Files
linux/drivers/net/ethernet/mscc/ocelot.h

124 lines
3.7 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: (GPL-2.0 OR MIT) */
/*
* Microsemi Ocelot Switch driver
*
* Copyright (c) 2017 Microsemi Corporation
*/
#ifndef _MSCC_OCELOT_H_
#define _MSCC_OCELOT_H_
#include <linux/bitops.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/net_tstamp.h>
net: mscc: ocelot: convert to phylink The felix DSA driver, which is a wrapper over the same hardware class as ocelot, is integrated with phylink, but ocelot is using the plain PHY library. It makes sense to bring together the two implementations, which is what this patch achieves. This is a large patch and hard to break up, but it does the following: The existing ocelot_adjust_link writes some registers, and felix_phylink_mac_link_up writes some registers, some of them are common, but both functions write to some registers to which the other doesn't. The main reasons for this are: - Felix switches so far have used an NXP PCS so they had no need to write the PCS1G registers that ocelot_adjust_link writes - Felix switches have the MAC fixed at 1G, so some of the MAC speed changes actually break the link and must be avoided. The naming conventions for the functions introduced in this patch are: - vsc7514_phylink_{mac_config,validate} are specific to the Ocelot instantiations and placed in ocelot_net.c which is built only for the ocelot switchdev driver. - ocelot_phylink_mac_link_{up,down} are shared between the ocelot switchdev driver and the felix DSA driver (they are put in the common lib). One by one, the registers written by ocelot_adjust_link are: DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this register since its out-of-reset value was fine and did not need changing. The write is moved to the common ocelot_phylink_mac_link_up and on felix it is guarded by a quirk bit that makes the written value identical with the out-of-reset one DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config PCS1G_MODE_CFG - same as above PCS1G_SD_CFG - same as above PCS1G_CFG - same as above PCS1G_ANEG_CFG - same as above PCS1G_LB_CFG - same as above DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable touched this. felix_phylink_mac_link_{up,down} also do. We go with what felix does and put it in ocelot_phylink_mac_link_up. DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both write this, but to different values. Move to the common ocelot_phylink_mac_link_up and make sure via the quirk that the old values are preserved for both. ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up did not. Runtime invariant, speed does not matter since PFC is disabled via the RX_PFC_ENA bits which are cleared. Move to vsc7514_phylink_mac_config. QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and felix_phylink_mac_link_{up,down} wrote this. Ocelot also wrote this register from ocelot_port_disable. Keep what felix did, move in ocelot_phylink_mac_link_{up,down} and delete ocelot_port_disable. ANA_POL_FLOWC - same as above SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas ocelot always enabled RX and TX flow control, felix listened to phylink (for the most part, at least - see the 2500base-X comment). The registers which only felix_phylink_mac_link_up wrote are: SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control worked on ocelot. Not it should, since the code is shared with felix where it does. ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink should be the one touching them, deleted. Other changes: - The old phylib registration code was in mscc_ocelot_init_ports. It is hard to work with 2 levels of indentation already in, and with hard to follow teardown logic. The new phylink registration code was moved inside ocelot_probe_port(), right between alloc_etherdev() and register_netdev(). It could not be done before (=> outside of) ocelot_probe_port() because ocelot_probe_port() allocates the struct ocelot_port which we then use to assign ocelot_port->phy_mode to. It is more preferable to me to have all PHY handling logic inside the same function. - On the same topic: struct ocelot_port_private :: serdes is only used in ocelot_port_open to set the SERDES protocol to Ethernet. This is logically a runtime invariant and can be done just once, when the port registers with phylink. We therefore don't even need to keep the serdes reference inside struct ocelot_port_private, or to use the devm variant of of_phy_get(). - Phylink needs a valid phy-mode for phylink_create() to succeed, and the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts don't define one for the internal PHY ports. So we patch PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL. - There was a strategically placed: switch (priv->phy_mode) { case PHY_INTERFACE_MODE_NA: continue; which made the code skip the serdes initialization for the internal PHY ports. Frankly that is not all that obvious, so now we explicitly initialize