linux/drivers/net/ethernet/netronome/nfp/bpf/verifier.c

847 lines
24 KiB
C
Raw Normal View History

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2016-2018 Netronome Systems, Inc. */
#include <linux/bpf.h>
#include <linux/bpf_verifier.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/pkt_cls.h>
#include "../nfp_app.h"
#include "../nfp_main.h"
#include "../nfp_net.h"
#include "fw.h"
#include "main.h"
#define pr_vlog(env, fmt, ...) \
bpf_verifier_log_write(env, "[nfp] " fmt, ##__VA_ARGS__)
struct nfp_insn_meta *
nfp_bpf_goto_meta(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
unsigned int insn_idx)
{
unsigned int forward, backward, i;
backward = meta->n - insn_idx;
forward = insn_idx - meta->n;
if (min(forward, backward) > nfp_prog->n_insns - insn_idx - 1) {
backward = nfp_prog->n_insns - insn_idx - 1;
meta = nfp_prog_last_meta(nfp_prog);
}
if (min(forward, backward) > insn_idx && backward > insn_idx) {
forward = insn_idx;
meta = nfp_prog_first_meta(nfp_prog);
}
if (forward < backward)
for (i = 0; i < forward; i++)
meta = nfp_meta_next(meta);
else
for (i = 0; i < backward; i++)
meta = nfp_meta_prev(meta);
return meta;
}
static void
nfp_record_adjust_head(struct nfp_app_bpf *bpf, struct nfp_prog *nfp_prog,
struct nfp_insn_meta *meta,
const struct bpf_reg_state *reg2)
{
unsigned int location = UINT_MAX;
int imm;
/* Datapath usually can give us guarantees on how much adjust head
* can be done without the need for any checks. Optimize the simple
* case where there is only one adjust head by a constant.
*/
if (reg2->type != SCALAR_VALUE || !tnum_is_const(reg2->var_off))
goto exit_set_location;
imm = reg2->var_off.value;
/* Translator will skip all checks, we need to guarantee min pkt len */
if (imm > ETH_ZLEN - ETH_HLEN)
goto exit_set_location;
if (imm > (int)bpf->adjust_head.guaranteed_add ||
imm < -bpf->adjust_head.guaranteed_sub)
goto exit_set_location;
if (nfp_prog->adjust_head_location) {
/* Only one call per program allowed */
if (nfp_prog->adjust_head_location != meta->n)
goto exit_set_location;
if (meta->arg2.reg.var_off.value != imm)
goto exit_set_location;
}
location = meta->n;
exit_set_location:
nfp_prog->adjust_head_location = location;
}
nfp: bpf: protect against mis-initializing atomic counters Atomic operations on the NFP are currently always in big endian. The driver keeps track of regions of memory storing atomic values and byte swaps them accordingly. There are corner cases where the map values may be initialized before the driver knows they are used as atomic counters. This can happen either when the datapath is performing the update and the stack contents are unknown or when map is updated before the program which will use it for atomic values is loaded. To avoid situation where user initializes the value to 0 1 2 3 and then after loading a program which uses the word as an atomic counter starts reading 3 2 1 0 - only allow atomic counters to be initialized to endian-neutral values. For updates from the datapath the stack information may not be as precise, so just allow initializing such values to 0. Example code which would break: struct bpf_map_def SEC("maps") rxcnt = { .type = BPF_MAP_TYPE_HASH, .key_size = sizeof(__u32), .value_size = sizeof(__u64), .max_entries = 1, }; int xdp_prog1() { __u64 nonzeroval = 3; __u32 key = 0; __u64 *value; value = bpf_map_lookup_elem(&rxcnt, &key); if (!value) bpf_map_update_elem(&rxcnt, &key, &nonzeroval, BPF_ANY); else __sync_fetch_and_add(value, 1); return XDP_PASS; } $ offload bpftool map dump key: 00 00 00 00 value: 00 00 00 03 00 00 00 00 should be: $ offload bpftool map dump key: 00 00 00 00 value: 03 00 00 00 00 00 00 00 Reported-by: David Beckett <david.beckett@netronome.com> Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-16 22:19:09 +00:00
static bool nfp_bpf_map_update_value_ok(struct bpf_verifier_env *env)
{
const struct bpf_reg_state *reg1 = cur_regs(env) + BPF_REG_1;
const struct bpf_reg_state *reg3 = cur_regs(env) + BPF_REG_3;
struct bpf_offloaded_map *offmap;
struct bpf_func_state *state;
struct nfp_bpf_map *nfp_map;
int off, i;
state = env->cur_state->frame[reg3->frameno];
/* We need to record each time update happens with non-zero words,
* in case such word is used in atomic operations.
* Implicitly depend on nfp_bpf_stack_arg_ok(reg3) being run before.
