linux/drivers/gpu/drm/i915/display/intel_dp_link_training.c

1446 lines
45 KiB
C
Raw Normal View History

/*
* Copyright © 2008-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "i915_drv.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dp_link_training.h"
static void intel_dp_reset_lttpr_common_caps(struct intel_dp *intel_dp)
{
memset(intel_dp->lttpr_common_caps, 0, sizeof(intel_dp->lttpr_common_caps));
}
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
static void intel_dp_reset_lttpr_count(struct intel_dp *intel_dp)
{
intel_dp->lttpr_common_caps[DP_PHY_REPEATER_CNT -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV] = 0;
}
static const char *intel_dp_phy_name(enum drm_dp_phy dp_phy,
char *buf, size_t buf_size)
{
if (dp_phy == DP_PHY_DPRX)
snprintf(buf, buf_size, "DPRX");
else
snprintf(buf, buf_size, "LTTPR %d", dp_phy - DP_PHY_LTTPR1 + 1);
return buf;
}
static u8 *intel_dp_lttpr_phy_caps(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
return intel_dp->lttpr_phy_caps[dp_phy - DP_PHY_LTTPR1];
}
static void intel_dp_read_lttpr_phy_caps(struct intel_dp *intel_dp,
drm/i915: Add a DP1.2 compatible way to read LTTPR capabilities At least some DELL monitors (P2715Q) with DPCD_REV 1.2 return corrupted DPCD register values when reading from the 0xF0000- LTTPR range with an AUX transaction block size bigger than 1. The DP standard requires 0 to be returned - as for any other reserved/invalid addresses - but these monitors return the DPCD_REV register value repeated in each byte of the read buffer. This will in turn corrupt the values returned by the LTTPRs between the source and the monitor: LTTPRs must adjust the values they read from the downstream DPRX, for instance right-shift/init the downstream DP_PHY_REPEATER_CNT value. Since the value returned by the monitor's DPRX is non-zero the adjusted values will be corrupt. Reading the LTTPR registers one-by-one instead of reading all of them with a single AUX transfer works around the issue. According to the DP standard's 0xF0000 register description: "LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher)." While it's unclear if DPCD r1.4 refers to the DPCD_REV or to the LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV register (tickets filed at the VESA site to clarify this haven't been addressed), one possibility is that it's a restriction due to non-compliant monitors described above. Disabling the non-transparent LTTPR mode for all such monitors is not a viable solution: the transparent LTTPR mode has its own issue causing link training failures and this would affect a lot of monitors in use with DPCD_REV < 1.4. Instead this patch works around the problem by reading the LTTPR common and PHY cap registers one-by-one for any monitor with a DPCD_REV < 1.4. The standard requires the DPCD capabilities to be read after the LTTPR common capabilities are read, so re-read the DPCD capabilities after the LTTPR common and PHY caps were read out. v2: - Use for instead of a while loop. (Ville) - Add to code comment the monitor model with the problem. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/4531 Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220322143844.42616-1-imre.deak@intel.com
2022-03-22 14:38:44 +00:00
const u8 dpcd[DP_RECEIVER_CAP_SIZE],
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
enum drm_dp_phy dp_phy)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy);
char phy_name[10];
intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name));
drm/i915: Add a DP1.2 compatible way to read LTTPR capabilities At least some DELL monitors (P2715Q) with DPCD_REV 1.2 return corrupted DPCD register values when reading from the 0xF0000- LTTPR range with an AUX transaction block size bigger than 1. The DP standard requires 0 to be returned - as for any other reserved/invalid addresses - but these monitors return the DPCD_REV register value repeated in each byte of the read buffer. This will in turn corrupt the values returned by the LTTPRs between the source and the monitor: LTTPRs must adjust the values they read from the downstream DPRX, for instance right-shift/init the downstream DP_PHY_REPEATER_CNT value. Since the value returned by the monitor's DPRX is non-zero the adjusted values will be corrupt. Reading the LTTPR registers one-by-one instead of reading all of them with a single AUX transfer works around the issue. According to the DP standard's 0xF0000 register description: "LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher)." While it's unclear if DPCD r1.4 refers to the DPCD_REV or to the LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV register (tickets filed at the VESA site to clarify this haven't been addressed), one possibility is that it's a restriction due to non-compliant monitors described above. Disabling the non-transparent LTTPR mode for all such monitors is not a viable solution: the transparent LTTPR mode has its own issue causing link training failures and this would affect a lot of monitors in use with DPCD_REV < 1.4. Instead this patch works around the problem by reading the LTTPR common and PHY cap registers one-by-one for any monitor with a DPCD_REV < 1.4. The standard requires the DPCD capabilities to be read after the LTTPR common capabilities are read, so re-read the DPCD capabilities after the LTTPR common and PHY caps were read out. v2: - Use for instead of a while loop. (Ville) - Add to code comment the monitor model with the problem. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/4531 Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220322143844.42616-1-imre.deak@intel.com