the serdes under an "if" condition and not rely on code jumps, so everything is clearer. - There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII ports. Since that is in fact the default value for the register field DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out of reset, which does match the comment. I don't even want to know why this code is placed there, but if there is indeed an issue that all ports that share a QSGMII lane must all be up, then this logic is already buggy, since mscc_ocelot_init_ports iterates using for_each_available_child_of_node, so nobody prevents the user from putting a 'status = "disabled";' for some QSGMII ports which would break the driver's assumption. In any case, in the eventuality that I'm right, we would have yet another issue if ocelot_phylink_mac_link_down would reset those ports and that would be forbidden, so since the ocelot_adjust_link logic did not do that (maybe for a reason), add another quirk to preserve the old logic. The ocelot driver teardown goes through all ports in one fell swoop. When initialization of one port fails, the ocelot->ports[port] pointer for that is reset to NULL, and teardown is done only for non-NULL ports, so there is no reason to do partial teardowns, let the central mscc_ocelot_release_ports() do its job. Tested bind, unbind, rebind, link up, link down, speed change on mock-up hardware (modified the driver to probe on Felix VSC9959). Also regression tested the felix DSA driver. Could not test the Ocelot specific bits (PCS1G, SERDES, device tree bindings). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
#include <linux/phylink.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <soc/mscc/ocelot_qsys.h>
#include <soc/mscc/ocelot_sys.h>
#include <soc/mscc/ocelot_dev.h>
#include <soc/mscc/ocelot_ana.h>
#include <soc/mscc/ocelot_ptp.h>
#include <soc/mscc/ocelot_vcap.h>
#include <soc/mscc/ocelot.h>
#include "ocelot_rew.h"
#include "ocelot_qs.h"
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware Currently ocelot uses a pvid of 0 for standalone ports and ports under a VLAN-unaware bridge, and the pvid of the bridge for ports under a VLAN-aware bridge. Standalone ports do not perform learning, but packets received on them are still subject to FDB lookups. So if the MAC DA that a standalone port receives has been also learned on a VLAN-unaware bridge port, ocelot will attempt to forward to that port, even though it can't, so it will drop packets. So there is a desire to avoid that, and isolate the FDBs of different bridges from one another, and from standalone ports. The ocelot switch library has two distinct entry points: the felix DSA driver and the ocelot switchdev driver. We need to code up a minimal bridge_num allocation in the ocelot switchdev driver too, this is copied from DSA with the exception that ocelot does not care about DSA trees, cross-chip bridging etc. So it only looks at its own ports that are already in the same bridge. The ocelot switchdev driver uses the bridge_num it has allocated itself, while the felix driver uses the bridge_num allocated by DSA. They are both stored inside ocelot_port->bridge_num by the common function ocelot_port_bridge_join() which receives the bridge_num passed by value. Once we have a bridge_num, we can only use it to enforce isolation between VLAN-unaware bridges. As far as I can see, ocelot does not have anything like a FID that further makes VLAN 100 from a port be different to VLAN 100 from another port with regard to FDB lookup. So we simply deny multiple VLAN-aware bridges. For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we allocate a VLAN for each bridge_num. This will be used as the pvid of each port that is under that VLAN-unaware bridge, for as long as that bridge is VLAN-unaware. VID 0 remains only for standalone ports. It is okay if all standalone ports use the same VID 0, since they perform no address learning, the FDB will contain no entry in VLAN 0, so the packets will always be flooded to the only possible destination, the CPU port. The CPU port module doesn't need to be member of the VLANs to receive packets, but if we use the DSA tag_8021q protocol, those packets are part of the data plane as far as ocelot is concerned, so there it needs to. Just ensure that the DSA tag_8021q CPU port is a member of all reserved VLANs when it is created, and is removed when it is deleted. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 11:22:25 +02:00
#define OCELOT_STANDALONE_PVID 0
#define OCELOT_BUFFER_CELL_SZ 60
#define OCELOT_STATS_CHECK_DELAY (2 * HZ)
#define OCELOT_PTP_QUEUE_SZ 128
#define OCELOT_JUMBO_MTU 9000
struct ocelot_port_tc {
bool block_shared;
unsigned long offload_cnt;