*/
offmap = map_to_offmap(reg1->map_ptr);
nfp_map = offmap->dev_priv;
off = reg3->off + reg3->var_off.value;
for (i = 0; i < offmap->map.value_size; i++) {
struct bpf_stack_state *stack_entry;
unsigned int soff;
soff = -(off + i) - 1;
stack_entry = &state->stack[soff / BPF_REG_SIZE];
if (stack_entry->slot_type[soff % BPF_REG_SIZE] == STACK_ZERO)
continue;
if (nfp_map->use_map[i / 4].type == NFP_MAP_USE_ATOMIC_CNT) {
pr_vlog(env, "value at offset %d/%d may be non-zero, bpf_map_update_elem() is required to initialize atomic counters to zero to avoid offload endian issues\n",
i, soff);
return false;
}
nfp_map->use_map[i / 4].non_zero_update = 1;
}
return true;
}
static int
nfp_bpf_stack_arg_ok(const char *fname, struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
struct nfp_bpf_reg_state *old_arg)
{
s64 off, old_off;
if (reg->type != PTR_TO_STACK) {
pr_vlog(env, "%s: unsupported ptr type %d\n",
fname, reg->type);
return false;
}
if (!tnum_is_const(reg->var_off)) {
pr_vlog(env, "%s: variable pointer\n", fname);
return false;
}
off = reg->var_off.value + reg->off;
if (-off % 4) {
pr_vlog(env, "%s: unaligned stack pointer %lld\n", fname, -off);
return false;
}
/* Rest of the checks is only if we re-parse the same insn */
if (!old_arg)
return true;
old_off = old_arg->reg.var_off.value + old_arg->reg.off;
old_arg->var_off |= off != old_off;
return true;
}
static bool
nfp_bpf_map_call_ok(const char *fname, struct bpf_verifier_env *env,
struct nfp_insn_meta *meta,
u32 helper_tgt, const struct bpf_reg_state *reg1)
{
if (!helper_tgt) {
pr_vlog(env, "%s: not supported by FW\n", fname);
return false;
}
return true;
}
static int
nfp_bpf_check_helper_call(struct nfp_prog *nfp_prog,
struct bpf_verifier_env *env,
struct nfp_insn_meta *meta)
{
const struct bpf_reg_state *reg1 = cur_regs(env) + BPF_REG_1;
const struct bpf_reg_state *reg2 = cur_regs(env) + BPF_REG_2;
const struct bpf_reg_state *reg3 = cur_regs(env) + BPF_REG_3;
struct nfp_app_bpf *bpf = nfp_prog->bpf;
u32 func_id = meta->insn.imm;
switch (func_id) {
case BPF_FUNC_xdp_adjust_head:
if (!bpf->adjust_head.off_max) {
pr_vlog(env, "adjust_head not supported by FW\n");
return -EOPNOTSUPP;
}
if (!(bpf->adjust_head.flags & NFP_BPF_ADJUST_HEAD_NO_META)) {
pr_vlog(env, "adjust_head: FW requires shifting metadata, not supported by the driver\n");
return -EOPNOTSUPP;
}
nfp_record_adjust_head(bpf, nfp_prog, meta, reg2);
break;
case BPF_FUNC_xdp_adjust_tail:
if (!bpf->adjust_tail) {
pr_vlog(env, "adjust_tail not supported by FW\n");
return -EOPNOTSUPP;
}
break;
case BPF_FUNC_map_lookup_elem:
if (!nfp_bpf_map_call_ok("map_lookup", env, meta,
bpf->helpers.map_lookup, reg1) ||
!nfp_bpf_stack_arg_ok("map_lookup", env, reg2,
meta->func_id ? &meta->arg2 : NULL))
return -EOPNOTSUPP;
break;
case BPF_FUNC_map_update_elem:
if (!nfp_bpf_map_call_ok("map_update", env, meta,
bpf->helpers.map_update, reg1) ||
!nfp_bpf_stack_arg_ok("map_update", env, reg2,
meta->func_id ? &meta->arg2 : NULL) ||
nfp: bpf: protect against mis-initializing atomic counters Atomic operations on the NFP are currently always in big endian. The driver keeps track of regions of memory storing atomic values and byte swaps them accordingly. There are corner cases where the map values may be initialized before the driver knows they are used as atomic counters. This can happen either when the datapath is performing the update and the stack contents are unknown or when map is updated before the program which will use it for atomic values is loaded. To avoid situation where user initializes the value to 0 1 2 3 and then after loading a program which uses the word as an atomic counter starts reading 3 2 1 0 - only allow atomic counters to be initialized to endian-neutral values. For updates from the datapath the stack information may not be as precise, so just allow initializing such values to 0. Example code which would break: struct bpf_map_def SEC("maps") rxcnt = { .type = BPF_MAP_TYPE_HASH, .key_size = sizeof(__u32), .value_size = sizeof(__u64), .max_entries = 1, }; int xdp_prog1() { __u64 nonzeroval = 3; __u32 key = 0; __u64 *value; value = bpf_map_lookup_elem(&rxcnt, &key); if (!value) bpf_map_update_elem(&rxcnt, &key, &nonzeroval, BPF_ANY); else __sync_fetch_and_add(value, 1); return XDP_PASS; } $ offload bpftool map dump key: 00 00 00 00 value: 00 00 00 03 00 00 00 00 should be: $ offload bpftool map dump key: 00 00 00 00 value: 03 00 00 00 00 00 00 00 Reported-by: David Beckett <david.beckett@netronome.com> Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-16 22:19:09 +00:00
!nfp_bpf_stack_arg_ok("map_update", env, reg3, NULL) ||
!nfp_bpf_map_update_value_ok(env))
return -EOPNOTSUPP;
break;
case BPF_FUNC_map_delete_elem:
if (!nfp_bpf_map_call_ok("map_delete", env, meta,
bpf->helpers.map_delete, reg1) ||
!nfp_bpf_stack_arg_ok("map_delete", env, reg2,
meta->func_id ? &meta->arg2 : NULL))
return -EOPNOTSUPP;
break;
case BPF_FUNC_get_prandom_u32:
if (bpf->pseudo_random)
break;
pr_vlog(env, "bpf_get_prandom_u32(): FW doesn't support random number generation\n");
return -EOPNOTSUPP;
case BPF_FUNC_perf_event_output:
BUILD_BUG_ON(NFP_BPF_SCALAR_VALUE != SCALAR_VALUE ||
NFP_BPF_MAP_VALUE != PTR_TO_MAP_VALUE ||
NFP_BPF_STACK != PTR_TO_STACK ||
NFP_BPF_PACKET_DATA != PTR_TO_PACKET);
if (!bpf->helpers.perf_event_output) {
pr_vlog(env, "event_output: not supported by FW\n");
return -EOPNOTSUPP;
}
/* Force current CPU to make sure we can report the event
* wherever we get the control message from FW.