2022-03-22 14:38:44 +00:00
if (drm_dp_read_lttpr_phy_caps(&intel_dp->aux, dpcd, dp_phy, phy_caps) < 0) {
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
drm_dbg_kms(&dp_to_i915(intel_dp)->drm,
"[ENCODER:%d:%s][%s] failed to read the PHY caps\n",
encoder->base.base.id, encoder->base.name, phy_name);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
return;
}
drm_dbg_kms(&dp_to_i915(intel_dp)->drm,
"[ENCODER:%d:%s][%s] PHY capabilities: %*ph\n",
encoder->base.base.id, encoder->base.name, phy_name,
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
(int)sizeof(intel_dp->lttpr_phy_caps[0]),
phy_caps);
}
drm/i915: Add a DP1.2 compatible way to read LTTPR capabilities At least some DELL monitors (P2715Q) with DPCD_REV 1.2 return corrupted DPCD register values when reading from the 0xF0000- LTTPR range with an AUX transaction block size bigger than 1. The DP standard requires 0 to be returned - as for any other reserved/invalid addresses - but these monitors return the DPCD_REV register value repeated in each byte of the read buffer. This will in turn corrupt the values returned by the LTTPRs between the source and the monitor: LTTPRs must adjust the values they read from the downstream DPRX, for instance right-shift/init the downstream DP_PHY_REPEATER_CNT value. Since the value returned by the monitor's DPRX is non-zero the adjusted values will be corrupt. Reading the LTTPR registers one-by-one instead of reading all of them with a single AUX transfer works around the issue. According to the DP standard's 0xF0000 register description: "LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher)." While it's unclear if DPCD r1.4 refers to the DPCD_REV or to the LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV register (tickets filed at the VESA site to clarify this haven't been addressed), one possibility is that it's a restriction due to non-compliant monitors described above. Disabling the non-transparent LTTPR mode for all such monitors is not a viable solution: the transparent LTTPR mode has its own issue causing link training failures and this would affect a lot of monitors in use with DPCD_REV < 1.4. Instead this patch works around the problem by reading the LTTPR common and PHY cap registers one-by-one for any monitor with a DPCD_REV < 1.4. The standard requires the DPCD capabilities to be read after the LTTPR common capabilities are read, so re-read the DPCD capabilities after the LTTPR common and PHY caps were read out. v2: - Use for instead of a while loop. (Ville) - Add to code comment the monitor model with the problem. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/4531 Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220322143844.42616-1-imre.deak@intel.com
2022-03-22 14:38:44 +00:00
static bool intel_dp_read_lttpr_common_caps(struct intel_dp *intel_dp,
const u8 dpcd[DP_RECEIVER_CAP_SIZE])
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
drm/i915: Add a DP1.2 compatible way to read LTTPR capabilities At least some DELL monitors (P2715Q) with DPCD_REV 1.2 return corrupted DPCD register values when reading from the 0xF0000- LTTPR range with an AUX transaction block size bigger than 1. The DP standard requires 0 to be returned - as for any other reserved/invalid addresses - but these monitors return the DPCD_REV register value repeated in each byte of the read buffer. This will in turn corrupt the values returned by the LTTPRs between the source and the monitor: LTTPRs must adjust the values they read from the downstream DPRX, for instance right-shift/init the downstream DP_PHY_REPEATER_CNT value. Since the value returned by the monitor's DPRX is non-zero the adjusted values will be corrupt. Reading the LTTPR registers one-by-one instead of reading all of them with a single AUX transfer works around the issue. According to the DP standard's 0xF0000 register description: "LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher)." While it's unclear if DPCD r1.4 refers to the DPCD_REV or to the LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV register (tickets filed at the VESA site to clarify this haven't been addressed), one possibility is that it's a restriction due to non-compliant monitors described above. Disabling the non-transparent LTTPR mode for all such monitors is not a viable solution: the transparent LTTPR mode has its own issue causing link training failures and this would affect a lot of monitors in use with DPCD_REV < 1.4. Instead this patch works around the problem by reading the LTTPR common and PHY cap registers one-by-one for any monitor with a DPCD_REV < 1.4. The standard requires the DPCD capabilities to be read after the LTTPR common capabilities are read, so re-read the DPCD capabilities after the LTTPR common and PHY caps were read out. v2: - Use for instead of a while loop. (Ville) - Add to code comment the monitor model with the problem. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/4531 Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220322143844.42616-1-imre.deak@intel.com
2022-03-22 14:38:44 +00:00
int ret;
drm/i915/ilk-glk: Fix link training on links with LTTPRs The spec requires to use at least 3.2ms for the AUX timeout period if there are LT-tunable PHY Repeaters on the link (2.11.2). An upcoming spec update makes this more specific, by requiring a 3.2ms minimum timeout period for the LTTPR detection reading the 0xF0000-0xF0007 range (3.6.5.1). Accordingly disable LTTPR detection until GLK, where the maximum timeout we can set is only 1.6ms. Link training in the non-transparent mode is known to fail at least on some SKL systems with a WD19 dock on the link, which exposes an LTTPR (see the References below). While this could have different reasons besides the too short AUX timeout used, not detecting LTTPRs (and so not using the non-transparent LT mode) fixes link training on these systems. While at it add a code comment about the platform specific maximum timeout values. v2: Add a comment about the g4x maximum timeout as well. (Ville) Reported-by: Takashi Iwai <tiwai@suse.de> Reported-and-tested-by: Santiago Zarate <santiago.zarate@suse.com> Reported-and-tested-by: Bodo Graumann <mail@bodograumann.de> References: https://gitlab.freedesktop.org/drm/intel/-/issues/3166 Fixes: b30edfd8d0b4 ("drm/i915: Switch to LTTPR non-transparent mode link training") Cc: <stable@vger.kernel.org> # v5.11 Cc: Takashi Iwai <tiwai@suse.de> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20210317184901.4029798-2-imre.deak@intel.com
2021-03-17 18:48:59 +00:00
drm/i915: Add a DP1.2 compatible way to read LTTPR capabilities At least some DELL monitors (P2715Q) with DPCD_REV 1.2 return corrupted DPCD register values when reading from the 0xF0000- LTTPR range with an AUX transaction block size bigger than 1. The DP standard requires 0 to be returned - as for any other reserved/invalid addresses - but these monitors return the DPCD_REV register value repeated in each byte of the read buffer. This will in turn corrupt the values returned by the LTTPRs between the source and the monitor: LTTPRs must adjust the values they read from the downstream DPRX, for instance right-shift/init the downstream DP_PHY_REPEATER_CNT value. Since the value returned by the monitor's DPRX is non-zero the adjusted values will be corrupt. Reading the LTTPR registers one-by-one instead of reading all of them with a single AUX transfer works around the issue. According to the DP standard's 0xF0000 register description: "LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher)." While it's unclear if DPCD r1.4 refers to the DPCD_REV or to the LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV register (tickets filed at the VESA site to clarify this haven't been addressed), one possibility is that it's a restriction due to non-compliant monitors described above. Disabling the non-transparent LTTPR mode for all such monitors is not a viable solution: the transparent LTTPR mode has its own issue causing link training failures and this would affect a lot of monitors in use with DPCD_REV < 1.4. Instead this patch works around the problem by reading the LTTPR common and PHY cap registers one-by-one for any monitor with a DPCD_REV < 1.4. The standard requires the DPCD capabilities to be read after the LTTPR common capabilities are read, so re-read the DPCD capabilities after the LTTPR common and PHY caps were read out. v2: - Use for instead of a while loop. (Ville) - Add to code comment the monitor model with the problem. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/4531 Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220322143844.42616-1-imre.deak@intel.com
2022-03-22 14:38:44 +00:00
ret = drm_dp_read_lttpr_common_caps(&intel_dp->aux, dpcd,
intel_dp->lttpr_common_caps);
if (ret < 0)
goto reset_caps;
drm_dbg_kms(&dp_to_i915(intel_dp)->drm,
"[ENCODER:%d:%s] LTTPR common capabilities: %*ph\n",
encoder->base.base.id, encoder->base.name,
(int)sizeof(intel_dp->lttpr_common_caps),
intel_dp->lttpr_common_caps);
/* The minimum value of LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV is 1.4 */
if (intel_dp->lttpr_common_caps[0] < 0x14)
goto reset_caps;
return true;
reset_caps:
intel_dp_reset_lttpr_common_caps(intel_dp);
return false;
}
