net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
|
|
|
|
*/
|
2019-11-09 11:32:22 +00:00
|
|
|
#include <linux/spi/spi.h>
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
#include "sja1105.h"
|
|
|
|
|
|
|
|
/* The adjfine API clamps ppb between [-32,768,000, 32,768,000], and
|
|
|
|
* therefore scaled_ppm between [-2,147,483,648, 2,147,483,647].
|
|
|
|
* Set the maximum supported ppb to a round value smaller than the maximum.
|
|
|
|
*
|
|
|
|
* Percentually speaking, this is a +/- 0.032x adjustment of the
|
|
|
|
* free-running counter (0.968x to 1.032x).
|
|
|
|
*/
|
|
|
|
#define SJA1105_MAX_ADJ_PPB 32000000
|
|
|
|
#define SJA1105_SIZE_PTP_CMD 4
|
|
|
|
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
/* PTPSYNCTS has no interrupt or update mechanism, because the intended
|
|
|
|
* hardware use case is for the timestamp to be collected synchronously,
|
2020-05-06 17:48:13 +00:00
|
|
|
* immediately after the CAS_MASTER SJA1105 switch has performed a CASSYNC
|
|
|
|
* one-shot toggle (no return to level) on the PTP_CLK pin. When used as a
|
|
|
|
* generic extts source, the PTPSYNCTS register needs polling and a comparison
|
|
|
|
* with the old value. The polling interval is configured as the Nyquist rate
|
|
|
|
* of a signal with 50% duty cycle and 1Hz frequency, which is sadly all that
|
|
|
|
* this hardware can do (but may be enough for some setups). Anything of higher
|
|
|
|
* frequency than 1 Hz will be lost, since there is no timestamp FIFO.
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
*/
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
#define SJA1105_EXTTS_INTERVAL (HZ / 6)
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
/* This range is actually +/- SJA1105_MAX_ADJ_PPB
|
|
|
|
* divided by 1000 (ppb -> ppm) and with a 16-bit
|
|
|
|
* "fractional" part (actually fixed point).
|
|
|
|
* |
|
|
|
|
* v
|
|
|
|
* Convert scaled_ppm from the +/- ((10^6) << 16) range
|
|
|
|
* into the +/- (1 << 31) range.
|
|
|
|
*
|
|
|
|
* This forgoes a "ppb" numeric representation (up to NSEC_PER_SEC)
|
|
|
|
* and defines the scaling factor between scaled_ppm and the actual
|
2019-10-16 18:41:02 +00:00
|
|
|
* frequency adjustments of the PHC.
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
*
|
|
|
|
* ptpclkrate = scaled_ppm * 2^31 / (10^6 * 2^16)
|
|
|
|
* simplifies to
|
|
|
|
* ptpclkrate = scaled_ppm * 2^9 / 5^6
|
|
|
|
*/
|
|
|
|
#define SJA1105_CC_MULT_NUM (1 << 9)
|
|
|
|
#define SJA1105_CC_MULT_DEM 15625
|
2019-10-16 18:41:02 +00:00
|
|
|
#define SJA1105_CC_MULT 0x80000000
|
|
|
|
|
|
|
|
enum sja1105_ptp_clk_mode {
|
|
|
|
PTP_ADD_MODE = 1,
|
|
|
|
PTP_SET_MODE = 0,
|
|
|
|
};
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
#define extts_to_data(t) \
|
|
|
|
container_of((t), struct sja1105_ptp_data, extts_timer)
|
2019-10-11 23:18:15 +00:00
|
|
|
#define ptp_caps_to_data(d) \
|
|
|
|
container_of((d), struct sja1105_ptp_data, caps)
|
|
|
|
#define ptp_data_to_sja1105(d) \
|
|
|
|
container_of((d), struct sja1105_private, ptp_data)
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-11 23:18:15 +00:00
|
|
|
/* Must be called only with priv->tagger_data.state bit
|
|
|
|
* SJA1105_HWTS_RX_EN cleared
|
|
|
|
*/
|
|
|
|
static int sja1105_change_rxtstamping(struct sja1105_private *priv,
|
|
|
|
bool on)
|
|
|
|
{
|
2019-12-27 13:02:30 +00:00
|
|
|
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
|
2019-10-11 23:18:15 +00:00
|
|
|
struct sja1105_general_params_entry *general_params;
|
|
|
|
struct sja1105_table *table;
|
|
|
|
|
|
|
|
table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
|
|
|
|
general_params = table->entries;
|
|
|
|
general_params->send_meta1 = on;
|
|
|
|
general_params->send_meta0 = on;
|
|
|
|
|
|
|
|
/* Initialize the meta state machine to a known state */
|
|
|
|
if (priv->tagger_data.stampable_skb) {
|
|
|
|
kfree_skb(priv->tagger_data.stampable_skb);
|
|
|
|
priv->tagger_data.stampable_skb = NULL;
|
|
|
|
}
|
2019-12-27 13:02:30 +00:00
|
|
|
ptp_cancel_worker_sync(ptp_data->clock);
|
|
|
|
skb_queue_purge(&ptp_data->skb_rxtstamp_queue);
|
2019-10-11 23:18:15 +00:00
|
|
|
|
2019-11-12 21:22:00 +00:00
|
|
|
return sja1105_static_config_reload(priv, SJA1105_RX_HWTSTAMPING);
|
2019-10-11 23:18:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int sja1105_hwtstamp_set(struct dsa_switch *ds, int port, struct ifreq *ifr)
|
|
|
|
{
|
|
|
|
struct sja1105_private *priv = ds->priv;
|
|
|
|
struct hwtstamp_config config;
|
|
|
|
bool rx_on;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
switch (config.tx_type) {
|
|
|
|
case HWTSTAMP_TX_OFF:
|
|
|
|
priv->ports[port].hwts_tx_en = false;
|
|
|
|
break;
|
|
|
|
case HWTSTAMP_TX_ON:
|
|
|
|
priv->ports[port].hwts_tx_en = true;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -ERANGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (config.rx_filter) {
|
|
|
|
case HWTSTAMP_FILTER_NONE:
|
|
|
|
rx_on = false;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
rx_on = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rx_on != test_bit(SJA1105_HWTS_RX_EN, &priv->tagger_data.state)) {
|
|
|
|
clear_bit(SJA1105_HWTS_RX_EN, &priv->tagger_data.state);
|
|
|
|
|
|
|
|
rc = sja1105_change_rxtstamping(priv, rx_on);
|
|
|
|
if (rc < 0) {
|
|
|
|
dev_err(ds->dev,
|
|
|
|
"Failed to change RX timestamping: %d\n", rc);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
if (rx_on)
|
|
|
|
set_bit(SJA1105_HWTS_RX_EN, &priv->tagger_data.state);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
|
|
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int sja1105_hwtstamp_get(struct dsa_switch *ds, int port, struct ifreq *ifr)
|
|
|
|
{
|
|
|
|
struct sja1105_private *priv = ds->priv;
|
|
|
|
struct hwtstamp_config config;
|
|
|
|
|
|
|
|
config.flags = 0;
|
|
|
|
if (priv->ports[port].hwts_tx_en)
|
|
|
|
config.tx_type = HWTSTAMP_TX_ON;
|
|
|
|
else
|
|
|
|
config.tx_type = HWTSTAMP_TX_OFF;
|
|
|
|
if (test_bit(SJA1105_HWTS_RX_EN, &priv->tagger_data.state))
|
|
|
|
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
|
|
|
|
else
|
|
|
|
config.rx_filter = HWTSTAMP_FILTER_NONE;
|
|
|
|
|
|
|
|
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
|
|
|
|
-EFAULT : 0;
|
|
|
|
}
|
|
|
|
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
int sja1105_get_ts_info(struct dsa_switch *ds, int port,
|
|
|
|
struct ethtool_ts_info *info)
|
|
|
|
{
|
|
|
|
struct sja1105_private *priv = ds->priv;
|
2019-10-11 23:18:15 +00:00
|
|
|
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
|
|
|
/* Called during cleanup */
|
2019-10-11 23:18:15 +00:00
|
|
|
if (!ptp_data->clock)
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
|
|
|
|
SOF_TIMESTAMPING_RX_HARDWARE |
|
|
|
|
SOF_TIMESTAMPING_RAW_HARDWARE;
|
2019-06-08 12:04:43 +00:00
|
|
|
info->tx_types = (1 << HWTSTAMP_TX_OFF) |
|
|
|
|
