Files
linux/drivers/gpu/drm/amd/display/modules/power/power.c

785 lines
20 KiB
C
Raw Normal View History

/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "mod_power.h"
#include "dm_services.h"
#include "dc.h"
#include "core_types.h"
#include "core_dc.h"
#define MOD_POWER_MAX_CONCURRENT_SINKS 32
#define SMOOTH_BRIGHTNESS_ADJUSTMENT_TIME_IN_MS 500
struct sink_caps {
const struct dc_sink *sink;
};
struct backlight_state {
unsigned int backlight;
unsigned int frame_ramp;
bool smooth_brightness_enabled;
};
struct core_power {
struct mod_power public;
struct dc *dc;
int num_sinks;
struct sink_caps *caps;
struct backlight_state *state;
};
union dmcu_abm_set_bl_params {
struct {
unsigned int gradual_change : 1; /* [0:0] */
unsigned int reserved : 15; /* [15:1] */
unsigned int frame_ramp : 16; /* [31:16] */
} bits;
unsigned int u32All;
};
/* Backlight cached properties */
static unsigned int backlight_8bit_lut_array[101];
static unsigned int ac_level_percentage;
static unsigned int dc_level_percentage;
static bool backlight_caps_valid;
/* we use lazy initialization of backlight capabilities cache */
static bool backlight_caps_initialized;
/* AC/DC levels initialized later in separate context */
static bool backlight_def_levels_valid;
/* ABM cached properties */
static unsigned int abm_level;
static bool abm_user_enable;
static bool abm_active;
/*PSR cached properties*/
static unsigned int block_psr;
/* Defines default backlight curve F(x) = A(x*x) + Bx + C.
*
* Backlight curve should always satisfy F(0) = min, F(100) = max,
* so polynom coefficients are:
* A is 0.0255 - B/100 - min/10000 - (255-max)/10000 = (max - min)/10000 - B/100
* B is adjustable factor to modify the curve.
* Bigger B results in less concave curve. B range is [0..(max-min)/100]
* C is backlight minimum
*/
static const unsigned int backlight_curve_coeff_a_factor = 10000;
static const unsigned int backlight_curve_coeff_b = 100;
static const unsigned int backlight_curve_coeff_b_factor = 100;
/* Minimum and maximum backlight input signal levels */
static const unsigned int default_min_backlight = 12;
static const unsigned int default_max_backlight = 255;
/* Other backlight constants */
static const unsigned int absolute_backlight_max = 255;
#define MOD_POWER_TO_CORE(mod_power)\
container_of(mod_power, struct core_power, public)
static bool check_dc_support(const struct dc *dc)
{
if (dc->stream_funcs.set_backlight == NULL)
return false;
return true;
}
/* Given a specific dc_sink* this function finds its equivalent
* on the dc_sink array and returns the corresponding index
*/
static unsigned int sink_index_from_sink(struct core_power *core_power,
const struct dc_sink *sink)
{
unsigned int index = 0;
for (index = 0; index < core_power->num_sinks; index++)
if (core_power->caps[index].sink == sink)
return index;
/* Could not find sink requested */
ASSERT(false);
return index;
}
static unsigned int convertBL8to17(unsigned int backlight_8bit)
{
unsigned int temp_ulong = backlight_8bit * 0x10101;
unsigned char temp_uchar =
(unsigned char)(((temp_ulong & 0x80) >> 7) & 1);
temp_ulong = (temp_ulong >> 8) + temp_uchar;
return temp_ulong;
}
static uint16_t convertBL8to16(unsigned int backlight_8bit)
{
return (uint16_t)((backlight_8bit * 0x10101) >> 8);
}
/*This is used when OS wants to retrieve the current BL.
* We return the 8bit value to OS.