*/
if (reg3->var_off.mask & BPF_F_INDEX_MASK ||
(reg3->var_off.value & BPF_F_INDEX_MASK) !=
BPF_F_CURRENT_CPU) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg3->var_off);
pr_vlog(env, "event_output: must use BPF_F_CURRENT_CPU, var_off: %s\n",
tn_buf);
return -EOPNOTSUPP;
}
/* Save space in meta, we don't care about arguments other
* than 4th meta, shove it into arg1.
*/
reg1 = cur_regs(env) + BPF_REG_4;
if (reg1->type != SCALAR_VALUE /* NULL ptr */ &&
reg1->type != PTR_TO_STACK &&
reg1->type != PTR_TO_MAP_VALUE &&
reg1->type != PTR_TO_PACKET) {
pr_vlog(env, "event_output: unsupported ptr type: %d\n",
reg1->type);
return -EOPNOTSUPP;
}
if (reg1->type == PTR_TO_STACK &&
!nfp_bpf_stack_arg_ok("event_output", env, reg1, NULL))
return -EOPNOTSUPP;
/* Warn user that on offload NFP may return success even if map
* is not going to accept the event, since the event output is
* fully async and device won't know the state of the map.
* There is also FW limitation on the event length.
*
* Lost events will not show up on the perf ring, driver
* won't see them at all. Events may also get reordered.
*/
dev_warn_once(&nfp_prog->bpf->app->pf->pdev->dev,
"bpf: note: return codes and behavior of bpf_event_output() helper differs for offloaded programs!\n");
pr_vlog(env, "warning: return codes and behavior of event_output helper differ for offload!\n");
if (!meta->func_id)
break;
if (reg1->type != meta->arg1.type) {
pr_vlog(env, "event_output: ptr type changed: %d %d\n",
meta->arg1.type, reg1->type);
return -EINVAL;
}
break;
default:
pr_vlog(env, "unsupported function id: %d\n", func_id);
return -EOPNOTSUPP;
}
meta->func_id = func_id;
meta->arg1 = *reg1;
meta->arg2.reg = *reg2;
return 0;
}
static int
nfp_bpf_check_exit(struct nfp_prog *nfp_prog,
struct bpf_verifier_env *env)
{
const struct bpf_reg_state *reg0 = cur_regs(env) + BPF_REG_0;
u64 imm;
if (nfp_prog->type == BPF_PROG_TYPE_XDP)
return 0;
if (!(reg0->type == SCALAR_VALUE && tnum_is_const(reg0->var_off))) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg0->var_off);
pr_vlog(env, "unsupported exit state: %d, var_off: %s\n",
reg0->type, tn_buf);
return -EINVAL;
}
imm = reg0->var_off.value;
if (nfp_prog->type == BPF_PROG_TYPE_SCHED_CLS &&
imm <= TC_ACT_REDIRECT &&
imm != TC_ACT_SHOT && imm != TC_ACT_STOLEN &&
imm != TC_ACT_QUEUED) {
pr_vlog(env, "unsupported exit state: %d, imm: %llx\n",
reg0->type, imm);
return -EINVAL;
}
return 0;
}
static int
nfp_bpf_check_stack_access(struct nfp_prog *nfp_prog,
struct nfp_insn_meta *meta,
const struct bpf_reg_state *reg,
struct bpf_verifier_env *env)
{
s32 old_off, new_off;
if (reg->frameno != env->cur_state->curframe)
meta->flags |= FLAG_INSN_PTR_CALLER_STACK_FRAME;
if (!tnum_is_const(reg->var_off)) {
pr_vlog(env, "variable ptr stack access\n");
return -EINVAL;
}
if (meta->ptr.type == NOT_INIT)
return 0;
old_off = meta->ptr.off + meta->ptr.var_off.value;
new_off = reg->off + reg->var_off.value;
meta->ptr_not_const |= old_off != new_off;
if (!meta->ptr_not_const)
return 0;
if (old_off % 4 == new_off % 4)
return 0;
pr_vlog(env, "stack access changed location was:%d is:%d\n",
old_off, new_off);
return -EINVAL;
}
static const char *nfp_bpf_map_use_name(enum nfp_bpf_map_use use)
{
static const char * const names[] = {
[NFP_MAP_UNUSED] = "unused",
[NFP_MAP_USE_READ] = "read",
[NFP_MAP_USE_WRITE] = "write",
[NFP_MAP_USE_ATOMIC_CNT] = "atomic",
};
if (use >= ARRAY_SIZE(names) || !names[use])
return "unknown";
return names[use];
}
static int
nfp_bpf_map_mark_used_one(struct bpf_verifier_env *env,
struct nfp_bpf_map *nfp_map,
unsigned int off, enum nfp_bpf_map_use use)
{
nfp: bpf: protect against mis-initializing atomic counters Atomic operations on the NFP are currently always in big endian. The driver keeps track of regions of memory storing atomic values and byte swaps them accordingly. There are corner cases where the map values may be initialized before the driver knows they are used as atomic counters. This can happen either when the datapath is performing the update and the stack contents are unknown or when map is updated before the program which will use it for atomic values is loaded. To avoid situation where user initializes the value to 0 1 2 3 and then after loading a program which uses the word as an atomic counter starts reading 3 2 1 0 - only allow atomic counters to be initialized to endian-neutral values. For updates from the datapath the stack information may not be as precise, so just allow initializing such values to 0. Example code which would break: struct bpf_map_def SEC("maps") rxcnt = { .type = BPF_MAP_TYPE_HASH, .key_size = sizeof(__u32), .value_size = sizeof(__u64), .max_entries = 1, }; int xdp_prog1() { __u64 nonzeroval = 3; __u32 key = 0; __u64 *value; value = bpf_map_lookup_elem(&rxcnt, &key); if (!value) bpf_map_update_elem(&rxcnt, &key, &nonzeroval, BPF_ANY); else __sync_fetch_and_add(value, 1); return XDP_PASS; } $ offload bpftool map dump key: 00 00 00 00 value: 00 00 00 03 00 00 00 00 should be: $ offload bpftool map dump key: 00 00 00 00 value: 03 00 00 00 00 00 00 00 Reported-by: David Beckett <david.beckett@netronome.com> Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-16 22:19:09 +00:00