(1 << HWTSTAMP_TX_ON);
|
|
|
|
info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
|
|
|
|
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT);
|
2019-10-11 23:18:15 +00:00
|
|
|
info->phc_index = ptp_clock_index(ptp_data->clock);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-11-12 00:11:53 +00:00
|
|
|
void sja1105et_ptp_cmd_packing(u8 *buf, struct sja1105_ptp_cmd *cmd,
|
|
|
|
enum packing_op op)
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
{
|
|
|
|
const int size = SJA1105_SIZE_PTP_CMD;
|
|
|
|
/* No need to keep this as part of the structure */
|
|
|
|
u64 valid = 1;
|
|
|
|
|
2019-11-12 00:11:53 +00:00
|
|
|
sja1105_packing(buf, &valid, 31, 31, size, op);
|
2019-11-12 00:11:54 +00:00
|
|
|
sja1105_packing(buf, &cmd->ptpstrtsch, 30, 30, size, op);
|
|
|
|
sja1105_packing(buf, &cmd->ptpstopsch, 29, 29, size, op);
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
sja1105_packing(buf, &cmd->startptpcp, 28, 28, size, op);
|
|
|
|
sja1105_packing(buf, &cmd->stopptpcp, 27, 27, size, op);
|
2019-11-12 00:11:53 +00:00
|
|
|
sja1105_packing(buf, &cmd->resptp, 2, 2, size, op);
|
|
|
|
sja1105_packing(buf, &cmd->corrclk4ts, 1, 1, size, op);
|
|
|
|
sja1105_packing(buf, &cmd->ptpclkadd, 0, 0, size, op);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
}
|
|
|
|
|
2019-11-12 00:11:53 +00:00
|
|
|
void sja1105pqrs_ptp_cmd_packing(u8 *buf, struct sja1105_ptp_cmd *cmd,
|
|
|
|
enum packing_op op)
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
{
|
|
|
|
const int size = SJA1105_SIZE_PTP_CMD;
|
|
|
|
/* No need to keep this as part of the structure */
|
|
|
|
u64 valid = 1;
|
|
|
|
|
2019-11-12 00:11:53 +00:00
|
|
|
sja1105_packing(buf, &valid, 31, 31, size, op);
|
2019-11-12 00:11:54 +00:00
|
|
|
sja1105_packing(buf, &cmd->ptpstrtsch, 30, 30, size, op);
|
|
|
|
sja1105_packing(buf, &cmd->ptpstopsch, 29, 29, size, op);
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
sja1105_packing(buf, &cmd->startptpcp, 28, 28, size, op);
|
|
|
|
sja1105_packing(buf, &cmd->stopptpcp, 27, 27, size, op);
|
2019-11-12 00:11:53 +00:00
|
|
|
sja1105_packing(buf, &cmd->resptp, 3, 3, size, op);
|
|
|
|
sja1105_packing(buf, &cmd->corrclk4ts, 2, 2, size, op);
|
|
|
|
sja1105_packing(buf, &cmd->ptpclkadd, 0, 0, size, op);
|
|
|
|
}
|
|
|
|
|
2019-11-12 00:11:54 +00:00
|
|
|
int sja1105_ptp_commit(struct dsa_switch *ds, struct sja1105_ptp_cmd *cmd,
|
|
|
|
sja1105_spi_rw_mode_t rw)
|
2019-11-12 00:11:53 +00:00
|
|
|
{
|
2019-11-12 00:11:54 +00:00
|
|
|
const struct sja1105_private *priv = ds->priv;
|
2019-11-12 00:11:53 +00:00
|
|
|
const struct sja1105_regs *regs = priv->info->regs;
|
|
|
|
u8 buf[SJA1105_SIZE_PTP_CMD] = {0};
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
if (rw == SPI_WRITE)
|
|
|
|
priv->info->ptp_cmd_packing(buf, cmd, PACK);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-12-27 01:01:50 +00:00
|
|
|
rc = sja1105_xfer_buf(priv, rw, regs->ptp_control, buf,
|
2019-11-12 00:11:53 +00:00
|
|
|
SJA1105_SIZE_PTP_CMD);
|
|
|
|
|
|
|
|
if (rw == SPI_READ)
|
|
|
|
priv->info->ptp_cmd_packing(buf, cmd, UNPACK);
|
|
|
|
|
|
|
|
return rc;
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
}
|
|
|
|
|
2019-06-08 12:04:35 +00:00
|
|
|
/* The switch returns partial timestamps (24 bits for SJA1105 E/T, which wrap
|
|
|
|
* around in 0.135 seconds, and 32 bits for P/Q/R/S, wrapping around in 34.35
|
|
|
|
* seconds).
|
|
|
|
*
|
|
|
|
* This receives the RX or TX MAC timestamps, provided by hardware as
|
|
|
|
* the lower bits of the cycle counter, sampled at the time the timestamp was
|
|
|
|
* collected.
|
|
|
|
*
|
|
|
|
* To reconstruct into a full 64-bit-wide timestamp, the cycle counter is
|
|
|
|
* read and the high-order bits are filled in.
|
|
|
|
*
|
|
|
|
* Must be called within one wraparound period of the partial timestamp since
|
|
|
|
* it was generated by the MAC.
|
|
|
|
*/
|
2019-10-11 23:18:15 +00:00
|
|
|
static u64 sja1105_tstamp_reconstruct(struct dsa_switch *ds, u64 now,
|
|
|
|
u64 ts_partial)
|
2019-06-08 12:04:35 +00:00
|
|
|
{
|
2019-10-11 23:18:14 +00:00
|
|
|
struct sja1105_private *priv = ds->priv;
|
2019-06-08 12:04:35 +00:00
|
|
|
u64 partial_tstamp_mask = CYCLECOUNTER_MASK(priv->info->ptp_ts_bits);
|
|
|
|
u64 ts_reconstructed;
|
|
|
|
|
|
|
|
ts_reconstructed = (now & ~partial_tstamp_mask) | ts_partial;
|
|
|
|
|
|
|
|
/* Check lower bits of current cycle counter against the timestamp.
|
|
|
|
* If the current cycle counter is lower than the partial timestamp,
|
|
|
|
* then wraparound surely occurred and must be accounted for.
|
|
|
|
*/
|
|
|
|
if ((now & partial_tstamp_mask) <= ts_partial)
|
|
|
|
ts_reconstructed -= (partial_tstamp_mask + 1);
|
|
|
|
|
|
|
|
return ts_reconstructed;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reads the SPI interface for an egress timestamp generated by the switch
|
|
|
|
* for frames sent using management routes.
|
|
|
|
*
|
|
|
|
* SJA1105 E/T layout of the 4-byte SPI payload:
|
|
|
|
*
|
|
|
|
* 31 23 15 7 0
|
|
|
|
* | | | | |
|
|
|
|
* +-----+-----+-----+ ^
|
|
|
|
* ^ |
|
|
|
|
* | |
|
|
|
|
* 24-bit timestamp Update bit
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* SJA1105 P/Q/R/S layout of the 8-byte SPI payload:
|
|
|
|
*
|
|
|
|
* 31 23 15 7 0 63 55 47 39 32
|
|
|
|
* | | | | | | | | | |
|
|
|
|
* ^ +-----+-----+-----+-----+
|
|
|
|
* | ^
|
|
|
|
* | |
|
|
|
|
* Update bit 32-bit timestamp
|
|
|
|
*
|
|
|
|
* Notice that the update bit is in the same place.
|
|
|
|
* To have common code for E/T and P/Q/R/S for reading the timestamp,
|
|
|
|
* we need to juggle with the offset and the bit indices.
|
|
|
|
*/
|
2019-10-11 23:18:15 +00:00
|
|
|
static int sja1105_ptpegr_ts_poll(struct dsa_switch *ds, int port, u64 *ts)
|
2019-06-08 12:04:35 +00:00
|
|
|
{
|
2019-10-11 23:18:14 +00:00
|
|
|
struct sja1105_private *priv = ds->priv;
|
2019-06-08 12:04:35 +00:00
|
|
|
const struct sja1105_regs *regs = priv->info->regs;
|
|
|
|
int tstamp_bit_start, tstamp_bit_end;
|
|
|
|
int timeout = 10;
|
|
|
|
u8 packed_buf[8];
|
|
|
|
u64 update;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
do {
|
2019-10-01 19:18:01 +00:00
|
|
|
rc = sja1105_xfer_buf(priv, SPI_READ, regs->ptpegr_ts[port],
|
|
|
|
packed_buf, priv->info->ptpegr_ts_bytes);
|
2019-06-08 12:04:35 +00:00
|
|
|
if (rc < 0)
|
|
|
|
return rc;
|
|
|
|
|
|
|
|
sja1105_unpack(packed_buf, &update, 0, 0,
|
|
|
|
priv->info->ptpegr_ts_bytes);
|
|
|
|
if (update)
|
|
|
|
break;
|
|
|
|
|
|
|
|
usleep_range(10, 50);
|
|
|
|
} while (--timeout);
|
|
|
|
|
|
|
|
if (!timeout)
|
|
|
|
return -ETIMEDOUT;
|
|
|
|
|
|
|
|
/* Point the end bit to the second 32-bit word on P/Q/R/S,
|
|
|
|
* no-op on E/T.
|
|
|
|
*/
|
|
|
|
tstamp_bit_end = (priv->info->ptpegr_ts_bytes - 4) * 8;
|
|
|
|
/* Shift the 24-bit timestamp on E/T to be collected from 31:8.
|
|
|
|
* No-op on P/Q/R/S.