net: mscc: ocelot: add port mirroring support using tc-matchall Ocelot switches perform port-based ingress mirroring if ANA:PORT:PORT_CFG field SRC_MIRROR_ENA is set, and egress mirroring if the port is in ANA:ANA:EMIRRORPORTS. Both ingress-mirrored and egress-mirrored frames are copied to the port mask from ANA:ANA:MIRRORPORTS. So the choice of limiting to a single mirror port via ocelot_mirror_get() and ocelot_mirror_put() may seem bizarre, but the hardware model doesn't map very well to the user space model. If the user wants to mirror the ingress of swp1 towards swp2 and the ingress of swp3 towards swp4, we'd have to program ANA:ANA:MIRRORPORTS with BIT(2) | BIT(4), and that would make swp1 be mirrored towards swp4 too, and swp3 towards swp2. But there are no tc-matchall rules to describe those actions. Now, we could offload a matchall rule with multiple mirred actions, one per desired mirror port, and force the user to stick to the multi-action rule format for subsequent matchall filters. But both DSA and ocelot have the flow_offload_has_one_action() check for the matchall offload, plus the fact that it will get cumbersome to cross-check matchall mirrors with flower mirrors (which will be added in the next patch). As a result, we limit the configuration to a single mirror port, with the possibility of lifting the restriction in the future. Frames injected from the CPU don't get egress-mirrored, since they are sent with the BYPASS bit in the injection frame header, and this bypasses the analyzer module (effectively also the mirroring logic). I don't know what to do/say about this. Functionality was tested with: tc qdisc add dev swp3 clsact tc filter add dev swp3 ingress \ matchall skip_sw \ action mirred egress mirror dev swp1 and pinging through swp3, while seeing that the ICMP replies are mirrored towards swp1. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-03-16 22:41:40 +02:00
unsigned long ingress_mirred_id;
unsigned long egress_mirred_id;
unsigned long police_id;
};
struct ocelot_port_private {
struct ocelot_port port;
struct net_device *dev;
net: mscc: ocelot: convert to phylink The felix DSA driver, which is a wrapper over the same hardware class as ocelot, is integrated with phylink, but ocelot is using the plain PHY library. It makes sense to bring together the two implementations, which is what this patch achieves. This is a large patch and hard to break up, but it does the following: The existing ocelot_adjust_link writes some registers, and felix_phylink_mac_link_up writes some registers, some of them are common, but both functions write to some registers to which the other doesn't. The main reasons for this are: - Felix switches so far have used an NXP PCS so they had no need to write the PCS1G registers that ocelot_adjust_link writes - Felix switches have the MAC fixed at 1G, so some of the MAC speed changes actually break the link and must be avoided. The naming conventions for the functions introduced in this patch are: - vsc7514_phylink_{mac_config,validate} are specific to the Ocelot instantiations and placed in ocelot_net.c which is built only for the ocelot switchdev driver. - ocelot_phylink_mac_link_{up,down} are shared between the ocelot switchdev driver and the felix DSA driver (they are put in the common lib). One by one, the registers written by ocelot_adjust_link are: DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this register since its out-of-reset value was fine and did not need changing. The write is moved to the common ocelot_phylink_mac_link_up and on felix it is guarded by a quirk bit that makes the written value identical with the out-of-reset one DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config PCS1G_MODE_CFG - same as above PCS1G_SD_CFG - same as above PCS1G_CFG - same as above PCS1G_ANEG_CFG - same as above PCS1G_LB_CFG - same as above DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable touched this. felix_phylink_mac_link_{up,down} also do. We go with what felix does and put it in ocelot_phylink_mac_link_up. DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both write this, but to different values. Move to the common ocelot_phylink_mac_link_up and make sure via the quirk that the old values are preserved for both. ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up did not. Runtime invariant, speed does not matter since PFC is disabled via the RX_PFC_ENA bits which are cleared. Move to vsc7514_phylink_mac_config. QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and felix_phylink_mac_link_{up,down} wrote this. Ocelot also wrote this register from ocelot_port_disable. Keep what felix did, move in ocelot_phylink_mac_link_{up,down} and delete ocelot_port_disable. ANA_POL_FLOWC - same as above SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas ocelot always enabled RX and TX flow control, felix listened to phylink (for the most part, at least - see the 2500base-X comment). The registers which only felix_phylink_mac_link_up wrote are: SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control worked on ocelot. Not it should, since the code is shared with felix where it does. ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink should be the one touching them, deleted. Other changes: - The old phylib registration code was in mscc_ocelot_init_ports. It is hard to work with 2 levels of indentation already in, and with hard to follow teardown logic. The new phylink registration code was moved inside ocelot_probe_port(), right between alloc_etherdev() and register_netdev(). It could not be done before (=> outside of) ocelot_probe_port() because ocelot_probe_port() allocates the struct ocelot_port which we then use to assign ocelot_port->phy_mode to. It is more preferable to me to have all PHY handling logic inside the same function. - On the same topic: struct ocelot_port_private :: serdes is only used in ocelot_port_open to set the SERDES protocol to Ethernet. This is logically a runtime invariant and can be done just once, when the port registers with phylink. We therefore don't even need to keep the serdes reference inside struct ocelot_port_private, or to use the devm variant of of_phy_get(). - Phylink needs a valid phy-mode for phylink_create() to succeed, and the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts don't define one for the internal PHY ports. So we patch PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL. - There was a strategically placed: switch (priv->phy_mode) { case PHY_INTERFACE_MODE_NA: continue; which made the code skip the serdes initialization for the internal PHY ports. Frankly that is not all that obvious, so now we explicitly initialize the serdes under an "if" condition and not rely on code jumps, so everything is clearer. - There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII ports. Since that is in fact the default value for the register field DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out of reset, which does match the comment. I don't even want to know why this code is placed there, but if there is indeed an issue that all ports that share a QSGMII lane must all be up, then this logic is already buggy, since mscc_ocelot_init_ports iterates using for_each_available_child_of_node, so nobody prevents the user from putting a 'status = "disabled";' for some QSGMII ports which would break the driver's assumption. In any case, in the eventuality that I'm right, we would have yet another issue if ocelot_phylink_mac_link_down would reset those ports and that would be forbidden, so since the ocelot_adjust_link logic did not do that (maybe for a reason), add another quirk to preserve the old logic. The ocelot driver teardown goes through all ports in one fell swoop. When initialization of one port fails, the ocelot->ports[port] pointer for that is reset to NULL, and teardown is done only for non-NULL ports, so there is no reason to do partial teardowns, let the central mscc_ocelot_release_ports() do its job. Tested bind, unbind, rebind, link up, link down, speed change on mock-up hardware (modified the driver to probe on Felix VSC9959). Also regression tested the felix DSA driver. Could not test the Ocelot specific bits (PCS1G, SERDES, device tree bindings). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
struct phylink *phylink;
struct phylink_config phylink_config;
struct ocelot_port_tc tc;
};
struct ocelot_dump_ctx {
struct net_device *dev;
struct sk_buff *skb;
struct netlink_callback *cb;
int idx;
};
net: mscc: ocelot: support L2 multicast entries There is one main difference in mscc_ocelot between IP multicast and L2 multicast. With IP multicast, destination ports are encoded into the upper bytes of the multicast MAC address. Example: to deliver the address 01:00:5E:11:22:33 to ports 3, 8, and 9, one would need to program the address of 00:03:08:11:22:33 into hardware. Whereas for L2 multicast, the MAC table entry points to a Port Group ID (PGID), and that PGID contains the port mask that the packet will be forwarded to. As to why it is this way, no clue. My guess is that not all port combinations can be supported simultaneously with the limited number of PGIDs, and this was somehow an issue for IP multicast but not for L2 multicast. Anyway. Prior to this change, the raw L2 multicast code was bogus, due to the fact that there wasn't really any way to test it using the bridge code. There were 2 issues: - A multicast PGID was allocated for each MDB entry, but it wasn't in fact programmed to hardware. It was dummy. - In fact we don't want to reserve a multicast PGID for every single MDB entry. That would be odd because we can only have ~60 PGIDs, but thousands of MDB entries. So instead, we want to reserve a multicast PGID for every single port combination for multicast traffic. And since we can have 2 (or more) MDB entries delivered to the same port group (and therefore PGID), we need to reference-count the PGIDs. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-29 04:27:38 +02:00
/* A (PGID) port mask structure, encoding the 2^ocelot->num_phys_ports
* possibilities of egress port masks for L2 multicast traffic.