*/
static unsigned int convertBL17to8(unsigned int backlight_17bit)
{
if (backlight_17bit & 0x10000)
return default_max_backlight;
else
return (backlight_17bit >> 8);
}
struct mod_power *mod_power_create(struct dc *dc)
{
struct core_power *core_power =
dm_alloc(sizeof(struct core_power));
struct core_dc *core_dc = DC_TO_CORE(dc);
int i = 0;
if (core_power == NULL)
goto fail_alloc_context;
core_power->caps = dm_alloc(sizeof(struct sink_caps) *
MOD_POWER_MAX_CONCURRENT_SINKS);
if (core_power->caps == NULL)
goto fail_alloc_caps;
for (i = 0; i < MOD_POWER_MAX_CONCURRENT_SINKS; i++)
core_power->caps[i].sink = NULL;
core_power->state = dm_alloc(sizeof(struct backlight_state) *
MOD_POWER_MAX_CONCURRENT_SINKS);
if (core_power->state == NULL)
goto fail_alloc_state;
core_power->num_sinks = 0;
backlight_caps_valid = false;
if (dc == NULL)
goto fail_construct;
core_power->dc = dc;
if (!check_dc_support(dc))
goto fail_construct;
abm_user_enable = false;
abm_active = false;
return &core_power->public;
fail_construct:
dm_free(core_power->state);
fail_alloc_state:
dm_free(core_power->caps);
fail_alloc_caps:
dm_free(core_power);
fail_alloc_context:
return NULL;
}
void mod_power_destroy(struct mod_power *mod_power)
{
if (mod_power != NULL) {
int i;
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
dm_free(core_power->state);
for (i = 0; i < core_power->num_sinks; i++)
dc_sink_release(core_power->caps[i].sink);
dm_free(core_power->caps);
dm_free(core_power);
}
}
bool mod_power_add_sink(struct mod_power *mod_power,
const struct dc_sink *sink)
{
if (sink->sink_signal == SIGNAL_TYPE_VIRTUAL)
return false;
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
struct core_dc *core_dc = DC_TO_CORE(core_power->dc);
if (core_power->num_sinks < MOD_POWER_MAX_CONCURRENT_SINKS) {
dc_sink_retain(sink);
core_power->caps[core_power->num_sinks].sink = sink;
core_power->state[core_power->num_sinks].
smooth_brightness_enabled = false;
core_power->state[core_power->num_sinks].
backlight = 100;
core_power->num_sinks++;
return true;
}
return false;
}
bool mod_power_remove_sink(struct mod_power *mod_power,
const struct dc_sink *sink)
{
int i = 0, j = 0;
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
for (i = 0; i < core_power->num_sinks; i++) {
if (core_power->caps[i].sink == sink) {
/* To remove this sink, shift everything after down */
for (j = i; j < core_power->num_sinks - 1; j++) {
core_power->caps[j].sink =
core_power->caps[j + 1].sink;
memcpy(&core_power->state[j],
&core_power->state[j + 1],
sizeof(struct backlight_state));
}
core_power->num_sinks--;
dc_sink_release(sink);
return true;
}
}
return false;
}
bool mod_power_set_backlight(struct mod_power *mod_power,
const struct dc_stream **streams, int num_streams,
unsigned int backlight_8bit)
{
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
unsigned int frame_ramp = 0;
unsigned int stream_index, sink_index, vsync_rate_hz;
union dmcu_abm_set_bl_params params;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
if (streams[stream_index]->sink->sink_signal == SIGNAL_TYPE_VIRTUAL) {
core_power->state[sink_index].backlight = 0;
core_power->state[sink_index].frame_ramp = 0;
core_power->state[sink_index].smooth_brightness_enabled = false;