|
|
|
|
*/
|
|
|
|
tstamp_bit_end += 32 - priv->info->ptp_ts_bits;
|
|
|
|
tstamp_bit_start = tstamp_bit_end + priv->info->ptp_ts_bits - 1;
|
|
|
|
|
|
|
|
*ts = 0;
|
|
|
|
|
|
|
|
sja1105_unpack(packed_buf, ts, tstamp_bit_start, tstamp_bit_end,
|
|
|
|
priv->info->ptpegr_ts_bytes);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
/* Caller must hold ptp_data->lock */
|
2019-11-09 11:32:22 +00:00
|
|
|
static int sja1105_ptpclkval_read(struct sja1105_private *priv, u64 *ticks,
|
|
|
|
struct ptp_system_timestamp *ptp_sts)
|
2019-10-16 18:41:02 +00:00
|
|
|
{
|
|
|
|
const struct sja1105_regs *regs = priv->info->regs;
|
|
|
|
|
2019-11-09 11:32:22 +00:00
|
|
|
return sja1105_xfer_u64(priv, SPI_READ, regs->ptpclkval, ticks,
|
|
|
|
ptp_sts);
|
2019-10-16 18:41:02 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Caller must hold ptp_data->lock */
|
2019-11-09 11:32:23 +00:00
|
|
|
static int sja1105_ptpclkval_write(struct sja1105_private *priv, u64 ticks,
|
|
|
|
struct ptp_system_timestamp *ptp_sts)
|
2019-10-16 18:41:02 +00:00
|
|
|
{
|
|
|
|
const struct sja1105_regs *regs = priv->info->regs;
|
|
|
|
|
2019-11-09 11:32:22 +00:00
|
|
|
return sja1105_xfer_u64(priv, SPI_WRITE, regs->ptpclkval, &ticks,
|
2019-11-09 11:32:23 +00:00
|
|
|
ptp_sts);
|
2019-10-16 18:41:02 +00:00
|
|
|
}
|
|
|
|
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
static void sja1105_extts_poll(struct sja1105_private *priv)
|
|
|
|
{
|
|
|
|
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
|
|
|
|
const struct sja1105_regs *regs = priv->info->regs;
|
|
|
|
struct ptp_clock_event event;
|
|
|
|
u64 ptpsyncts = 0;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
rc = sja1105_xfer_u64(priv, SPI_READ, regs->ptpsyncts, &ptpsyncts,
|
|
|
|
NULL);
|
|
|
|
if (rc < 0)
|
|
|
|
dev_err_ratelimited(priv->ds->dev,
|
|
|
|
"Failed to read PTPSYNCTS: %d\n", rc);
|
|
|
|
|
|
|
|
if (ptpsyncts && ptp_data->ptpsyncts != ptpsyncts) {
|
|
|
|
event.index = 0;
|
|
|
|
event.type = PTP_CLOCK_EXTTS;
|
|
|
|
event.timestamp = ns_to_ktime(sja1105_ticks_to_ns(ptpsyncts));
|
|
|
|
ptp_clock_event(ptp_data->clock, &event);
|
|
|
|
|
|
|
|
ptp_data->ptpsyncts = ptpsyncts;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-12-27 13:02:29 +00:00
|
|
|
static long sja1105_rxtstamp_work(struct ptp_clock_info *ptp)
|
2019-10-11 23:18:15 +00:00
|
|
|
{
|
2019-12-27 13:02:29 +00:00
|
|
|
struct sja1105_ptp_data *ptp_data = ptp_caps_to_data(ptp);
|
|
|
|
struct sja1105_private *priv = ptp_data_to_sja1105(ptp_data);
|
2019-10-11 23:18:15 +00:00
|
|
|
struct dsa_switch *ds = priv->ds;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
mutex_lock(&ptp_data->lock);
|
|
|
|
|
2019-12-27 13:02:29 +00:00
|
|
|
while ((skb = skb_dequeue(&ptp_data->skb_rxtstamp_queue)) != NULL) {
|
2019-10-11 23:18:15 +00:00
|
|
|
struct skb_shared_hwtstamps *shwt = skb_hwtstamps(skb);
|
2019-10-16 18:41:02 +00:00
|
|
|
u64 ticks, ts;
|
|
|
|
int rc;
|
2019-10-11 23:18:15 +00:00
|
|
|
|
2019-11-09 11:32:22 +00:00
|
|
|
rc = sja1105_ptpclkval_read(priv, &ticks, NULL);
|
2019-10-16 18:41:02 +00:00
|
|
|
if (rc < 0) {
|
|
|
|
dev_err(ds->dev, "Failed to read PTP clock: %d\n", rc);
|
|
|
|
kfree_skb(skb);
|
|
|
|
continue;
|
|
|
|
}
|
2019-10-11 23:18:15 +00:00
|
|
|
|
|
|
|
*shwt = (struct skb_shared_hwtstamps) {0};
|
|
|
|
|
|
|
|
ts = SJA1105_SKB_CB(skb)->meta_tstamp;
|
2019-10-16 18:41:02 +00:00
|
|
|
ts = sja1105_tstamp_reconstruct(ds, ticks, ts);
|
2019-10-11 23:18:15 +00:00
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
shwt->hwtstamp = ns_to_ktime(sja1105_ticks_to_ns(ts));
|
2019-10-11 23:18:15 +00:00
|
|
|
netif_rx_ni(skb);
|
|
|
|
}
|
|
|
|
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
if (ptp_data->extts_enabled)
|
|
|
|
sja1105_extts_poll(priv);
|
|
|
|
|
2019-10-11 23:18:15 +00:00
|
|
|
mutex_unlock(&ptp_data->lock);
|
2019-12-27 13:02:29 +00:00
|
|
|
|
|
|
|
/* Don't restart */
|
|
|
|
return -1;
|
2019-10-11 23:18:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Called from dsa_skb_defer_rx_timestamp */
|
|
|
|
bool sja1105_port_rxtstamp(struct dsa_switch *ds, int port,
|
|
|
|
struct sk_buff *skb, unsigned int type)
|
|
|
|
{
|
|
|
|
struct sja1105_private *priv = ds->priv;
|
2019-12-27 13:02:29 +00:00
|
|
|
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
|
2019-10-11 23:18:15 +00:00
|
|
|
|
2019-12-27 13:02:29 +00:00
|
|
|
if (!test_bit(SJA1105_HWTS_RX_EN, &priv->tagger_data.state))
|
2019-10-11 23:18:15 +00:00
|
|
|
return false;
|
|
|
|
|
|
|
|
/* We need to read the full PTP clock to reconstruct the Rx
|
|
|
|
* timestamp. For that we need a sleepable context.
|
|
|
|
*/
|
2019-12-27 13:02:29 +00:00
|
|
|
skb_queue_tail(&ptp_data->skb_rxtstamp_queue, skb);
|
|
|
|
ptp_schedule_worker(ptp_data->clock, 0);
|
2019-10-11 23:18:15 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Called from dsa_skb_tx_timestamp. This callback is just to make DSA clone
|
|
|
|
* the skb and have it available in DSA_SKB_CB in the .port_deferred_xmit
|
|
|
|
* callback, where we will timestamp it synchronously.
|
|
|
|
*/
|
|
|
|
bool sja1105_port_txtstamp(struct dsa_switch *ds, int port,
|
|
|
|
struct sk_buff *skb, unsigned int type)
|
|
|
|
{
|
|
|
|
struct sja1105_private *priv = ds->priv;
|
|
|
|
struct sja1105_port *sp = &priv->ports[port];
|
|
|
|
|
|
|
|
if (!sp->hwts_tx_en)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2019-11-09 11:32:23 +00:00
|
|
|
static int sja1105_ptp_reset(struct dsa_switch *ds)
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
{
|
2019-10-11 23:18:14 +00:00
|
|
|
struct sja1105_private *priv = ds->priv;
|
2019-10-11 23:18:15 +00:00
|
|
|
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
|
2019-10-11 23:18:16 +00:00
|
|
|
struct sja1105_ptp_cmd cmd = ptp_data->cmd;
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
int rc;
|
|
|
|
|
2019-10-11 23:18:15 +00:00
|
|
|
mutex_lock(&ptp_data->lock);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
|
|
|
cmd.resptp = 1;
|
2019-11-12 00:11:53 +00:00
|
|
|
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
dev_dbg(ds->dev, "Resetting PTP clock\n");
|
2019-11-12 00:11:54 +00:00
|
|
|
rc = sja1105_ptp_commit(ds, &cmd, SPI_WRITE);
|
|
|
|
|
|
|
|
sja1105_tas_clockstep(priv->ds);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-11 23:18:15 +00:00
|
|
|
mutex_unlock(&ptp_data->lock);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2019-11-09 11:32:23 +00:00
|
|
|
/* Caller must hold ptp_data->lock */
|
|
|
|
int __sja1105_ptp_gettimex(struct dsa_switch *ds, u64 *ns,
|
|
|
|
struct ptp_system_timestamp *ptp_sts)
|
|
|
|
{
|
|
|
|
struct sja1105_private *priv = ds->priv;
|
|
|
|
u64 ticks;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
rc = sja1105_ptpclkval_read(priv, &ticks, ptp_sts);
|
|
|
|
if (rc < 0) {
|
|
|
|
dev_err(ds->dev, "Failed to read PTP clock: %d\n", rc);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
*ns = sja1105_ticks_to_ns(ticks);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-11-09 11:32:22 +00:00
|
|
|
static int sja1105_ptp_gettimex(struct ptp_clock_info *ptp,
|
|
|
|
struct timespec64 *ts,
|
|
|
|
struct ptp_system_timestamp *ptp_sts)
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
{
|
2019-10-11 23:18:15 +00:00
|
|
|
struct sja1105_ptp_data *ptp_data = ptp_caps_to_data(ptp);
|
2019-10-16 18:41:02 +00:00
|
|
|
struct sja1105_private *priv = ptp_data_to_sja1105(ptp_data);
|
2019-11-09 11:32:23 +00:00
|
|
|
u64 now = 0;
|
2019-10-16 18:41:02 +00:00
|
|
|
int rc;
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-11 23:18:15 +00:00
|
|
|
mutex_lock(&ptp_data->lock);
|
2019-10-16 18:41:02 +00:00
|
|
|
|
2019-11-09 11:32:23 +00:00
|
|
|
rc = __sja1105_ptp_gettimex(priv->ds, &now, ptp_sts);
|
|
|
|
*ts = ns_to_timespec64(now);
|
2019-10-16 18:41:02 +00:00
|
|
|
|
2019-10-11 23:18:15 +00:00
|
|
|
mutex_unlock(&ptp_data->lock);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
return rc;
|
|
|
|
}
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
/* Caller must hold ptp_data->lock */
|
|
|
|
static int sja1105_ptp_mode_set(struct sja1105_private *priv,
|
|
|
|
enum sja1105_ptp_clk_mode mode)
|
|
|
|
{
|
|
|
|
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
|
|
|
|
|
|
|
|
