomoyo_release - close() for /sys/kernel/security/tomoyo/ interface.
*
* @inode: Pointer to "struct inode".
* @file: Pointer to "struct file".
*
* Returns 0 on success, negative value otherwise.
*/
static int tomoyo_release(struct inode *inode, struct file *file)
{
return tomoyo_close_control(file);
}
/**
* tomoyo_read - read() for /sys/kernel/security/tomoyo/ interface.
*
* @file: Pointer to "struct file".
* @buf: Pointer to buffer.
* @count: Size of @buf.
* @ppos: Unused.
*
* Returns bytes read on success, negative value otherwise.
*/
static ssize_t tomoyo_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
return tomoyo_read_control(file, buf, count);
}
/**
* tomoyo_write - write() for /sys/kernel/security/tomoyo/ interface.
*
* @file: Pointer to "struct file".
* @buf: Pointer to buffer.
* @count: Size of @buf.
* @ppos: Unused.
*
* Returns @count on success, negative value otherwise.
*/
static ssize_t tomoyo_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
return tomoyo_write_control(file, buf, count);
}
/*
* tomoyo_operations is a "struct file_operations" which is used for handling
* /sys/kernel/security/tomoyo/ interface.
*
* Some files under /sys/kernel/security/tomoyo/ directory accept open(O_RDWR).
* See tomoyo_io_buffer for internals.
*/
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
static const struct file_operations tomoyo_operations = {
.open = tomoyo_open,
.release = tomoyo_release,
.read = tomoyo_read,
.write = tomoyo_write,
};
/**
* tomoyo_create_entry - Create interface files under /sys/kernel/security/tomoyo/ directory.
*
* @name: The name of the interface file.
* @mode: The permission of the interface file.
* @parent: The parent directory.
* @key: Type of interface.
*
* Returns nothing.
*/
static void __init tomoyo_create_entry(const char *name, const mode_t mode,
struct dentry *parent, const u8 key)
{
securityfs_create_file(name, mode, parent, ((u8 *) NULL) + key,
&tomoyo_operations);
}
/**
* tomoyo_initerface_init - Initialize /sys/kernel/security/tomoyo/ interface.
*
* Returns 0.
*/
static int __init tomoyo_initerface_init(void)
{
struct dentry *tomoyo_dir;
/* Don't create securityfs entries unless registered. */
if (current_cred()->security != &tomoyo_kernel_domain)
return 0;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 08:18:13 +00:00
tomoyo_dir = securityfs_create_dir("tomoyo", NULL);
tomoyo_create_entry("domain_policy", 0600, tomoyo_dir,
TOMOYO_DOMAINPOLICY);
tomoyo_create_entry("exception_policy", 0600, tomoyo_dir,
TOMOYO_EXCEPTIONPOLICY);
tomoyo_create_entry("self_domain", 0400, tomoyo_dir,
TOMOYO_SELFDOMAIN);
tomoyo_create_entry(".domain_status", 0600, tomoyo_dir,
TOMOYO_DOMAIN_STATUS);
tomoyo_create_entry(".process_status", 0600, tomoyo_dir,
TOMOYO_PROCESS_STATUS);
tomoyo_create_entry("meminfo", 0600, tomoyo_dir,
TOMOYO_MEMINFO);
tomoyo_create_entry("profile", 0600, tomoyo_dir,
TOMOYO_PROFILE);
tomoyo_create_entry("manager", 0600, tomoyo_dir,
TOMOYO_MANAGER);
tomoyo_create_entry("version", 0400, tomoyo_dir,
TOMOYO_VERSION);
return 0;
}
fs_initcall(tomoyo_initerface_init);