continue;
}
sink_index = sink_index_from_sink(core_power,
streams[stream_index]->sink);
vsync_rate_hz = div64_u64(div64_u64((streams[stream_index]->
timing.pix_clk_khz * 1000),
streams[stream_index]->timing.v_total),
streams[stream_index]->timing.h_total);
core_power->state[sink_index].backlight = backlight_8bit;
if (core_power->state[sink_index].smooth_brightness_enabled)
frame_ramp = ((vsync_rate_hz *
SMOOTH_BRIGHTNESS_ADJUSTMENT_TIME_IN_MS) + 500)
/ 1000;
else
frame_ramp = 0;
core_power->state[sink_index].frame_ramp = frame_ramp;
}
params.u32All = 0;
params.bits.gradual_change = (frame_ramp > 0);
params.bits.frame_ramp = frame_ramp;
core_power->dc->stream_funcs.set_backlight
(core_power->dc, backlight_8bit, params.u32All, streams[0]);
return true;
}
bool mod_power_get_backlight(struct mod_power *mod_power,
const struct dc_sink *sink,
unsigned int *backlight_8bit)
{
if (sink->sink_signal == SIGNAL_TYPE_VIRTUAL)
return false;
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
unsigned int sink_index = sink_index_from_sink(core_power, sink);
*backlight_8bit = core_power->state[sink_index].backlight;
return true;
}
/* hard coded to default backlight curve. */
void mod_power_initialize_backlight_caps(struct mod_power
*mod_power)
{
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
struct core_dc *core_dc = DC_TO_CORE(core_power->dc);
unsigned int i;
backlight_caps_initialized = true;
struct dm_acpi_atif_backlight_caps *pExtCaps = NULL;
bool customCurvePresent = false;
bool customMinMaxPresent = false;
bool customDefLevelsPresent = false;
/* Allocate memory for ATIF output
* (do not want to use 256 bytes on the stack)
*/
pExtCaps = (struct dm_acpi_atif_backlight_caps *)
(dm_alloc(sizeof(struct dm_acpi_atif_backlight_caps)));
if (pExtCaps == NULL)
return;
/* Retrieve ACPI extended brightness caps */
if (dm_query_extended_brightness_caps
(core_dc->ctx, AcpiDisplayType_LCD1, pExtCaps)) {
ac_level_percentage = pExtCaps->acLevelPercentage;
dc_level_percentage = pExtCaps->dcLevelPercentage;
customMinMaxPresent = true;
customDefLevelsPresent = true;
customCurvePresent = (pExtCaps->numOfDataPoints > 0);
ASSERT(pExtCaps->numOfDataPoints <= 99);
} else {
dm_free(pExtCaps);
return;
}
if (customMinMaxPresent)
backlight_8bit_lut_array[0] = pExtCaps->minInputSignal;
else
backlight_8bit_lut_array[0] = default_min_backlight;
if (customMinMaxPresent)
backlight_8bit_lut_array[100] = pExtCaps->maxInputSignal;
else
backlight_8bit_lut_array[100] = default_max_backlight;
ASSERT(backlight_8bit_lut_array[100] <= absolute_backlight_max);
ASSERT(backlight_8bit_lut_array[0] <=
backlight_8bit_lut_array[100]);
/* Just to make sure we use valid values */
if (backlight_8bit_lut_array[100] > absolute_backlight_max)
backlight_8bit_lut_array[100] = absolute_backlight_max;
if (backlight_8bit_lut_array[0] > backlight_8bit_lut_array[100]) {
unsigned int swap;
swap = backlight_8bit_lut_array[0];
backlight_8bit_lut_array[0] = backlight_8bit_lut_array[100];
backlight_8bit_lut_array[100] = swap;
}
/* Build backlight translation table for custom curve */
if (customCurvePresent) {
unsigned int index = 1;
unsigned int numOfDataPoints =
(pExtCaps->numOfDataPoints <= 99 ?