if (ptp_data->cmd.ptpclkadd == mode)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
ptp_data->cmd.ptpclkadd = mode;
|
|
|
|
|
2019-11-12 00:11:54 +00:00
|
|
|
return sja1105_ptp_commit(priv->ds, &ptp_data->cmd, SPI_WRITE);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
}
|
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
/* Write to PTPCLKVAL while PTPCLKADD is 0 */
|
2019-11-09 11:32:23 +00:00
|
|
|
int __sja1105_ptp_settime(struct dsa_switch *ds, u64 ns,
|
|
|
|
struct ptp_system_timestamp *ptp_sts)
|
|
|
|
{
|
|
|
|
struct sja1105_private *priv = ds->priv;
|
|
|
|
u64 ticks = ns_to_sja1105_ticks(ns);
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
rc = sja1105_ptp_mode_set(priv, PTP_SET_MODE);
|
|
|
|
if (rc < 0) {
|
|
|
|
dev_err(priv->ds->dev, "Failed to put PTPCLK in set mode\n");
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2019-11-12 00:11:54 +00:00
|
|
|
rc = sja1105_ptpclkval_write(priv, ticks, ptp_sts);
|
|
|
|
|
|
|
|
sja1105_tas_clockstep(priv->ds);
|
|
|
|
|
|
|
|
return rc;
|
2019-11-09 11:32:23 +00:00
|
|
|
}
|
|
|
|
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
static int sja1105_ptp_settime(struct ptp_clock_info *ptp,
|
|
|
|
const struct timespec64 *ts)
|
|
|
|
{
|
2019-10-11 23:18:15 +00:00
|
|
|
struct sja1105_ptp_data *ptp_data = ptp_caps_to_data(ptp);
|
2019-10-16 18:41:02 +00:00
|
|
|
struct sja1105_private *priv = ptp_data_to_sja1105(ptp_data);
|
2019-11-09 11:32:23 +00:00
|
|
|
u64 ns = timespec64_to_ns(ts);
|
2019-10-16 18:41:02 +00:00
|
|
|
int rc;
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-11 23:18:15 +00:00
|
|
|
mutex_lock(&ptp_data->lock);
|
2019-10-16 18:41:02 +00:00
|
|
|
|
2019-11-09 11:32:23 +00:00
|
|
|
rc = __sja1105_ptp_settime(priv->ds, ns, NULL);
|
2019-10-16 18:41:02 +00:00
|
|
|
|
2019-10-11 23:18:15 +00:00
|
|
|
mutex_unlock(&ptp_data->lock);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
return rc;
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int sja1105_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
|
|
|
|
{
|
2019-10-11 23:18:15 +00:00
|
|
|
struct sja1105_ptp_data *ptp_data = ptp_caps_to_data(ptp);
|
2019-10-16 18:41:02 +00:00
|
|
|
struct sja1105_private *priv = ptp_data_to_sja1105(ptp_data);
|
|
|
|
const struct sja1105_regs *regs = priv->info->regs;
|
|
|
|
u32 clkrate32;
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
s64 clkrate;
|
2019-10-16 18:41:02 +00:00
|
|
|
int rc;
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
|
|
|
clkrate = (s64)scaled_ppm * SJA1105_CC_MULT_NUM;
|
|
|
|
clkrate = div_s64(clkrate, SJA1105_CC_MULT_DEM);
|
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
/* Take a +/- value and re-center it around 2^31. */
|
|
|
|
clkrate = SJA1105_CC_MULT + clkrate;
|
|
|
|
WARN_ON(abs(clkrate) >= GENMASK_ULL(31, 0));
|
|
|
|
clkrate32 = clkrate;
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
mutex_lock(&ptp_data->lock);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-11-09 11:32:22 +00:00
|
|
|
rc = sja1105_xfer_u32(priv, SPI_WRITE, regs->ptpclkrate, &clkrate32,
|
|
|
|
NULL);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-11-12 00:11:54 +00:00
|
|
|
sja1105_tas_adjfreq(priv->ds);
|
|
|
|
|
2019-10-11 23:18:15 +00:00
|
|
|
mutex_unlock(&ptp_data->lock);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
return rc;
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
}
|
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
/* Write to PTPCLKVAL while PTPCLKADD is 1 */
|
2019-11-09 11:32:23 +00:00
|
|
|
int __sja1105_ptp_adjtime(struct dsa_switch *ds, s64 delta)
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
{
|
2019-11-09 11:32:23 +00:00
|
|
|
struct sja1105_private *priv = ds->priv;
|
2019-10-16 18:41:02 +00:00
|
|
|
s64 ticks = ns_to_sja1105_ticks(delta);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
int rc;
|
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
rc = sja1105_ptp_mode_set(priv, PTP_ADD_MODE);
|
|
|
|
if (rc < 0) {
|
|
|
|
dev_err(priv->ds->dev, "Failed to put PTPCLK in add mode\n");
|
2019-11-09 11:32:23 +00:00
|
|
|
return rc;
|
2019-10-16 18:41:02 +00:00
|
|
|
}
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-11-12 00:11:54 +00:00
|
|
|
rc = sja1105_ptpclkval_write(priv, ticks, NULL);
|
|
|
|
|
|
|
|
sja1105_tas_clockstep(priv->ds);
|
|
|
|
|
|
|
|
return rc;
|
2019-11-09 11:32:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int sja1105_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
|
|
|
|
{
|
|
|
|
struct sja1105_ptp_data *ptp_data = ptp_caps_to_data(ptp);
|
|
|
|
struct sja1105_private *priv = ptp_data_to_sja1105(ptp_data);
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
mutex_lock(&ptp_data->lock);
|
|
|
|
|
|
|
|
rc = __sja1105_ptp_adjtime(priv->ds, delta);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
mutex_unlock(&ptp_data->lock);
|
|
|
|
|
|
|
|
return rc;
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
}
|
|
|
|
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
static void sja1105_ptp_extts_setup_timer(struct sja1105_ptp_data *ptp_data)
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
{
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
unsigned long expires = ((jiffies / SJA1105_EXTTS_INTERVAL) + 1) *
|
|
|
|
SJA1105_EXTTS_INTERVAL;
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
mod_timer(&ptp_data->extts_timer, expires);
|
|
|
|
}
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
static void sja1105_ptp_extts_timer(struct timer_list *t)
|
|
|
|
{
|
|
|
|
struct sja1105_ptp_data *ptp_data = extts_to_data(t);
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
ptp_schedule_worker(ptp_data->clock, 0);
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
sja1105_ptp_extts_setup_timer(ptp_data);
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int sja1105_change_ptp_clk_pin_func(struct sja1105_private *priv,
|
|
|
|
enum ptp_pin_function func)
|
|
|
|
{
|
|
|
|
struct sja1105_avb_params_entry *avb;
|
|
|
|
enum ptp_pin_function old_func;
|
|
|
|
|
|
|
|
avb = priv->static_config.tables[BLK_IDX_AVB_PARAMS].entries;
|
|
|
|
|
|
|
|
if (priv->info->device_id == SJA1105E_DEVICE_ID ||
|
|
|
|
priv->info->device_id == SJA1105T_DEVICE_ID ||
|
|
|
|
avb->cas_master)
|
|
|
|
old_func = PTP_PF_PEROUT;
|
|
|
|
else
|
|
|
|
old_func = PTP_PF_EXTTS;
|
|
|
|
|
|
|
|
if (func == old_func)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
avb->cas_master = (func == PTP_PF_PEROUT);
|
|
|
|
|
|
|
|
return sja1105_dynamic_config_write(priv, BLK_IDX_AVB_PARAMS, 0, avb,
|
|
|
|
true);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The PTP_CLK pin may be configured to toggle with a 50% duty cycle and a
|
|
|
|
* frequency f:
|
|
|
|
*
|
|
|
|
* NSEC_PER_SEC
|
|
|
|
* f = ----------------------
|
|
|
|
* (PTPPINDUR * 8 ns) * 2
|
|
|
|
*/
|
|
|
|
static int sja1105_per_out_enable(struct sja1105_private *priv,
|
|
|
|
struct ptp_perout_request *perout,
|
|
|
|
bool on)
|
|
|
|
{
|
|
|
|
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
|
|
|
|
const struct sja1105_regs *regs = priv->info->regs;
|
|
|
|
struct sja1105_ptp_cmd cmd = ptp_data->cmd;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
/* We only support one channel */
|
|
|
|
if (perout->index != 0)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
/* Reject requests with unsupported flags */
|
|
|
|
if (perout->flags)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
mutex_lock(&ptp_data->lock);
|
|
|
|
|
|
|
|
rc = sja1105_change_ptp_clk_pin_func(priv, PTP_PF_PEROUT);
|
|
|
|
if (rc)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (on) {
|
|
|
|
struct timespec64 pin_duration_ts = {
|
|
|
|
.tv_sec = perout->period.sec,
|
|
|
|
.tv_nsec = perout->period.nsec,
|
|
|
|
};
|
|
|
|
struct timespec64 pin_start_ts = {
|
|
|
|
.tv_sec = perout->start.sec,
|
|
|
|
.tv_nsec = perout->start.nsec,
|
|
|
|
};
|
|
|
|
u64 pin_duration = timespec64_to_ns(&pin_duration_ts);
|
|
|
|
u64 pin_start = timespec64_to_ns(&pin_start_ts);
|
|
|
|
u32 pin_duration32;
|
|
|
|
u64 now;
|
|
|
|
|
|
|
|
/* ptppindur: 32 bit register which holds the interval between
|
|
|
|
* 2 edges on PTP_CLK. So check for truncation which happens
|
|
|
|
* at periods larger than around 68.7 seconds.