* For a switch with 9 user ports, there are 512 possible port masks, but the
* hardware only has 46 individual PGIDs that it can forward multicast traffic
* to. So we need a structure that maps the limited PGID indices to the port
* destinations requested by the user for L2 multicast.
*/
struct ocelot_pgid {
unsigned long ports;
int index;
refcount_t refcount;
struct list_head list;
};
struct ocelot_multicast {
struct list_head list;
enum macaccess_entry_type entry_type;
unsigned char addr[ETH_ALEN];
u16 vid;
u16 ports;
net: mscc: ocelot: support L2 multicast entries There is one main difference in mscc_ocelot between IP multicast and L2 multicast. With IP multicast, destination ports are encoded into the upper bytes of the multicast MAC address. Example: to deliver the address 01:00:5E:11:22:33 to ports 3, 8, and 9, one would need to program the address of 00:03:08:11:22:33 into hardware. Whereas for L2 multicast, the MAC table entry points to a Port Group ID (PGID), and that PGID contains the port mask that the packet will be forwarded to. As to why it is this way, no clue. My guess is that not all port combinations can be supported simultaneously with the limited number of PGIDs, and this was somehow an issue for IP multicast but not for L2 multicast. Anyway. Prior to this change, the raw L2 multicast code was bogus, due to the fact that there wasn't really any way to test it using the bridge code. There were 2 issues: - A multicast PGID was allocated for each MDB entry, but it wasn't in fact programmed to hardware. It was dummy. - In fact we don't want to reserve a multicast PGID for every single MDB entry. That would be odd because we can only have ~60 PGIDs, but thousands of MDB entries. So instead, we want to reserve a multicast PGID for every single port combination for multicast traffic. And since we can have 2 (or more) MDB entries delivered to the same port group (and therefore PGID), we need to reference-count the PGIDs. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-29 04:27:38 +02:00
struct ocelot_pgid *pgid;
};
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware Currently ocelot uses a pvid of 0 for standalone ports and ports under a VLAN-unaware bridge, and the pvid of the bridge for ports under a VLAN-aware bridge. Standalone ports do not perform learning, but packets received on them are still subject to FDB lookups. So if the MAC DA that a standalone port receives has been also learned on a VLAN-unaware bridge port, ocelot will attempt to forward to that port, even though it can't, so it will drop packets. So there is a desire to avoid that, and isolate the FDBs of different bridges from one another, and from standalone ports. The ocelot switch library has two distinct entry points: the felix DSA driver and the ocelot switchdev driver. We need to code up a minimal bridge_num allocation in the ocelot switchdev driver too, this is copied from DSA with the exception that ocelot does not care about DSA trees, cross-chip bridging etc. So it only looks at its own ports that are already in the same bridge. The ocelot switchdev driver uses the bridge_num it has allocated itself, while the felix driver uses the bridge_num allocated by DSA. They are both stored inside ocelot_port->bridge_num by the common function ocelot_port_bridge_join() which receives the bridge_num passed by value. Once we have a bridge_num, we can only use it to enforce isolation between VLAN-unaware bridges. As far as I can see, ocelot does not have anything like a FID that further makes VLAN 100 from a port be different to VLAN 100 from another port with regard to FDB lookup. So we simply deny multiple VLAN-aware bridges. For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we allocate a VLAN for each bridge_num. This will be used as the pvid of each port that is under that VLAN-unaware bridge, for as long as that bridge is VLAN-unaware. VID 0 remains only for standalone ports. It is okay if all standalone ports use the same VID 0, since they perform no address learning, the FDB will contain no entry in VLAN 0, so the packets will always be flooded to the only possible destination, the CPU port. The CPU port module doesn't need to be member of the VLANs to receive packets, but if we use the DSA tag_8021q protocol, those packets are part of the data plane as far as ocelot is concerned, so there it needs to. Just ensure that the DSA tag_8021q CPU port is a member of all reserved VLANs when it is created, and is removed when it is deleted. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 11:22:25 +02:00
int ocelot_bridge_num_find(struct ocelot *ocelot,
const struct net_device *bridge);
int ocelot_port_fdb_do_dump(const unsigned char *addr, u16 vid,