if (nfp_map->use_map[off / 4].type != NFP_MAP_UNUSED &&
nfp_map->use_map[off / 4].type != use) {
pr_vlog(env, "map value use type conflict %s vs %s off: %u\n",
nfp: bpf: protect against mis-initializing atomic counters Atomic operations on the NFP are currently always in big endian. The driver keeps track of regions of memory storing atomic values and byte swaps them accordingly. There are corner cases where the map values may be initialized before the driver knows they are used as atomic counters. This can happen either when the datapath is performing the update and the stack contents are unknown or when map is updated before the program which will use it for atomic values is loaded. To avoid situation where user initializes the value to 0 1 2 3 and then after loading a program which uses the word as an atomic counter starts reading 3 2 1 0 - only allow atomic counters to be initialized to endian-neutral values. For updates from the datapath the stack information may not be as precise, so just allow initializing such values to 0. Example code which would break: struct bpf_map_def SEC("maps") rxcnt = { .type = BPF_MAP_TYPE_HASH, .key_size = sizeof(__u32), .value_size = sizeof(__u64), .max_entries = 1, }; int xdp_prog1() { __u64 nonzeroval = 3; __u32 key = 0; __u64 *value; value = bpf_map_lookup_elem(&rxcnt, &key); if (!value) bpf_map_update_elem(&rxcnt, &key, &nonzeroval, BPF_ANY); else __sync_fetch_and_add(value, 1); return XDP_PASS; } $ offload bpftool map dump key: 00 00 00 00 value: 00 00 00 03 00 00 00 00 should be: $ offload bpftool map dump key: 00 00 00 00 value: 03 00 00 00 00 00 00 00 Reported-by: David Beckett <david.beckett@netronome.com> Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-16 22:19:09 +00:00
nfp_bpf_map_use_name(nfp_map->use_map[off / 4].type),
nfp_bpf_map_use_name(use), off);
return -EOPNOTSUPP;
}
nfp: bpf: protect against mis-initializing atomic counters Atomic operations on the NFP are currently always in big endian. The driver keeps track of regions of memory storing atomic values and byte swaps them accordingly. There are corner cases where the map values may be initialized before the driver knows they are used as atomic counters. This can happen either when the datapath is performing the update and the stack contents are unknown or when map is updated before the program which will use it for atomic values is loaded. To avoid situation where user initializes the value to 0 1 2 3 and then after loading a program which uses the word as an atomic counter starts reading 3 2 1 0 - only allow atomic counters to be initialized to endian-neutral values. For updates from the datapath the stack information may not be as precise, so just allow initializing such values to 0. Example code which would break: struct bpf_map_def SEC("maps") rxcnt = { .type = BPF_MAP_TYPE_HASH, .key_size = sizeof(__u32), .value_size = sizeof(__u64), .max_entries = 1, }; int xdp_prog1() { __u64 nonzeroval = 3; __u32 key = 0; __u64 *value; value = bpf_map_lookup_elem(&rxcnt, &key); if (!value) bpf_map_update_elem(&rxcnt, &key, &nonzeroval, BPF_ANY); else __sync_fetch_and_add(value, 1); return XDP_PASS; } $ offload bpftool map dump key: 00 00 00 00 value: 00 00 00 03 00 00 00 00 should be: $ offload bpftool map dump key: 00 00 00 00 value: 03 00 00 00 00 00 00 00 Reported-by: David Beckett <david.beckett@netronome.com> Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-16 22:19:09 +00:00
if (nfp_map->use_map[off / 4].non_zero_update &&
use == NFP_MAP_USE_ATOMIC_CNT) {
pr_vlog(env, "atomic counter in map value may already be initialized to non-zero value off: %u\n",
off);
return -EOPNOTSUPP;
}
nfp_map->use_map[off / 4].type = use;
return 0;
}
static int
nfp_bpf_map_mark_used(struct bpf_verifier_env *env, struct nfp_insn_meta *meta,
const struct bpf_reg_state *reg,
enum nfp_bpf_map_use use)
{
struct bpf_offloaded_map *offmap;
struct nfp_bpf_map *nfp_map;
unsigned int size, off;
int i, err;
if (!tnum_is_const(reg->var_off)) {
pr_vlog(env, "map value offset is variable\n");
return -EOPNOTSUPP;
}
off = reg->var_off.value + meta->insn.off + reg->off;
size = BPF_LDST_BYTES(&meta->insn);
offmap = map_to_offmap(reg->map_ptr);
nfp_map = offmap->dev_priv;
if (off + size > offmap->map.value_size) {