static bool
intel_dp_set_lttpr_transparent_mode(struct intel_dp *intel_dp, bool enable)
{
u8 val = enable ? DP_PHY_REPEATER_MODE_TRANSPARENT :
DP_PHY_REPEATER_MODE_NON_TRANSPARENT;
return drm_dp_dpcd_write(&intel_dp->aux, DP_PHY_REPEATER_MODE, &val, 1) == 1;
}
drm/i915: Add a DP1.2 compatible way to read LTTPR capabilities At least some DELL monitors (P2715Q) with DPCD_REV 1.2 return corrupted DPCD register values when reading from the 0xF0000- LTTPR range with an AUX transaction block size bigger than 1. The DP standard requires 0 to be returned - as for any other reserved/invalid addresses - but these monitors return the DPCD_REV register value repeated in each byte of the read buffer. This will in turn corrupt the values returned by the LTTPRs between the source and the monitor: LTTPRs must adjust the values they read from the downstream DPRX, for instance right-shift/init the downstream DP_PHY_REPEATER_CNT value. Since the value returned by the monitor's DPRX is non-zero the adjusted values will be corrupt. Reading the LTTPR registers one-by-one instead of reading all of them with a single AUX transfer works around the issue. According to the DP standard's 0xF0000 register description: "LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher)." While it's unclear if DPCD r1.4 refers to the DPCD_REV or to the LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV register (tickets filed at the VESA site to clarify this haven't been addressed), one possibility is that it's a restriction due to non-compliant monitors described above. Disabling the non-transparent LTTPR mode for all such monitors is not a viable solution: the transparent LTTPR mode has its own issue causing link training failures and this would affect a lot of monitors in use with DPCD_REV < 1.4. Instead this patch works around the problem by reading the LTTPR common and PHY cap registers one-by-one for any monitor with a DPCD_REV < 1.4. The standard requires the DPCD capabilities to be read after the LTTPR common capabilities are read, so re-read the DPCD capabilities after the LTTPR common and PHY caps were read out. v2: - Use for instead of a while loop. (Ville) - Add to code comment the monitor model with the problem. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/4531 Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220322143844.42616-1-imre.deak@intel.com
2022-03-22 14:38:44 +00:00
static int intel_dp_init_lttpr(struct intel_dp *intel_dp, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
int lttpr_count;
int i;
drm/i915: Add a DP1.2 compatible way to read LTTPR capabilities At least some DELL monitors (P2715Q) with DPCD_REV 1.2 return corrupted DPCD register values when reading from the 0xF0000- LTTPR range with an AUX transaction block size bigger than 1. The DP standard requires 0 to be returned - as for any other reserved/invalid addresses - but these monitors return the DPCD_REV register value repeated in each byte of the read buffer. This will in turn corrupt the values returned by the LTTPRs between the source and the monitor: LTTPRs must adjust the values they read from the downstream DPRX, for instance right-shift/init the downstream DP_PHY_REPEATER_CNT value. Since the value returned by the monitor's DPRX is non-zero the adjusted values will be corrupt. Reading the LTTPR registers one-by-one instead of reading all of them with a single AUX transfer works around the issue. According to the DP standard's 0xF0000 register description: "LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher)." While it's unclear if DPCD r1.4 refers to the DPCD_REV or to the LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV register (tickets filed at the VESA site to clarify this haven't been addressed), one possibility is that it's a restriction due to non-compliant monitors described above. Disabling the non-transparent LTTPR mode for all such monitors is not a viable solution: the transparent LTTPR mode has its own issue causing link training failures and this would affect a lot of monitors in use with DPCD_REV < 1.4. Instead this patch works around the problem by reading the LTTPR common and PHY cap registers one-by-one for any monitor with a DPCD_REV < 1.4. The standard requires the DPCD capabilities to be read after the LTTPR common capabilities are read, so re-read the DPCD capabilities after the LTTPR common and PHY caps were read out. v2: - Use for instead of a while loop. (Ville) - Add to code comment the monitor model with the problem. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/4531 Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220322143844.42616-1-imre.deak@intel.com
2022-03-22 14:38:44 +00:00
if (!intel_dp_read_lttpr_common_caps(intel_dp, dpcd))
return 0;
lttpr_count = drm_dp_lttpr_count(intel_dp->lttpr_common_caps);
/*
* Prevent setting LTTPR transparent mode explicitly if no LTTPRs are
* detected as this breaks link training at least on the Dell WD19TB
* dock.