bool is_static, void *data);
int ocelot_mact_learn(struct ocelot *ocelot, int port,
const unsigned char mac[ETH_ALEN],
unsigned int vid, enum macaccess_entry_type type);
int ocelot_mact_forget(struct ocelot *ocelot,
const unsigned char mac[ETH_ALEN], unsigned int vid);
struct net_device *ocelot_port_to_netdev(struct ocelot *ocelot, int port);
int ocelot_netdev_to_port(struct net_device *dev);
u32 ocelot_port_readl(struct ocelot_port *port, u32 reg);
void ocelot_port_writel(struct ocelot_port *port, u32 val, u32 reg);
int ocelot_probe_port(struct ocelot *ocelot, int port, struct regmap *target,
net: mscc: ocelot: convert to phylink The felix DSA driver, which is a wrapper over the same hardware class as ocelot, is integrated with phylink, but ocelot is using the plain PHY library. It makes sense to bring together the two implementations, which is what this patch achieves. This is a large patch and hard to break up, but it does the following: The existing ocelot_adjust_link writes some registers, and felix_phylink_mac_link_up writes some registers, some of them are common, but both functions write to some registers to which the other doesn't. The main reasons for this are: - Felix switches so far have used an NXP PCS so they had no need to write the PCS1G registers that ocelot_adjust_link writes - Felix switches have the MAC fixed at 1G, so some of the MAC speed changes actually break the link and must be avoided. The naming conventions for the functions introduced in this patch are: - vsc7514_phylink_{mac_config,validate} are specific to the Ocelot instantiations and placed in ocelot_net.c which is built only for the ocelot switchdev driver. - ocelot_phylink_mac_link_{up,down} are shared between the ocelot switchdev driver and the felix DSA driver (they are put in the common lib). One by one, the registers written by ocelot_adjust_link are: DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this register since its out-of-reset value was fine and did not need changing. The write is moved to the common ocelot_phylink_mac_link_up and on felix it is guarded by a quirk bit that makes the written value identical with the out-of-reset one DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config PCS1G_MODE_CFG - same as above PCS1G_SD_CFG - same as above PCS1G_CFG - same as above PCS1G_ANEG_CFG - same as above PCS1G_LB_CFG - same as above DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable touched this. felix_phylink_mac_link_{up,down} also do. We go with what felix does and put it in ocelot_phylink_mac_link_up. DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both write this, but to different values. Move to the common ocelot_phylink_mac_link_up and make sure via the quirk that the old values are preserved for both. ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up did not. Runtime invariant, speed does not matter since PFC is disabled via the RX_PFC_ENA bits which are cleared. Move to vsc7514_phylink_mac_config. QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and felix_phylink_mac_link_{up,down} wrote this. Ocelot also wrote this register from ocelot_port_disable. Keep what felix did, move in ocelot_phylink_mac_link_{up,down} and delete ocelot_port_disable. ANA_POL_FLOWC - same as above SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas ocelot always enabled RX and TX flow control, felix listened to phylink (for the most part, at least - see the 2500base-X comment). The registers which only felix_phylink_mac_link_up wrote are: SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control worked on ocelot. Not it should, since the code is shared with felix where it does. ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink should be the one touching them, deleted. Other changes: - The old phylib registration code was in mscc_ocelot_init_ports. It is hard to work with 2 levels of indentation already in, and with hard to follow teardown logic. The new phylink registration code was moved inside ocelot_probe_port(), right between alloc_etherdev() and register_netdev(). It could not be done before (=> outside of) ocelot_probe_port() because ocelot_probe_port() allocates the struct ocelot_port which we then use to assign ocelot_port->phy_mode to. It is more preferable to me to have all PHY handling logic inside the same function. - On the same topic: struct ocelot_port_private :: serdes is only used in ocelot_port_open to set the SERDES protocol to Ethernet. This is logically a runtime invariant and can be done just once, when the port registers with phylink. We therefore don't even need to keep the serdes reference inside struct ocelot_port_private, or to use the devm variant of of_phy_get(). - Phylink