pr_vlog(env, "map value access out-of-bounds\n");
return -EINVAL;
}
for (i = 0; i < size; i += 4 - (off + i) % 4) {
err = nfp_bpf_map_mark_used_one(env, nfp_map, off + i, use);
if (err)
return err;
}
return 0;
}
static int
nfp_bpf_check_ptr(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
struct bpf_verifier_env *env, u8 reg_no)
{
const struct bpf_reg_state *reg = cur_regs(env) + reg_no;
int err;
if (reg->type != PTR_TO_CTX &&
reg->type != PTR_TO_STACK &&
reg->type != PTR_TO_MAP_VALUE &&
reg->type != PTR_TO_PACKET) {
pr_vlog(env, "unsupported ptr type: %d\n", reg->type);
return -EINVAL;
}
if (reg->type == PTR_TO_STACK) {
err = nfp_bpf_check_stack_access(nfp_prog, meta, reg, env);
if (err)
return err;
}
if (reg->type == PTR_TO_MAP_VALUE) {
if (is_mbpf_load(meta)) {
err = nfp_bpf_map_mark_used(env, meta, reg,
NFP_MAP_USE_READ);
if (err)
return err;
}
if (is_mbpf_store(meta)) {
pr_vlog(env, "map writes not supported\n");
return -EOPNOTSUPP;
}
if (is_mbpf_xadd(meta)) {
err = nfp_bpf_map_mark_used(env, meta, reg,
NFP_MAP_USE_ATOMIC_CNT);
if (err)
return err;
}
}
if (meta->ptr.type != NOT_INIT && meta->ptr.type != reg->type) {
pr_vlog(env, "ptr type changed for instruction %d -> %d\n",
meta->ptr.type, reg->type);
return -EINVAL;
}
meta->ptr = *reg;
return 0;
}
static int
nfp_bpf_check_store(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
struct bpf_verifier_env *env)
{
const struct bpf_reg_state *reg = cur_regs(env) + meta->insn.dst_reg;
if (reg->type == PTR_TO_CTX) {
if (nfp_prog->type == BPF_PROG_TYPE_XDP) {
/* XDP ctx accesses must be 4B in size */
switch (meta->insn.off) {
case offsetof(struct xdp_md, rx_queue_index):
if (nfp_prog->bpf->queue_select)
goto exit_check_ptr;
pr_vlog(env, "queue selection not supported by FW\n");
return -EOPNOTSUPP;
}
}
pr_vlog(env, "unsupported store to context field\n");
return -EOPNOTSUPP;
}
exit_check_ptr:
return nfp_bpf_check_ptr(nfp_prog, meta, env, meta->insn.dst_reg);
}
static int
nfp_bpf_check_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
struct bpf_verifier_env *env)
{
const struct bpf_reg_state *sreg = cur_regs(env) + meta->insn.src_reg;
const struct bpf_reg_state *dreg = cur_regs(env) + meta->insn.dst_reg;
if (dreg->type != PTR_TO_MAP_VALUE) {
pr_vlog(env, "atomic add not to a map value pointer: %d\n",
dreg->type);
return -EOPNOTSUPP;
}
if (sreg->type != SCALAR_VALUE) {
pr_vlog(env, "atomic add not of a scalar: %d\n", sreg->type);
return -EOPNOTSUPP;
}
meta->xadd_over_16bit |=
sreg->var_off.value > 0xffff || sreg->var_off.mask > 0xffff;
meta->xadd_maybe_16bit |=
(sreg->var_off.value & ~sreg->var_off.mask) <= 0xffff;
return nfp_bpf_check_ptr(nfp_prog, meta, env, meta->insn.dst_reg);
}
static int
nfp_bpf_check_alu(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
struct bpf_verifier_env *env)
{
const struct bpf_reg_state *sreg =
cur_regs(env) + meta->insn.src_reg;
const struct bpf_reg_state *dreg =
cur_regs(env) + meta->insn.dst_reg;
meta->umin_src = min(meta->umin_src, sreg->umin_value);
meta->umax_src = max(meta->umax_src, sreg->umax_value);
meta->umin_dst = min(meta->umin_dst, dreg->umin_value);
meta->umax_dst = max(meta->umax_dst, dreg->umax_value);
/* NFP supports u16 and u32 multiplication.
*
* For ALU64, if either operand is beyond u32's value range, we reject
* it. One thing to note, if the source operand is BPF_K, then we need
* to check "imm" field directly, and we'd reject it if it is negative.
* Because for ALU64, "imm" (with s32 type) is expected to be sign
* extended to s64 which NFP mul doesn't support.
*
* For ALU32, it is fine for "imm" be negative though, because the
* result is 32-bits and there is no difference on the low halve of
* the result for signed/unsigned mul, so we will get correct result.
*/
if (is_mbpf_mul(meta)) {
if (meta->umax_dst > U32_MAX) {
pr_vlog(env, "multiplier is not within u32 value range\n");
return -EINVAL;
}
if (mbpf_src(meta) == BPF_X && meta->umax_src > U32_MAX) {
pr_vlog(env, "multiplicand is not within u32 value range\n");
return -EINVAL;
}
if (mbpf_class(meta) == BPF_ALU64 &&
mbpf_src(meta) == BPF_K && meta->insn.imm < 0) {
pr_vlog(env, "sign extended multiplicand won't be within u32 value range\n");
return -EINVAL;
}
}
/* NFP doesn't have divide instructions, we support divide by constant
* through reciprocal multiplication. Given NFP support multiplication
* no bigger than u32, we'd require divisor and dividend no bigger than
* that as well.
*
* Also eBPF doesn't support signed divide and has enforced this on C
* language level by failing compilation. However LLVM assembler hasn't
* enforced this, so it is possible for negative constant to leak in as
* a BPF_K operand through assembly code, we reject such cases as well.