pExtCaps->numOfDataPoints : 99);
/* Filling translation table from data points -
* between every two provided data points we
* lineary interpolate missing values
*/
for (i = 0; i < numOfDataPoints; i++) {
/* Clamp signal level between min and max
* (since min and max might come other
* soruce like registry)
*/
unsigned int luminance =
pExtCaps->dataPoints[i].luminance;
unsigned int signalLevel =
pExtCaps->dataPoints[i].signalLevel;
if (signalLevel < backlight_8bit_lut_array[0])
signalLevel = backlight_8bit_lut_array[0];
if (signalLevel > backlight_8bit_lut_array[100])
signalLevel = backlight_8bit_lut_array[100];
/* Lineary interpolate missing values */
if (index < luminance) {
unsigned int baseValue =
backlight_8bit_lut_array[index-1];
unsigned int deltaSignal =
signalLevel - baseValue;
unsigned int deltaLuma =
luminance - index + 1;
unsigned int step = deltaSignal;
for (; index < luminance; index++) {
backlight_8bit_lut_array[index] =
baseValue + (step / deltaLuma);
step += deltaSignal;
}
}
/* Now [index == luminance],
* so we can add data point to the translation table
*/
backlight_8bit_lut_array[index++] = signalLevel;
}
/* Complete the final segment of interpolation -
* between last datapoint and maximum value
*/
if (index < 100) {
unsigned int baseValue =
backlight_8bit_lut_array[index-1];
unsigned int deltaSignal =
backlight_8bit_lut_array[100] -
baseValue;
unsigned int deltaLuma = 100 - index + 1;
unsigned int step = deltaSignal;
for (; index < 100; index++) {
backlight_8bit_lut_array[index] =
baseValue + (step / deltaLuma);
step += deltaSignal;
}
}
/* Build backlight translation table based on default curve */
} else {
unsigned int delta =
backlight_8bit_lut_array[100] -
backlight_8bit_lut_array[0];
unsigned int coeffC = backlight_8bit_lut_array[0];
unsigned int coeffB =
(backlight_curve_coeff_b < delta ?
backlight_curve_coeff_b : delta);
unsigned int coeffA = delta - coeffB; /* coeffB is B*100 */
for (i = 1; i < 100; i++) {
backlight_8bit_lut_array[i] =
(coeffA * i * i) /
backlight_curve_coeff_a_factor +
(coeffB * i) /
backlight_curve_coeff_b_factor +
coeffC;
}
}
if (pExtCaps != NULL)
dm_free(pExtCaps);
/* Successfully initialized */
backlight_caps_valid = true;
backlight_def_levels_valid = customDefLevelsPresent;
}
unsigned int mod_power_backlight_level_percentage_to_signal(
struct mod_power *mod_power, unsigned int percentage)
{
/* Do lazy initialization of backlight capabilities*/
if (!backlight_caps_initialized)
mod_power_initialize_backlight_caps(mod_power);
/* Since the translation table is indexed by percentage,
* we simply return backlight value at given percent
*/
if (backlight_caps_valid && percentage <= 100)
return backlight_8bit_lut_array[percentage];
return -1;
}
unsigned int mod_power_backlight_level_signal_to_percentage(
struct mod_power *mod_power,
unsigned int signalLevel8bit)
{
unsigned int invalid_backlight = (unsigned int)(-1);
/* Do lazy initialization of backlight capabilities */
if (!backlight_caps_initialized)
mod_power_initialize_backlight_caps(mod_power);
/* If customer curve cannot convert to differentiated value near min
* it is important to report 0 for min signal to pass setting "Dimmed"
* setting in HCK brightness2 tests.
*/
if (signalLevel8bit <= backlight_8bit_lut_array[0])
return 0;
/* Since the translation table is indexed by percentage
* we need to do a binary search over the array
* Another option would be to guess entry based on linear distribution
* and then do linear search in correct direction
*/
if (backlight_caps_valid && signalLevel8bit <=
absolute_backlight_max) {
unsigned int min = 0;
unsigned int max = 100;
unsigned int mid = invalid_backlight;
while (max >= min) {
mid = (min + max) / 2; /* floor of half range */
if (backlight_8bit_lut_array[mid] < signalLevel8bit)
min = mid + 1;
else if (backlight_8bit_lut_array[mid] >
signalLevel8bit)
max = mid - 1;
else
break;
if (max == 0 || max == 1)
return invalid_backlight;
}
return mid;
}
return invalid_backlight;
}
bool mod_power_get_panel_backlight_boundaries(
struct mod_power *mod_power,
unsigned int *min_backlight,
unsigned int *max_backlight,
unsigned int *output_ac_level_percentage,
unsigned int *output_dc_level_percentage)
{
/* Do lazy initialization of backlight capabilities */