|
|
|
|
*/
|
|
|
|
pin_duration = ns_to_sja1105_ticks(pin_duration / 2);
|
|
|
|
if (pin_duration > U32_MAX) {
|
|
|
|
rc = -ERANGE;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
pin_duration32 = pin_duration;
|
|
|
|
|
|
|
|
/* ptppins: 64 bit register which needs to hold a PTP time
|
|
|
|
* larger than the current time, otherwise the startptpcp
|
|
|
|
* command won't do anything. So advance the current time
|
|
|
|
* by a number of periods in a way that won't alter the
|
|
|
|
* phase offset.
|
|
|
|
*/
|
|
|
|
rc = __sja1105_ptp_gettimex(priv->ds, &now, NULL);
|
|
|
|
if (rc < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
pin_start = future_base_time(pin_start, pin_duration,
|
|
|
|
now + 1ull * NSEC_PER_SEC);
|
|
|
|
pin_start = ns_to_sja1105_ticks(pin_start);
|
|
|
|
|
|
|
|
rc = sja1105_xfer_u64(priv, SPI_WRITE, regs->ptppinst,
|
|
|
|
&pin_start, NULL);
|
|
|
|
if (rc < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
rc = sja1105_xfer_u32(priv, SPI_WRITE, regs->ptppindur,
|
|
|
|
&pin_duration32, NULL);
|
|
|
|
if (rc < 0)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (on)
|
|
|
|
cmd.startptpcp = true;
|
|
|
|
else
|
|
|
|
cmd.stopptpcp = true;
|
|
|
|
|
|
|
|
rc = sja1105_ptp_commit(priv->ds, &cmd, SPI_WRITE);
|
|
|
|
|
|
|
|
out:
|
|
|
|
mutex_unlock(&ptp_data->lock);
|
|
|
|
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int sja1105_extts_enable(struct sja1105_private *priv,
|
|
|
|
struct ptp_extts_request *extts,
|
|
|
|
bool on)
|
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
/* We only support one channel */
|
|
|
|
if (extts->index != 0)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
/* Reject requests with unsupported flags */
|
2020-05-06 17:48:13 +00:00
|
|
|
if (extts->flags & ~(PTP_ENABLE_FEATURE |
|
|
|
|
PTP_RISING_EDGE |
|
|
|
|
PTP_FALLING_EDGE |
|
|
|
|
PTP_STRICT_FLAGS))
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
/* We can only enable time stamping on both edges, sadly. */
|
|
|
|
if ((extts->flags & PTP_STRICT_FLAGS) &&
|
|
|
|
(extts->flags & PTP_ENABLE_FEATURE) &&
|
|
|
|
(extts->flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
rc = sja1105_change_ptp_clk_pin_func(priv, PTP_PF_EXTTS);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
priv->ptp_data.extts_enabled = on;
|
|
|
|
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
if (on)
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
sja1105_ptp_extts_setup_timer(&priv->ptp_data);
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
else
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
del_timer_sync(&priv->ptp_data.extts_timer);
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int sja1105_ptp_enable(struct ptp_clock_info *ptp,
|
|
|
|
struct ptp_clock_request *req, int on)
|
|
|
|
{
|
|
|
|
struct sja1105_ptp_data *ptp_data = ptp_caps_to_data(ptp);
|
|
|
|
struct sja1105_private *priv = ptp_data_to_sja1105(ptp_data);
|
|
|
|
int rc = -EOPNOTSUPP;
|
|
|
|
|
|
|
|
if (req->type == PTP_CLK_REQ_PEROUT)
|
|
|
|
rc = sja1105_per_out_enable(priv, &req->perout, on);
|
|
|
|
else if (req->type == PTP_CLK_REQ_EXTTS)
|
|
|
|
rc = sja1105_extts_enable(priv, &req->extts, on);
|
|
|
|
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int sja1105_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
|
|
|
|
enum ptp_pin_function func, unsigned int chan)
|
|
|
|
{
|
|
|
|
struct sja1105_ptp_data *ptp_data = ptp_caps_to_data(ptp);
|
|
|
|
struct sja1105_private *priv = ptp_data_to_sja1105(ptp_data);
|
|
|
|
|
|
|
|
if (chan != 0 || pin != 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
switch (func) {
|
|
|
|
case PTP_PF_NONE:
|
|
|
|
case PTP_PF_PEROUT:
|
|
|
|
break;
|
|
|
|
case PTP_PF_EXTTS:
|
|
|
|
if (priv->info->device_id == SJA1105E_DEVICE_ID ||
|
|
|
|
priv->info->device_id == SJA1105T_DEVICE_ID)
|
|
|
|
return -1;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ptp_pin_desc sja1105_ptp_pin = {
|
|
|
|
.name = "ptp_clk",
|
|
|
|
.index = 0,
|
|
|
|
.func = PTP_PF_NONE,
|
|
|
|
};
|
|
|
|
|
2019-10-11 23:18:14 +00:00
|
|
|
int sja1105_ptp_clock_register(struct dsa_switch *ds)
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
{
|
2019-10-11 23:18:14 +00:00
|
|
|
struct sja1105_private *priv = ds->priv;
|
2019-10-11 23:18:15 +00:00
|
|
|
struct sja1105_tagger_data *tagger_data = &priv->tagger_data;
|
|
|
|
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-11 23:18:15 +00:00
|
|
|
ptp_data->caps = (struct ptp_clock_info) {
|
2019-10-11 23:18:13 +00:00
|
|
|
.owner = THIS_MODULE,
|
|
|
|
.name = "SJA1105 PHC",
|
|
|
|
.adjfine = sja1105_ptp_adjfine,
|
|
|
|
.adjtime = sja1105_ptp_adjtime,
|
2019-11-09 11:32:22 +00:00
|
|
|
.gettimex64 = sja1105_ptp_gettimex,
|
2019-10-11 23:18:13 +00:00
|
|
|
.settime64 = sja1105_ptp_settime,
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
.enable = sja1105_ptp_enable,
|
|
|
|
.verify = sja1105_ptp_verify_pin,
|
2019-12-27 13:02:29 +00:00
|
|
|
.do_aux_work = sja1105_rxtstamp_work,
|
2019-10-11 23:18:13 +00:00
|
|
|
.max_adj = SJA1105_MAX_ADJ_PPB,
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
.pin_config = &sja1105_ptp_pin,
|
|
|
|
.n_pins = 1,
|
|
|
|
.n_ext_ts = 1,
|
|
|
|
.n_per_out = 1,
|
2019-10-11 23:18:13 +00:00
|
|
|
};
|
|
|
|
|
2019-12-27 13:02:29 +00:00
|
|
|
skb_queue_head_init(&ptp_data->skb_rxtstamp_queue);
|
2019-10-11 23:18:15 +00:00
|
|
|
spin_lock_init(&tagger_data->meta_lock);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-11 23:18:15 +00:00
|
|
|
ptp_data->clock = ptp_clock_register(&ptp_data->caps, ds->dev);
|
|
|
|
if (IS_ERR_OR_NULL(ptp_data->clock))
|
|
|
|
return PTR_ERR(ptp_data->clock);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
ptp_data->cmd.corrclk4ts = true;
|
|
|
|
ptp_data->cmd.ptpclkadd = PTP_SET_MODE;
|
2019-08-04 22:38:46 +00:00
|
|
|
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
timer_setup(&ptp_data->extts_timer, sja1105_ptp_extts_timer, 0);
|
net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUT
The SJA1105 switch family has a PTP_CLK pin which emits a signal with
fixed 50% duty cycle, but variable frequency and programmable start time.
On the second generation (P/Q/R/S) switches, this pin supports even more
functionality. The use case described by the hardware documents talks
about synchronization via oneshot pulses: given 2 sja1105 switches,
arbitrarily designated as a master and a slave, the master emits a
single pulse on PTP_CLK, while the slave is configured to timestamp this
pulse received on its PTP_CLK pin (which must obviously be configured as
input). The difference between the timestamps then exactly becomes the
slave offset to the master.
The only trouble with the above is that the hardware is very much tied
into this use case only, and not very generic beyond that:
- When emitting a oneshot pulse, instead of being told when to emit it,
the switch just does it "now" and tells you later what time it was,
via the PTPSYNCTS register. [ Incidentally, this is the same register
that the slave uses to collect the ext_ts timestamp from, too. ]
- On the sync slave, there is no interrupt mechanism on reception of a
new extts, and no FIFO to buffer them, because in the foreseen use
case, software is in control of both the master and the slave pins,
so it "knows" when there's something to collect.
These 2 problems mean that:
- We don't support (at least yet) the quirky oneshot mode exposed by
the hardware, just normal periodic output.
- We abuse the hardware a little bit when we expose generic extts.
Because there's no interrupt mechanism, we need to poll at double the
frequency we expect to receive a pulse. Currently that means a
non-configurable "twice a second".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23 22:59:24 +00:00
|
|
|
|
2019-10-11 23:18:14 +00:00
|
|
|
return sja1105_ptp_reset(ds);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
}
|
|
|
|
|
2019-10-11 23:18:14 +00:00
|
|
|
void sja1105_ptp_clock_unregister(struct dsa_switch *ds)
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
{
|
2019-10-11 23:18:14 +00:00
|
|
|
struct sja1105_private *priv = ds->priv;
|
2019-10-11 23:18:15 +00:00
|
|
|
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
|
2019-10-11 23:18:14 +00:00
|
|
|
|
2019-10-11 23:18:15 +00:00
|
|
|
if (IS_ERR_OR_NULL(ptp_data->clock))
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
return;
|
|
|
|
|
net: dsa: sja1105: poll for extts events from a timer
The current poll interval is enough to ensure that rising and falling
edge events are not lost for a 1 PPS signal with 50% duty cycle.