*/
if (is_mbpf_div(meta)) {
if (meta->umax_dst > U32_MAX) {
pr_vlog(env, "dividend is not within u32 value range\n");
return -EINVAL;
}
if (mbpf_src(meta) == BPF_X) {
if (meta->umin_src != meta->umax_src) {
pr_vlog(env, "divisor is not constant\n");
return -EINVAL;
}
if (meta->umax_src > U32_MAX) {
pr_vlog(env, "divisor is not within u32 value range\n");
return -EINVAL;
}
}
if (mbpf_src(meta) == BPF_K && meta->insn.imm < 0) {
pr_vlog(env, "divide by negative constant is not supported\n");
return -EINVAL;
}
}
return 0;
}
int nfp_verify_insn(struct bpf_verifier_env *env, int insn_idx,
int prev_insn_idx)
{
struct nfp_prog *nfp_prog = env->prog->aux->offload->dev_priv;
struct nfp_insn_meta *meta = nfp_prog->verifier_meta;
meta = nfp_bpf_goto_meta(nfp_prog, meta, insn_idx);
nfp_prog->verifier_meta = meta;
if (!nfp_bpf_supported_opcode(meta->insn.code)) {
pr_vlog(env, "instruction %#02x not supported\n",
meta->insn.code);
return -EINVAL;
}
if (meta->insn.src_reg >= MAX_BPF_REG ||
meta->insn.dst_reg >= MAX_BPF_REG) {
pr_vlog(env, "program uses extended registers - jit hardening?\n");
return -EINVAL;
}
if (is_mbpf_helper_call(meta))
return nfp_bpf_check_helper_call(nfp_prog, env, meta);
if (meta->insn.code == (BPF_JMP | BPF_EXIT))
return nfp_bpf_check_exit(nfp_prog, env);
if (is_mbpf_load(meta))
return nfp_bpf_check_ptr(nfp_prog, meta, env,
meta->insn.src_reg);
if (is_mbpf_store(meta))
return nfp_bpf_check_store(nfp_prog, meta, env);
if (is_mbpf_xadd(meta))
return nfp_bpf_check_xadd(nfp_prog, meta, env);
if (is_mbpf_alu(meta))
return nfp_bpf_check_alu(nfp_prog, meta, env);
return 0;
}
nfp: bpf: add main logics for BPF-to-BPF calls support in nfp driver This is the main patch for the logics of BPF-to-BPF calls in the nfp driver. The functions called on BPF_JUMP | BPF_CALL and BPF_JUMP | BPF_EXIT were used to call helpers and exit from the program, respectively; make them usable for calling into, or returning from, a BPF subprogram as well. For all calls, push the return address as well as the callee-saved registers (R6 to R9) to the stack, and pop them upon returning from the calls. In order to limit the overhead in terms of instruction number, this is done through dedicated subroutines. Jumping to the callee actually consists in jumping to the subroutine, that "returns" to the callee: this will require some fixup for passing the address in a later patch. Similarly, returning consists in jumping to the subroutine, which pops registers and then return directly to the caller (but no fixup is needed here). Return to the caller is performed with the RTN instruction newly added to the JIT. For the few steps where we need to know what subprogram an instruction belongs to, the struct nfp_insn_meta is extended with a new subprog_idx field. Note that checks on the available stack size, to take into account the additional requirements associated to BPF-to-BPF calls (storing R6-R9 and return addresses), are added in a later patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-07 11:56:52 +00:00
static int
nfp_assign_subprog_idx_and_regs(struct bpf_verifier_env *env,
struct nfp_prog *nfp_prog)
nfp: bpf: add main logics for BPF-to-BPF calls support in nfp driver This is the main patch for the logics of BPF-to-BPF calls in the nfp driver. The functions called on BPF_JUMP | BPF_CALL and BPF_JUMP | BPF_EXIT were used to call helpers and exit from the program, respectively; make them usable for calling into, or returning from, a BPF subprogram as well. For all calls, push the return address as well as the callee-saved registers (R6 to R9) to the stack, and pop them upon returning from the calls. In order to limit the overhead in terms of instruction number, this is done through dedicated subroutines. Jumping to the callee actually consists in jumping to the subroutine, that "returns" to the callee: this will require some fixup for passing the address in a later patch. Similarly, returning consists in jumping to the subroutine, which pops registers and then return directly to the caller (but no fixup is needed here). Return to the caller is performed with the RTN instruction newly added to the JIT. For the few steps where we need to know what subprogram an instruction belongs to, the struct nfp_insn_meta is extended with a new subprog_idx field. Note that checks on the available stack size, to take into account the additional requirements associated to BPF-to-BPF calls (storing R6-R9 and return addresses), are added in a later patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-07 11:56:52 +00:00
{
struct nfp_insn_meta *meta;
int index = 0;
list_for_each_entry(meta, &nfp_prog->insns, l) {
if (nfp_is_subprog_start(meta))
index++;
meta->subprog_idx = index;
if (meta->insn.dst_reg >= BPF_REG_6 &&
meta->insn.dst_reg <= BPF_REG_9)
nfp_prog->subprog[index].needs_reg_push = 1;
nfp: bpf: add main logics for BPF-to-BPF calls support in nfp driver This is the main patch for the logics of BPF-to-BPF calls in the nfp driver. The functions called on BPF_JUMP | BPF_CALL and BPF_JUMP | BPF_EXIT were used to call helpers and exit from the program, respectively; make them usable for calling into, or returning from, a BPF subprogram as well. For all calls, push the return address as well as the callee-saved registers (R6 to R9) to the stack, and pop them upon returning from the calls. In order to limit the overhead in terms of instruction number, this is done through dedicated subroutines. Jumping to the callee actually consists in jumping to the subroutine, that "returns" to the callee: this will require some fixup for passing the address in a later patch. Similarly, returning consists in jumping to the subroutine, which pops registers and then return directly to the caller (but no fixup is needed here). Return to the caller is performed with the RTN instruction newly added to the JIT. For the few steps where we need to know what subprogram an instruction belongs to, the struct nfp_insn_meta is extended with a new subprog_idx field. Note that checks on the available stack size, to take into account the additional requirements associated to BPF-to-BPF calls (storing R6-R9 and return addresses), are added in a later patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-07 11:56:52 +00:00
}
if (index + 1 != nfp_prog->subprog_cnt) {
pr_vlog(env, "BUG: number of processed BPF functions is not consistent (processed %d, expected %d)\n",
index + 1, nfp_prog->subprog_cnt);
return -EFAULT;
}
return 0;
}
static unsigned int nfp_bpf_get_stack_usage(struct nfp_prog *nfp_prog)
{
struct nfp_insn_meta *meta = nfp_prog_first_meta(nfp_prog);
unsigned int max_depth = 0, depth = 0, frame = 0;
struct nfp_insn_meta *ret_insn[MAX_CALL_FRAMES];
unsigned short frame_depths[MAX_CALL_FRAMES];
unsigned short ret_prog[MAX_CALL_FRAMES];
unsigned short idx = meta->subprog_idx;
/* Inspired from check_max_stack_depth() from kernel verifier.