if (!backlight_caps_initialized)
mod_power_initialize_backlight_caps(mod_power);
/* If cache was successfully updated,
* copy the values to output structure and return success
*/
if (backlight_caps_valid) {
*min_backlight = backlight_8bit_lut_array[0];
*max_backlight = backlight_8bit_lut_array[100];
*output_ac_level_percentage = ac_level_percentage;
*output_dc_level_percentage = dc_level_percentage;
return true;
}
return false;
}
bool mod_power_set_smooth_brightness(struct mod_power *mod_power,
const struct dc_sink *sink, bool enable_brightness)
{
if (sink->sink_signal == SIGNAL_TYPE_VIRTUAL)
return false;
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
unsigned int sink_index = sink_index_from_sink(core_power, sink);
core_power->state[sink_index].smooth_brightness_enabled
= enable_brightness;
return true;
}
bool mod_power_notify_mode_change(struct mod_power *mod_power,
const struct dc_stream *stream)
{
if (stream->sink->sink_signal == SIGNAL_TYPE_VIRTUAL)
return false;
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
unsigned int sink_index = sink_index_from_sink(core_power,
stream->sink);
unsigned int frame_ramp = core_power->state[sink_index].frame_ramp;
union dmcu_abm_set_bl_params params;
params.u32All = 0;
params.bits.gradual_change = (frame_ramp > 0);
params.bits.frame_ramp = frame_ramp;
core_power->dc->stream_funcs.set_backlight
(core_power->dc,
core_power->state[sink_index].backlight,
params.u32All, stream);
core_power->dc->stream_funcs.setup_psr
(core_power->dc, stream);
return true;
}
static bool mod_power_abm_feature_enable(struct mod_power
*mod_power, bool enable)
{
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
if (abm_user_enable == enable)
return true;
abm_user_enable = enable;
if (enable) {
if (abm_level != 0 && abm_active)
core_power->dc->stream_funcs.set_abm_level
(core_power->dc, abm_level);
} else {
if (abm_level != 0 && abm_active) {
abm_level = 0;
core_power->dc->stream_funcs.set_abm_level
(core_power->dc, abm_level);
}
}
return true;
}
static bool mod_power_abm_activate(struct mod_power
*mod_power, bool activate)
{
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
if (abm_active == activate)
return true;
abm_active = activate;
if (activate) {
if (abm_level != 0 && abm_user_enable)
core_power->dc->stream_funcs.set_abm_level
(core_power->dc, abm_level);
} else {
if (abm_level != 0 && abm_user_enable) {
abm_level = 0;
core_power->dc->stream_funcs.set_abm_level
(core_power->dc, abm_level);
}
}
return true;
}
static bool mod_power_abm_set_level(struct mod_power *mod_power,
unsigned int level)
{
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
if (abm_level == level)
return true;
if (abm_active && abm_user_enable && level == 0)
core_power->dc->stream_funcs.set_abm_level
(core_power->dc, 0);
else if (abm_active && abm_user_enable && level != 0)
core_power->dc->stream_funcs.set_abm_level
(core_power->dc, level);
abm_level = level;
return true;
}
bool mod_power_varibright_control(struct mod_power *mod_power,
struct varibright_info *input_varibright_info)
{
switch (input_varibright_info->cmd) {
case VariBright_Cmd__SetVBLevel:
{
/* Set VariBright user level. */
mod_power_abm_set_level(mod_power,
input_varibright_info->level);
}
break;
case VariBright_Cmd__UserEnable:
{
/* Set VariBright user enable state. */
mod_power_abm_feature_enable(mod_power,
input_varibright_info->enable);
}
break;
case VariBright_Cmd__PostDisplayConfigChange:
{
/* Set VariBright user level. */
mod_power_abm_set_level(mod_power,
input_varibright_info->level);
/* Set VariBright user enable state. */
mod_power_abm_feature_enable(mod_power,
input_varibright_info->enable);
/* Set VariBright activate based on power state. */
mod_power_abm_activate(mod_power,
input_varibright_info->activate);
}
break;
default:
{
return false;
}
break;
}
return true;
}
bool mod_power_block_psr(bool block_enable, enum dmcu_block_psr_reason reason)
{
if (block_enable)
block_psr |= reason;
else
block_psr &= ~reason;
return true;
}
bool mod_power_set_psr_enable(struct mod_power *mod_power,
bool psr_enable)
{
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
if (block_psr == 0)
return core_power->dc->stream_funcs.set_psr_enable
(core_power->dc, psr_enable);
return false;
}