But when we deliver the events to user space, it will try to infer if
they were corresponding to a rising or to a falling edge (the kernel
driver doesn't know that either). User space will try to make that
inference based on the time at which the PPS master had emitted the
pulse (i.e. if it's a .0 time, it's rising edge, if it's .5 time, it's
falling edge).
But there is no in-kernel API for retrieving the precise timestamp
corresponding to a PPS master (aka perout) pulse. So user space has to
guess even that. It will read the PTP time on the PPS master right after
we've delivered the extts event, and declare that the PPS master time
was just the closest integer second, based on 2 thresholds (lower than
.25, or higher than .75, and ignore anything else).
Except that, if we poll for extts events (and our hardware doesn't
really help us, by not providing an interrupt), then there is a risk
that the poll period (and therefore the time at which the event is
delivered) might confuse user space.
Because we are always scheduling the next extts poll at
SJA1105_EXTTS_INTERVAL "from now" (that's the only thing that the
schedule_delayed_work() API gives us), it means that the start time of
the next delayed workqueue will always be shifted to the right a little
bit (shifted with the SPI access duration of this workqueue run).
In turn, because user space sees extts events that are non-periodic
compared to the PPS master's time, this means that it might start making
wrong guesses about rising/falling edge.
To understand the effect, here is the output of ts2phc currently. Notice
the 'src' timestamps of the 'SKIP extts' events, and how they have a
large wander. They keep increasing until the upper limit for the ignore
threshold (.75 seconds), after which the application starts ignoring the
_other_ edge.
ts2phc[26.624]: /dev/ptp3 SKIP extts index 0 at 21.449898912 src 21.657784518
ts2phc[27.133]: adding tstamp 21.949894240 to clock /dev/ptp3
ts2phc[27.133]: adding tstamp 22.000000000 to clock /dev/ptp1
ts2phc[27.133]: /dev/ptp3 offset 640 s2 freq +5112
ts2phc[27.636]: /dev/ptp3 SKIP extts index 0 at 22.449889360 src 22.669398022
ts2phc[28.140]: adding tstamp 22.949884376 to clock /dev/ptp3
ts2phc[28.140]: adding tstamp 23.000000000 to clock /dev/ptp1
ts2phc[28.140]: /dev/ptp3 offset 96 s2 freq +4760
ts2phc[28.644]: /dev/ptp3 SKIP extts index 0 at 23.449879504 src 23.677420422
ts2phc[29.153]: adding tstamp 23.949874704 to clock /dev/ptp3
ts2phc[29.153]: adding tstamp 24.000000000 to clock /dev/ptp1
ts2phc[29.153]: /dev/ptp3 offset -264 s2 freq +4429
ts2phc[29.656]: /dev/ptp3 SKIP extts index 0 at 24.449870008 src 24.689407238
ts2phc[30.160]: adding tstamp 24.949865376 to clock /dev/ptp3
ts2phc[30.160]: adding tstamp 25.000000000 to clock /dev/ptp1
ts2phc[30.160]: /dev/ptp3 offset -280 s2 freq +4334
ts2phc[30.664]: /dev/ptp3 SKIP extts index 0 at 25.449860760 src 25.697449926
ts2phc[31.168]: adding tstamp 25.949856176 to clock /dev/ptp3
ts2phc[31.168]: adding tstamp 26.000000000 to clock /dev/ptp1
ts2phc[31.168]: /dev/ptp3 offset -176 s2 freq +4354
ts2phc[31.672]: /dev/ptp3 SKIP extts index 0 at 26.449851584 src 26.705433606
ts2phc[32.180]: adding tstamp 26.949846992 to clock /dev/ptp3
ts2phc[32.180]: adding tstamp 27.000000000 to clock /dev/ptp1
ts2phc[32.180]: /dev/ptp3 offset -80 s2 freq +4397
ts2phc[32.684]: /dev/ptp3 SKIP extts index 0 at 27.449842384 src 27.717415110
ts2phc[33.192]: adding tstamp 27.949837768 to clock /dev/ptp3
ts2phc[33.192]: adding tstamp 28.000000000 to clock /dev/ptp1
ts2phc[33.192]: /dev/ptp3 offset 0 s2 freq +4453
ts2phc[33.696]: /dev/ptp3 SKIP extts index 0 at 28.449833128 src 28.729412902
ts2phc[34.200]: adding tstamp 28.949828472 to clock /dev/ptp3
ts2phc[34.200]: adding tstamp 29.000000000 to clock /dev/ptp1
ts2phc[34.200]: /dev/ptp3 offset 8 s2 freq +4461
ts2phc[34.704]: /dev/ptp3 SKIP extts index 0 at 29.449823816 src 29.737416038
ts2phc[35.208]: adding tstamp 29.949819152 to clock /dev/ptp3
ts2phc[35.208]: adding tstamp 30.000000000 to clock /dev/ptp1
ts2phc[35.208]: /dev/ptp3 offset -8 s2 freq +4447
ts2phc[35.712]: /dev/ptp3 SKIP extts index 0 at 30.449814496 src 30.745554982
ts2phc[36.216]: adding tstamp 30.949809840 to clock /dev/ptp3
ts2phc[36.216]: adding tstamp 31.000000000 to clock /dev/ptp1
ts2phc[36.216]: /dev/ptp3 offset -8 s2 freq +4445
ts2phc[36.468]: /dev/ptp3 SKIP extts index 0 at 31.449805184 src 31.501109446
ts2phc[36.972]: adding tstamp 31.949800536 to clock /dev/ptp3
ts2phc[36.972]: adding tstamp 32.000000000 to clock /dev/ptp1
ts2phc[36.972]: /dev/ptp3 offset -8 s2 freq +4442
ts2phc[37.480]: /dev/ptp3 SKIP extts index 0 at 32.449795896 src 32.513320070
ts2phc[37.984]: adding tstamp 32.949791248 to clock /dev/ptp3
ts2phc[37.984]: adding tstamp 33.000000000 to clock /dev/ptp1
ts2phc[37.984]: /dev/ptp3 offset 0 s2 freq +4448
Fix that by taking the following measures:
- Schedule the poll from a timer. Because we are really scheduling the
timer periodically, the extts events delivered to user space are
periodic too, and don't suffer from the "shift-to-the-right" effect.
- Increase the poll period to 6 times a second. This imposes a smaller
upper bound to the shift that can occur to the delivery time of extts
events, and makes user space (ts2phc) to always interpret correctly
which events should be skipped and which shouldn't.
- Move the SPI readout itself to the main PTP kernel thread, instead of
the generic workqueue. This is because the timer runs in atomic
context, but is also better than before, because if needed, we can
chrt & taskset this kernel thread, to ensure it gets enough priority
under load.