* Starting from main subprogram, walk all instructions and recursively
* walk all callees that given subprogram can call. Since recursion is
* prevented by the kernel verifier, this algorithm only needs a local
* stack of MAX_CALL_FRAMES to remember callsites.
*/
process_subprog:
frame_depths[frame] = nfp_prog->subprog[idx].stack_depth;
frame_depths[frame] = round_up(frame_depths[frame], STACK_FRAME_ALIGN);
depth += frame_depths[frame];
max_depth = max(max_depth, depth);
continue_subprog:
for (; meta != nfp_prog_last_meta(nfp_prog) && meta->subprog_idx == idx;
meta = nfp_meta_next(meta)) {
if (!is_mbpf_pseudo_call(meta))
continue;
/* We found a call to a subprogram. Remember instruction to
* return to and subprog id.
*/
ret_insn[frame] = nfp_meta_next(meta);
ret_prog[frame] = idx;
/* Find the callee and start processing it. */
meta = nfp_bpf_goto_meta(nfp_prog, meta,
meta->n + 1 + meta->insn.imm);
idx = meta->subprog_idx;
frame++;
goto process_subprog;
}
/* End of for() loop means the last instruction of the subprog was
* reached. If we popped all stack frames, return; otherwise, go on
* processing remaining instructions from the caller.
*/
if (frame == 0)
return max_depth;
depth -= frame_depths[frame];
frame--;
meta = ret_insn[frame];
idx = ret_prog[frame];
goto continue_subprog;
}
int nfp_bpf_finalize(struct bpf_verifier_env *env)
{
struct bpf_subprog_info *info;
struct nfp_prog *nfp_prog;
unsigned int max_stack;
struct nfp_net *nn;
int i;
nfp_prog = env->prog->aux->offload->dev_priv;
nfp_prog->subprog_cnt = env->subprog_cnt;
nfp_prog->subprog = kcalloc(nfp_prog->subprog_cnt,
sizeof(nfp_prog->subprog[0]), GFP_KERNEL);
if (!nfp_prog->subprog)
return -ENOMEM;
nfp_assign_subprog_idx_and_regs(env, nfp_prog);
nfp: bpf: add main logics for BPF-to-BPF calls support in nfp driver This is the main patch for the logics of BPF-to-BPF calls in the nfp driver. The functions called on BPF_JUMP | BPF_CALL and BPF_JUMP | BPF_EXIT were used to call helpers and exit from the program, respectively; make them usable for calling into, or returning from, a BPF subprogram as well. For all calls, push the return address as well as the callee-saved registers (R6 to R9) to the stack, and pop them upon returning from the calls. In order to limit the overhead in terms of instruction number, this is done through dedicated subroutines. Jumping to the callee actually consists in jumping to the subroutine, that "returns" to the callee: this will require some fixup for passing the address in a later patch. Similarly, returning consists in jumping to the subroutine, which pops registers and then return directly to the caller (but no fixup is needed here). Return to the caller is performed with the RTN instruction newly added to the JIT. For the few steps where we need to know what subprogram an instruction belongs to, the struct nfp_insn_meta is extended with a new subprog_idx field. Note that checks on the available stack size, to take into account the additional requirements associated to BPF-to-BPF calls (storing R6-R9 and return addresses), are added in a later patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-07 11:56:52 +00:00
info = env->subprog_info;
nfp: bpf: add main logics for BPF-to-BPF calls support in nfp driver This is the main patch for the logics of BPF-to-BPF calls in the nfp driver. The functions called on BPF_JUMP | BPF_CALL and BPF_JUMP | BPF_EXIT were used to call helpers and exit from the program, respectively; make them usable for calling into, or returning from, a BPF subprogram as well. For all calls, push the return address as well as the callee-saved registers (R6 to R9) to the stack, and pop them upon returning from the calls. In order to limit the overhead in terms of instruction number, this is done through dedicated subroutines. Jumping to the callee actually consists in jumping to the subroutine, that "returns" to the callee: this will require some fixup for passing the address in a later patch. Similarly, returning consists in jumping to the subroutine, which pops registers and then return directly to the caller (but no fixup is needed here). Return to the caller is performed with the RTN instruction newly added to the JIT. For the few steps where we need to know what subprogram an instruction belongs to, the struct nfp_insn_meta is extended with a new subprog_idx field. Note that checks on the available stack size, to take into account the additional requirements associated to BPF-to-BPF calls (storing R6-R9 and return addresses), are added in a later patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-07 11:56:52 +00:00
for (i = 0; i < nfp_prog->subprog_cnt; i++) {
nfp_prog->subprog[i].stack_depth = info[i].stack_depth;