needs a valid phy-mode for phylink_create() to succeed, and the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts don't define one for the internal PHY ports. So we patch PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL. - There was a strategically placed: switch (priv->phy_mode) { case PHY_INTERFACE_MODE_NA: continue; which made the code skip the serdes initialization for the internal PHY ports. Frankly that is not all that obvious, so now we explicitly initialize the serdes under an "if" condition and not rely on code jumps, so everything is clearer. - There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII ports. Since that is in fact the default value for the register field DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out of reset, which does match the comment. I don't even want to know why this code is placed there, but if there is indeed an issue that all ports that share a QSGMII lane must all be up, then this logic is already buggy, since mscc_ocelot_init_ports iterates using for_each_available_child_of_node, so nobody prevents the user from putting a 'status = "disabled";' for some QSGMII ports which would break the driver's assumption. In any case, in the eventuality that I'm right, we would have yet another issue if ocelot_phylink_mac_link_down would reset those ports and that would be forbidden, so since the ocelot_adjust_link logic did not do that (maybe for a reason), add another quirk to preserve the old logic. The ocelot driver teardown goes through all ports in one fell swoop. When initialization of one port fails, the ocelot->ports[port] pointer for that is reset to NULL, and teardown is done only for non-NULL ports, so there is no reason to do partial teardowns, let the central mscc_ocelot_release_ports() do its job. Tested bind, unbind, rebind, link up, link down, speed change on mock-up hardware (modified the driver to probe on Felix VSC9959). Also regression tested the felix DSA driver. Could not test the Ocelot specific bits (PCS1G, SERDES, device tree bindings). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
struct device_node *portnp);
net: mscc: ocelot: fix error handling bugs in mscc_ocelot_init_ports() There are several error handling bugs in mscc_ocelot_init_ports(). I went through the code, and carefully audited it and made fixes and cleanups. 1) The ocelot_probe_port() function didn't have a mirror release function so it was hard to follow. I created the ocelot_release_port() function. 2) In the ocelot_probe_port() function, if the register_netdev() call failed, then it lead to a double free_netdev(dev) bug. Fix this by setting "ocelot->ports[port] = NULL" on the error path. 3) I was concerned that the "port" which comes from of_property_read_u32() might be out of bounds so I added a check for that. 4) In the original code if ocelot_regmap_init() failed then the driver tried to continue but I think that should be a fatal error. 5) If ocelot_probe_port() failed then the most recent devlink was leaked. The fix for mostly came Vladimir Oltean. Get rid of "registered_ports" and just set a bit in "devlink_ports_registered" to say when the devlink port has been registered (and needs to be unregistered on error). There are fewer than 32 ports so a u32 is large enough for this purpose. 6) The error handling if the final ocelot_port_devlink_init() failed had two problems. The "while (port-- >= 0)" loop should have been "--port" pre-op instead of a post-op to avoid a buffer underflow. The "if (!registered_ports[port])" condition was reversed leading to resource leaks and double frees. Fixes: 6c30384eb1de ("net: mscc: ocelot: register devlink ports") Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/YBkXhqRxHtRGzSnJ@mwanda Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-02 12:12:38 +03:00
void ocelot_release_port(struct ocelot_port *ocelot_port);
int ocelot_devlink_init(struct ocelot *ocelot);
void ocelot_devlink_teardown(struct ocelot *ocelot);
int ocelot_port_devlink_init(struct ocelot *ocelot, int port,
enum devlink_port_flavour flavour);
void ocelot_port_devlink_teardown(struct ocelot *ocelot, int port);
int ocelot_trap_add(struct ocelot *ocelot, int port,
unsigned long cookie, bool take_ts,
void (*populate)(struct ocelot_vcap_filter *f));
int ocelot_trap_del(struct ocelot *ocelot, int port, unsigned long cookie);
struct ocelot_mirror *ocelot_mirror_get(struct ocelot *ocelot, int to,
struct netlink_ext_ack *extack);
void ocelot_mirror_put(struct ocelot *ocelot);
extern struct notifier_block ocelot_netdevice_nb;
extern struct notifier_block ocelot_switchdev_nb;
extern struct notifier_block ocelot_switchdev_blocking_nb;
extern const struct devlink_ops ocelot_devlink_ops;
#endif