After this patch, one can notice that the wander is greatly reduced, and
that the latencies of one extts poll are not propagated to the next. The
'src' timestamp that is skipped is never larger than .65 seconds (which
means .15 seconds larger than the time at which the real event occurred
at, and .10 seconds smaller than the .75 upper threshold for ignoring
the falling edge):
ts2phc[40.076]: adding tstamp 34.949261296 to clock /dev/ptp3
ts2phc[40.076]: adding tstamp 35.000000000 to clock /dev/ptp1
ts2phc[40.076]: /dev/ptp3 offset 48 s2 freq +4631
ts2phc[40.568]: /dev/ptp3 SKIP extts index 0 at 35.449256496 src 35.595791078
ts2phc[41.064]: adding tstamp 35.949251744 to clock /dev/ptp3
ts2phc[41.064]: adding tstamp 36.000000000 to clock /dev/ptp1
ts2phc[41.064]: /dev/ptp3 offset -224 s2 freq +4374
ts2phc[41.552]: /dev/ptp3 SKIP extts index 0 at 36.449247088 src 36.579825574
ts2phc[42.044]: adding tstamp 36.949242456 to clock /dev/ptp3
ts2phc[42.044]: adding tstamp 37.000000000 to clock /dev/ptp1
ts2phc[42.044]: /dev/ptp3 offset -240 s2 freq +4290
ts2phc[42.536]: /dev/ptp3 SKIP extts index 0 at 37.449237848 src 37.563828774
ts2phc[43.028]: adding tstamp 37.949233264 to clock /dev/ptp3
ts2phc[43.028]: adding tstamp 38.000000000 to clock /dev/ptp1
ts2phc[43.028]: /dev/ptp3 offset -144 s2 freq +4314
ts2phc[43.520]: /dev/ptp3 SKIP extts index 0 at 38.449228656 src 38.547823238
ts2phc[44.012]: adding tstamp 38.949224048 to clock /dev/ptp3
ts2phc[44.012]: adding tstamp 39.000000000 to clock /dev/ptp1
ts2phc[44.012]: /dev/ptp3 offset -80 s2 freq +4335
ts2phc[44.508]: /dev/ptp3 SKIP extts index 0 at 39.449219432 src 39.535846118
ts2phc[44.996]: adding tstamp 39.949214816 to clock /dev/ptp3
ts2phc[44.996]: adding tstamp 40.000000000 to clock /dev/ptp1
ts2phc[44.996]: /dev/ptp3 offset -32 s2 freq +4359
ts2phc[45.488]: /dev/ptp3 SKIP extts index 0 at 40.449210192 src 40.515824678
ts2phc[45.980]: adding tstamp 40.949205568 to clock /dev/ptp3
ts2phc[45.980]: adding tstamp 41.000000000 to clock /dev/ptp1
ts2phc[45.980]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[46.636]: /dev/ptp3 SKIP extts index 0 at 41.449200928 src 41.664176902
ts2phc[47.132]: adding tstamp 41.949196288 to clock /dev/ptp3
ts2phc[47.132]: adding tstamp 42.000000000 to clock /dev/ptp1
ts2phc[47.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[47.620]: /dev/ptp3 SKIP extts index 0 at 42.449191656 src 42.648117190
ts2phc[48.112]: adding tstamp 42.949187016 to clock /dev/ptp3
ts2phc[48.112]: adding tstamp 43.000000000 to clock /dev/ptp1
ts2phc[48.112]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[48.604]: /dev/ptp3 SKIP extts index 0 at 43.449182384 src 43.632112582
ts2phc[49.100]: adding tstamp 43.949177736 to clock /dev/ptp3
ts2phc[49.100]: adding tstamp 44.000000000 to clock /dev/ptp1
ts2phc[49.100]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[49.588]: /dev/ptp3 SKIP extts index 0 at 44.449173096 src 44.616136774
ts2phc[50.080]: adding tstamp 44.949168464 to clock /dev/ptp3
ts2phc[50.080]: adding tstamp 45.000000000 to clock /dev/ptp1
ts2phc[50.080]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[50.572]: /dev/ptp3 SKIP extts index 0 at 45.449163816 src 45.600134662
ts2phc[51.064]: adding tstamp 45.949159160 to clock /dev/ptp3
ts2phc[51.064]: adding tstamp 46.000000000 to clock /dev/ptp1
ts2phc[51.064]: /dev/ptp3 offset -8 s2 freq +4376
ts2phc[51.556]: /dev/ptp3 SKIP extts index 0 at 46.449154528 src 46.584588550
ts2phc[52.048]: adding tstamp 46.949149896 to clock /dev/ptp3
ts2phc[52.048]: adding tstamp 47.000000000 to clock /dev/ptp1
ts2phc[52.048]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[52.540]: /dev/ptp3 SKIP extts index 0 at 47.449145256 src 47.568132198
ts2phc[53.032]: adding tstamp 47.949140616 to clock /dev/ptp3
ts2phc[53.032]: adding tstamp 48.000000000 to clock /dev/ptp1
ts2phc[53.032]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[53.524]: /dev/ptp3 SKIP extts index 0 at 48.449135968 src 48.552121446
ts2phc[54.016]: adding tstamp 48.949131320 to clock /dev/ptp3
ts2phc[54.016]: adding tstamp 49.000000000 to clock /dev/ptp1
ts2phc[54.016]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[54.512]: /dev/ptp3 SKIP extts index 0 at 49.449126680 src 49.540147014
ts2phc[55.000]: adding tstamp 49.949122040 to clock /dev/ptp3
ts2phc[55.000]: adding tstamp 50.000000000 to clock /dev/ptp1
ts2phc[55.000]: /dev/ptp3 offset 0 s2 freq +4382
ts2phc[55.492]: /dev/ptp3 SKIP extts index 0 at 50.449117400 src 50.520119078
ts2phc[55.988]: adding tstamp 50.949112768 to clock /dev/ptp3
ts2phc[55.988]: adding tstamp 51.000000000 to clock /dev/ptp1
ts2phc[55.988]: /dev/ptp3 offset 8 s2 freq +4390
ts2phc[56.476]: /dev/ptp3 SKIP extts index 0 at 51.449108120 src 51.504175910
ts2phc[57.132]: adding tstamp 51.949103480 to clock /dev/ptp3
ts2phc[57.132]: adding tstamp 52.000000000 to clock /dev/ptp1
ts2phc[57.132]: /dev/ptp3 offset 0 s2 freq +4384
ts2phc[57.624]: /dev/ptp3 SKIP extts index 0 at 52.449098840 src 52.651833574
ts2phc[58.116]: adding tstamp 52.949094200 to clock /dev/ptp3
ts2phc[58.116]: adding tstamp 53.000000000 to clock /dev/ptp1
ts2phc[58.116]: /dev/ptp3 offset 8 s2 freq +4392
ts2phc[58.612]: /dev/ptp3 SKIP extts index 0 at 53.449089560 src 53.639826918
ts2phc[59.100]: adding tstamp 53.949084920 to clock /dev/ptp3
ts2phc[59.100]: adding tstamp 54.000000000 to clock /dev/ptp1
ts2phc[59.100]: /dev/ptp3 offset 8 s2 freq +4394
ts2phc[59.592]: /dev/ptp3 SKIP extts index 0 at 54.449080272 src 54.619842278
ts2phc[60.084]: adding tstamp 54.949075624 to clock /dev/ptp3
ts2phc[60.084]: adding tstamp 55.000000000 to clock /dev/ptp1
ts2phc[60.084]: /dev/ptp3 offset 8 s2 freq +4397
ts2phc[60.576]: /dev/ptp3 SKIP extts index 0 at 55.449070968 src 55.603885542
ts2phc[61.068]: adding tstamp 55.949066312 to clock /dev/ptp3
ts2phc[61.068]: adding tstamp 56.000000000 to clock /dev/ptp1
ts2phc[61.068]: /dev/ptp3 offset 0 s2 freq +4391
ts2phc[61.560]: /dev/ptp3 SKIP extts index 0 at 56.449061680 src 56.587885798
ts2phc[62.052]: adding tstamp 56.949057032 to clock /dev/ptp3
ts2phc[62.052]: adding tstamp 57.000000000 to clock /dev/ptp1
ts2phc[62.052]: /dev/ptp3 offset -8 s2 freq +4383
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-03 17:51:58 +00:00
|
|
|
del_timer_sync(&ptp_data->extts_timer);
|
2019-12-27 13:02:29 +00:00
|
|
|
ptp_cancel_worker_sync(ptp_data->clock);
|
|
|
|
skb_queue_purge(&ptp_data->skb_rxtstamp_queue);
|
2019-10-11 23:18:15 +00:00
|
|
|
ptp_clock_unregister(ptp_data->clock);
|
|
|
|
ptp_data->clock = NULL;
|
|
|
|
}
|
|
|
|
|
2019-12-27 00:59:54 +00:00
|
|
|
void sja1105_ptp_txtstamp_skb(struct dsa_switch *ds, int port,
|
2019-10-11 23:18:15 +00:00
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
struct sja1105_private *priv = ds->priv;
|
|
|
|
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
|
|
|
|
struct skb_shared_hwtstamps shwt = {0};
|
2019-10-16 18:41:02 +00:00
|
|
|
u64 ticks, ts;
|
2019-10-11 23:18:15 +00:00
|
|
|
int rc;
|
|
|
|
|
|
|
|
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
|
|
|
|
|
|
|
|
mutex_lock(&ptp_data->lock);
|
|
|
|
|
net: dsa: sja1105: fix PTP timestamping with large tc-taprio cycles
It isn't actually described clearly at all in UM10944.pdf, but on TX of
a management frame (such as PTP), this needs to happen:
- The destination MAC address (i.e. 01-80-c2-00-00-0e), along with the
desired destination port, need to be installed in one of the 4
management slots of the switch, over SPI.
- The host can poll over SPI for that management slot's ENFPORT field.
That gets unset when the switch has matched the slot to the frame.
And therein lies the problem. ENFPORT does not mean that the packet has
been transmitted. Just that it has been received over the CPU port, and
that the mgmt slot is yet again available.
This is relevant because of what we are doing in sja1105_ptp_txtstamp_skb,
which is called right after sja1105_mgmt_xmit. We are in a hard
real-time deadline, since the hardware only gives us 24 bits of TX
timestamp, so we need to read the full PTP clock to reconstruct it.
Because we're in a hurry (in an attempt to make sure that we have a full
64-bit PTP time which is as close as possible to the actual transmission
time of the frame, to avoid 24-bit wraparounds), first we read the PTP
clock, then we poll for the TX timestamp to become available.
But of course, we don't know for sure that the frame has been
transmitted when we read the full PTP clock. We had assumed that ENFPORT
means it has, but the assumption is incorrect. And while in most
real-life scenarios this has never been caught due to software delays,
nowhere is this fact more obvious than with a tc-taprio offload, where
PTP traffic gets a small timeslot very rarely (example: 1 packet per 10
ms). In that case, we will be reading the PTP clock for timestamp
reconstruction too early (before the packet has been transmitted), and
this renders the reconstruction procedure incorrect (see the assumptions
described in the comments found on function sja1105_tstamp_reconstruct).
So the PTP TX timestamps will be off by 1<<24 clock ticks, or 135 ms
(1 tick is 8 ns).
So fix this case of premature optimization by simply reordering the
sja1105_ptpegr_ts_poll and the sja1105_ptpclkval_read function calls. It
turns out that in practice, the 135 ms hard deadline for PTP timestamp
wraparound is not so hard, since even the most bandwidth-intensive PTP
profiles, such as 802.1AS-2011, have a sync frame interval of 125 ms.
So if we couldn't deliver a timestamp in 135 ms (which we can), we're
toast and have much bigger problems anyway.
Fixes: 47ed985e97f5 ("net: dsa: sja1105: Add logic for TX timestamping")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-14 20:54:09 +00:00
|
|
|
rc = sja1105_ptpegr_ts_poll(ds, port, &ts);
|
2019-10-16 18:41:02 +00:00
|
|
|
if (rc < 0) {
|
net: dsa: sja1105: fix PTP timestamping with large tc-taprio cycles
It isn't actually described clearly at all in UM10944.pdf, but on TX of
a management frame (such as PTP), this needs to happen:
- The destination MAC address (i.e. 01-80-c2-00-00-0e), along with the
desired destination port, need to be installed in one of the 4
management slots of the switch, over SPI.
