linux/tools/testing/selftests/powerpc/eeh/eeh-basic.sh

83 lines
2.0 KiB
Bash
Raw Normal View History

selftests/powerpc: Add basic EEH selftest Use the new eeh_dev_check and eeh_dev_break interfaces to test EEH recovery. Historically this has been done manually using platform specific EEH error injection facilities (e.g. via RTAS). However, documentation on how to use these facilities is haphazard at best and non-existent at worst so it's hard to develop a cross-platform test. The new debugfs interfaces allow the kernel to handle the platform specific details so we can write a more generic set of sets. This patch adds the most basic of recovery tests where: a) Errors are injected and recovered from sequentially, b) Errors are not injected into PCI-PCI bridges, such as PCIe switches. c) Errors are only injected into device function zero. d) No errors are injected into Virtual Functions. a), b) and c) are largely due to limitations of Linux's EEH support. EEH recovery is serialised in the EEH recovery thread which forces a). Similarly, multi-function PCI devices are almost always grouped into the same PE so injecting an error on one function exercises the same code paths. c) is because we currently more or less ignore PCI bridges during recovery and assume that the recovered topology will be the same as the original. d) is due to the limits of the eeh_dev_break interface. With the current implementation we can't inject an error into a specific VF without potentially causing additional errors on other VFs. Due to the serialised recovery process we might end up timing out waiting for another function to recover before the function of interest is recovered. The platform specific error injection facilities are finer-grained and allow this capability, but doing that requires working out how to use those facilities first. Basicly, it's better than nothing and it's a base to build on. Signed-off-by: Oliver O'Halloran <oohall@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190903101605.2890-15-oohall@gmail.com
2019-09-03 10:16:05 +00:00
#!/bin/sh
# SPDX-License-Identifier: GPL-2.0-only
. ./eeh-functions.sh
if ! eeh_supported ; then
echo "EEH not supported on this system, skipping"
exit 0;
fi
if [ ! -e "/sys/kernel/debug/powerpc/eeh_dev_check" ] && \
[ ! -e "/sys/kernel/debug/powerpc/eeh_dev_break" ] ; then
echo "debugfs EEH testing files are missing. Is debugfs mounted?"
exit 1;
fi
pre_lspci=`mktemp`
lspci > $pre_lspci
# Bump the max freeze count to something absurd so we don't
# trip over it while breaking things.
echo 5000 > /sys/kernel/debug/powerpc/eeh_max_freezes
# record the devices that we break in here. Assuming everything
# goes to plan we should get them back once the recover process
# is finished.
devices=""
# Build up a list of candidate devices.
for dev in `ls -1 /sys/bus/pci/devices/ | grep '\.0$'` ; do
# skip bridges since we can't recover them (yet...)
if [ -e "/sys/bus/pci/devices/$dev/pci_bus" ] ; then
echo "$dev, Skipped: bridge"
continue;
fi
# Skip VFs for now since we don't have a reliable way
# to break them.
if [ -e "/sys/bus/pci/devices/$dev/physfn" ] ; then
echo "$dev, Skipped: virtfn"
continue;
fi
# Don't inject errosr into an already-frozen PE. This happens with
# PEs that contain multiple PCI devices (e.g. multi-function cards)
# and injecting new errors during the recovery process will probably
# result in the recovery failing and the device being marked as
# failed.
if ! pe_ok $dev ; then
echo "$dev, Skipped: Bad initial PE state"
continue;
fi
echo "$dev, Added"
# Add to this list of device to check
devices="$devices $dev"
done
dev_count="$(echo $devices | wc -w)"
echo "Found ${dev_count} breakable devices..."
failed=0
for dev in $devices ; do
echo "Breaking $dev..."
if ! pe_ok $dev ; then
echo "Skipping $dev, Initial PE state is not ok"
failed="$((failed + 1))"
continue;
fi
if ! eeh_one_dev $dev ; then
failed="$((failed + 1))"
fi
done
echo "$failed devices failed to recover ($dev_count tested)"
lspci | diff -u $pre_lspci -
rm -f $pre_lspci
exit $failed