nfp: bpf: add main logics for BPF-to-BPF calls support in nfp driver This is the main patch for the logics of BPF-to-BPF calls in the nfp driver. The functions called on BPF_JUMP | BPF_CALL and BPF_JUMP | BPF_EXIT were used to call helpers and exit from the program, respectively; make them usable for calling into, or returning from, a BPF subprogram as well. For all calls, push the return address as well as the callee-saved registers (R6 to R9) to the stack, and pop them upon returning from the calls. In order to limit the overhead in terms of instruction number, this is done through dedicated subroutines. Jumping to the callee actually consists in jumping to the subroutine, that "returns" to the callee: this will require some fixup for passing the address in a later patch. Similarly, returning consists in jumping to the subroutine, which pops registers and then return directly to the caller (but no fixup is needed here). Return to the caller is performed with the RTN instruction newly added to the JIT. For the few steps where we need to know what subprogram an instruction belongs to, the struct nfp_insn_meta is extended with a new subprog_idx field. Note that checks on the available stack size, to take into account the additional requirements associated to BPF-to-BPF calls (storing R6-R9 and return addresses), are added in a later patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-07 11:56:52 +00:00
if (i == 0)
continue;
/* Account for size of return address. */
nfp_prog->subprog[i].stack_depth += REG_WIDTH;
/* Account for size of saved registers, if necessary. */
if (nfp_prog->subprog[i].needs_reg_push)
nfp_prog->subprog[i].stack_depth += BPF_REG_SIZE * 4;
nfp: bpf: add main logics for BPF-to-BPF calls support in nfp driver This is the main patch for the logics of BPF-to-BPF calls in the nfp driver. The functions called on BPF_JUMP | BPF_CALL and BPF_JUMP | BPF_EXIT were used to call helpers and exit from the program, respectively; make them usable for calling into, or returning from, a BPF subprogram as well. For all calls, push the return address as well as the callee-saved registers (R6 to R9) to the stack, and pop them upon returning from the calls. In order to limit the overhead in terms of instruction number, this is done through dedicated subroutines. Jumping to the callee actually consists in jumping to the subroutine, that "returns" to the callee: this will require some fixup for passing the address in a later patch. Similarly, returning consists in jumping to the subroutine, which pops registers and then return directly to the caller (but no fixup is needed here). Return to the caller is performed with the RTN instruction newly added to the JIT. For the few steps where we need to know what subprogram an instruction belongs to, the struct nfp_insn_meta is extended with a new subprog_idx field. Note that checks on the available stack size, to take into account the additional requirements associated to BPF-to-BPF calls (storing R6-R9 and return addresses), are added in a later patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-07 11:56:52 +00:00
}
nn = netdev_priv(env->prog->aux->offload->netdev);
max_stack = nn_readb(nn, NFP_NET_CFG_BPF_STACK_SZ) * 64;
nfp_prog->stack_size = nfp_bpf_get_stack_usage(nfp_prog);
if (nfp_prog->stack_size > max_stack) {
pr_vlog(env, "stack too large: program %dB > FW stack %dB\n",
nfp_prog->stack_size, max_stack);
return -EOPNOTSUPP;
}
return 0;
}
int nfp_bpf_opt_replace_insn(struct bpf_verifier_env *env, u32 off,
struct bpf_insn *insn)
{
struct nfp_prog *nfp_prog = env->prog->aux->offload->dev_priv;
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
struct nfp_insn_meta *meta = nfp_prog->verifier_meta;
meta = nfp_bpf_goto_meta(nfp_prog, meta, aux_data[off].orig_idx);
nfp_prog->verifier_meta = meta;
/* conditional jump to jump conversion */
if (is_mbpf_cond_jump(meta) &&
insn->code == (BPF_JMP | BPF_JA | BPF_K)) {
unsigned int tgt_off;
tgt_off = off + insn->off + 1;
if (!insn->off) {
meta->jmp_dst = list_next_entry(meta, l);
meta->jump_neg_op = false;
} else if (meta->jmp_dst->n != aux_data[tgt_off].orig_idx) {
pr_vlog(env, "branch hard wire at %d changes target %d -> %d\n",
off, meta->jmp_dst->n,
aux_data[tgt_off].orig_idx);
return -EINVAL;
}
return 0;
}
pr_vlog(env, "unsupported instruction replacement %hhx -> %hhx\n",
meta->insn.code, insn->code);
return -EINVAL;
}
int nfp_bpf_opt_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
{
struct nfp_prog *nfp_prog = env->prog->aux->offload->dev_priv;
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
struct nfp_insn_meta *meta = nfp_prog->verifier_meta;
unsigned int i;
meta = nfp_bpf_goto_meta(nfp_prog, meta, aux_data[off].orig_idx);
for (i = 0; i < cnt; i++) {
if (WARN_ON_ONCE(&meta->l == &nfp_prog->insns))
return -EINVAL;
/* doesn't count if it already has the flag */
if (meta->flags & FLAG_INSN_SKIP_VERIFIER_OPT)
i--;
meta->flags |= FLAG_INSN_SKIP_VERIFIER_OPT;
meta = list_next_entry(meta, l);
}
return 0;
}