- The host can poll over SPI for that management slot's ENFPORT field.
That gets unset when the switch has matched the slot to the frame.
And therein lies the problem. ENFPORT does not mean that the packet has
been transmitted. Just that it has been received over the CPU port, and
that the mgmt slot is yet again available.
This is relevant because of what we are doing in sja1105_ptp_txtstamp_skb,
which is called right after sja1105_mgmt_xmit. We are in a hard
real-time deadline, since the hardware only gives us 24 bits of TX
timestamp, so we need to read the full PTP clock to reconstruct it.
Because we're in a hurry (in an attempt to make sure that we have a full
64-bit PTP time which is as close as possible to the actual transmission
time of the frame, to avoid 24-bit wraparounds), first we read the PTP
clock, then we poll for the TX timestamp to become available.
But of course, we don't know for sure that the frame has been
transmitted when we read the full PTP clock. We had assumed that ENFPORT
means it has, but the assumption is incorrect. And while in most
real-life scenarios this has never been caught due to software delays,
nowhere is this fact more obvious than with a tc-taprio offload, where
PTP traffic gets a small timeslot very rarely (example: 1 packet per 10
ms). In that case, we will be reading the PTP clock for timestamp
reconstruction too early (before the packet has been transmitted), and
this renders the reconstruction procedure incorrect (see the assumptions
described in the comments found on function sja1105_tstamp_reconstruct).
So the PTP TX timestamps will be off by 1<<24 clock ticks, or 135 ms
(1 tick is 8 ns).
So fix this case of premature optimization by simply reordering the
sja1105_ptpegr_ts_poll and the sja1105_ptpclkval_read function calls. It
turns out that in practice, the 135 ms hard deadline for PTP timestamp
wraparound is not so hard, since even the most bandwidth-intensive PTP
profiles, such as 802.1AS-2011, have a sync frame interval of 125 ms.
So if we couldn't deliver a timestamp in 135 ms (which we can), we're
toast and have much bigger problems anyway.
Fixes: 47ed985e97f5 ("net: dsa: sja1105: Add logic for TX timestamping")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-14 20:54:09 +00:00
|
|
|
dev_err(ds->dev, "timed out polling for tstamp\n");
|
2019-10-16 18:41:02 +00:00
|
|
|
kfree_skb(skb);
|
|
|
|
goto out;
|
|
|
|
}
|
2019-10-11 23:18:15 +00:00
|
|
|
|
net: dsa: sja1105: fix PTP timestamping with large tc-taprio cycles
It isn't actually described clearly at all in UM10944.pdf, but on TX of
a management frame (such as PTP), this needs to happen:
- The destination MAC address (i.e. 01-80-c2-00-00-0e), along with the
desired destination port, need to be installed in one of the 4
management slots of the switch, over SPI.
- The host can poll over SPI for that management slot's ENFPORT field.
That gets unset when the switch has matched the slot to the frame.
And therein lies the problem. ENFPORT does not mean that the packet has
been transmitted. Just that it has been received over the CPU port, and
that the mgmt slot is yet again available.
This is relevant because of what we are doing in sja1105_ptp_txtstamp_skb,
which is called right after sja1105_mgmt_xmit. We are in a hard
real-time deadline, since the hardware only gives us 24 bits of TX
timestamp, so we need to read the full PTP clock to reconstruct it.
Because we're in a hurry (in an attempt to make sure that we have a full
64-bit PTP time which is as close as possible to the actual transmission
time of the frame, to avoid 24-bit wraparounds), first we read the PTP
clock, then we poll for the TX timestamp to become available.
But of course, we don't know for sure that the frame has been
transmitted when we read the full PTP clock. We had assumed that ENFPORT
means it has, but the assumption is incorrect. And while in most
real-life scenarios this has never been caught due to software delays,
nowhere is this fact more obvious than with a tc-taprio offload, where
PTP traffic gets a small timeslot very rarely (example: 1 packet per 10
ms). In that case, we will be reading the PTP clock for timestamp
reconstruction too early (before the packet has been transmitted), and
this renders the reconstruction procedure incorrect (see the assumptions
described in the comments found on function sja1105_tstamp_reconstruct).
So the PTP TX timestamps will be off by 1<<24 clock ticks, or 135 ms
(1 tick is 8 ns).
So fix this case of premature optimization by simply reordering the
sja1105_ptpegr_ts_poll and the sja1105_ptpclkval_read function calls. It
turns out that in practice, the 135 ms hard deadline for PTP timestamp
wraparound is not so hard, since even the most bandwidth-intensive PTP
profiles, such as 802.1AS-2011, have a sync frame interval of 125 ms.
So if we couldn't deliver a timestamp in 135 ms (which we can), we're
toast and have much bigger problems anyway.
Fixes: 47ed985e97f5 ("net: dsa: sja1105: Add logic for TX timestamping")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-14 20:54:09 +00:00
|
|
|
rc = sja1105_ptpclkval_read(priv, &ticks, NULL);
|
2019-10-11 23:18:15 +00:00
|
|
|
if (rc < 0) {
|
net: dsa: sja1105: fix PTP timestamping with large tc-taprio cycles
It isn't actually described clearly at all in UM10944.pdf, but on TX of
a management frame (such as PTP), this needs to happen:
- The destination MAC address (i.e. 01-80-c2-00-00-0e), along with the
desired destination port, need to be installed in one of the 4
management slots of the switch, over SPI.
- The host can poll over SPI for that management slot's ENFPORT field.
That gets unset when the switch has matched the slot to the frame.
And therein lies the problem. ENFPORT does not mean that the packet has
been transmitted. Just that it has been received over the CPU port, and
that the mgmt slot is yet again available.
This is relevant because of what we are doing in sja1105_ptp_txtstamp_skb,
which is called right after sja1105_mgmt_xmit. We are in a hard
real-time deadline, since the hardware only gives us 24 bits of TX
timestamp, so we need to read the full PTP clock to reconstruct it.
Because we're in a hurry (in an attempt to make sure that we have a full
64-bit PTP time which is as close as possible to the actual transmission
time of the frame, to avoid 24-bit wraparounds), first we read the PTP
clock, then we poll for the TX timestamp to become available.
But of course, we don't know for sure that the frame has been
transmitted when we read the full PTP clock. We had assumed that ENFPORT
means it has, but the assumption is incorrect. And while in most
real-life scenarios this has never been caught due to software delays,
nowhere is this fact more obvious than with a tc-taprio offload, where
PTP traffic gets a small timeslot very rarely (example: 1 packet per 10
ms). In that case, we will be reading the PTP clock for timestamp
reconstruction too early (before the packet has been transmitted), and
this renders the reconstruction procedure incorrect (see the assumptions
described in the comments found on function sja1105_tstamp_reconstruct).
So the PTP TX timestamps will be off by 1<<24 clock ticks, or 135 ms
(1 tick is 8 ns).
So fix this case of premature optimization by simply reordering the
sja1105_ptpegr_ts_poll and the sja1105_ptpclkval_read function calls. It
turns out that in practice, the 135 ms hard deadline for PTP timestamp
wraparound is not so hard, since even the most bandwidth-intensive PTP
profiles, such as 802.1AS-2011, have a sync frame interval of 125 ms.
So if we couldn't deliver a timestamp in 135 ms (which we can), we're
toast and have much bigger problems anyway.
Fixes: 47ed985e97f5 ("net: dsa: sja1105: Add logic for TX timestamping")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-14 20:54:09 +00:00
|
|
|
dev_err(ds->dev, "Failed to read PTP clock: %d\n", rc);
|
2019-10-11 23:18:15 +00:00
|
|
|
kfree_skb(skb);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
ts = sja1105_tstamp_reconstruct(ds, ticks, ts);
|
2019-10-11 23:18:15 +00:00
|
|
|
|
2019-10-16 18:41:02 +00:00
|
|
|
shwt.hwtstamp = ns_to_ktime(sja1105_ticks_to_ns(ts));
|
2019-10-11 23:18:15 +00:00
|
|
|
skb_complete_tx_timestamp(skb, &shwt);
|
|
|
|
|
|
|
|
out:
|
|
|
|
mutex_unlock(&ptp_data->lock);
|
net: dsa: sja1105: Add support for the PTP clock
The design of this PHC driver is influenced by the switch's behavior
w.r.t. timestamping. It exposes two PTP counters, one free-running
(PTPTSCLK) and the other offset- and frequency-corrected in hardware
through PTPCLKVAL, PTPCLKADD and PTPCLKRATE. The MACs can sample either
of these for frame timestamps.
However, the user manual warns that taking timestamps based on the
corrected clock is less than useful, as the switch can deliver corrupted
timestamps in a variety of circumstances.
Therefore, this PHC uses the free-running PTPTSCLK together with a
timecounter/cyclecounter structure that translates it into a software
time domain. Thus, the settime/adjtime and adjfine callbacks are
hardware no-ops.
The timestamps (introduced in a further patch) will also be translated
to the correct time domain before being handed over to the userspace PTP
stack.
The introduction of a second set of PHC operations that operate on the
hardware PTPCLKVAL/PTPCLKADD/PTPCLKRATE in the future is somewhat
unavoidable, as the TTEthernet core uses the corrected PTP time domain.
However, the free-running counter + timecounter structure combination
will suffice for now, as the resulting timestamps yield a sub-50 ns
synchronization offset in steady state using linuxptp.
For this patch, in absence of frame timestamping, the operations of the
switch PHC were tested by syncing it to the system time as a local slave
clock with:
phc2sys -s CLOCK_REALTIME -c swp2 -O 0 -m -S 0.01
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 12:04:34 +00:00
|
|
|
}
|