*/
if (lttpr_count == 0)
return 0;
/*
* See DP Standard v2.0 3.6.6.1. about the explicit disabling of
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
* non-transparent mode and the disable->enable non-transparent mode
* sequence.
*/
intel_dp_set_lttpr_transparent_mode(intel_dp, true);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
/*
* In case of unsupported number of LTTPRs or failing to switch to
* non-transparent mode fall-back to transparent link training mode,
* still taking into account any LTTPR common lane- rate/count limits.
*/
if (lttpr_count < 0)
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
return 0;
if (!intel_dp_set_lttpr_transparent_mode(intel_dp, false)) {
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] Switching to LTTPR non-transparent LT mode failed, fall-back to transparent mode\n",
encoder->base.base.id, encoder->base.name);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
intel_dp_set_lttpr_transparent_mode(intel_dp, true);
intel_dp_reset_lttpr_count(intel_dp);
return 0;
}
for (i = 0; i < lttpr_count; i++)
drm/i915: Add a DP1.2 compatible way to read LTTPR capabilities At least some DELL monitors (P2715Q) with DPCD_REV 1.2 return corrupted DPCD register values when reading from the 0xF0000- LTTPR range with an AUX transaction block size bigger than 1. The DP standard requires 0 to be returned - as for any other reserved/invalid addresses - but these monitors return the DPCD_REV register value repeated in each byte of the read buffer. This will in turn corrupt the values returned by the LTTPRs between the source and the monitor: LTTPRs must adjust the values they read from the downstream DPRX, for instance right-shift/init the downstream DP_PHY_REPEATER_CNT value. Since the value returned by the monitor's DPRX is non-zero the adjusted values will be corrupt. Reading the LTTPR registers one-by-one instead of reading all of them with a single AUX transfer works around the issue. According to the DP standard's 0xF0000 register description: "LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher)." While it's unclear if DPCD r1.4 refers to the DPCD_REV or to the LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV register (tickets filed at the VESA site to clarify this haven't been addressed), one possibility is that it's a restriction due to non-compliant monitors described above. Disabling the non-transparent LTTPR mode for all such monitors is not a viable solution: the transparent LTTPR mode has its own issue causing link training failures and this would affect a lot of monitors in use with DPCD_REV < 1.4. Instead this patch works around the problem by reading the LTTPR common and PHY cap registers one-by-one for any monitor with a DPCD_REV < 1.4. The standard requires the DPCD capabilities to be read after the LTTPR common capabilities are read, so re-read the DPCD capabilities after the LTTPR common and PHY caps were read out. v2: - Use for instead of a while loop. (Ville) - Add to code comment the monitor model with the problem. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/4531 Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220322143844.42616-1-imre.deak@intel.com
2022-03-22 14:38:44 +00:00
intel_dp_read_lttpr_phy_caps(intel_dp, dpcd, DP_PHY_LTTPR(i));
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
return lttpr_count;
}
drm/i915: Reenable LTTPR non-transparent LT mode for DPCD_REV<1.4 The driver currently disables the LTTPR non-transparent link training mode for sinks with a DPCD_REV<1.4, based on the following description of the LTTPR DPCD register range in DP standard 2.0 (at the 0xF0000 register description): "" LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher). """ The transparent link training mode should still work fine, however the implementation for this in some retimer FWs seems to be broken, see the References: link below. After discussions with DP standard authors the above "DPCD r1.4" does not refer to the DPCD revision (stored in the DPCD_REV reg at 0x00000), rather to the "LTTPR field data structure revision" stored in the 0xF0000 reg. An update request has been filed at vesa.org (see wg/Link/documentComment/3746) for the upcoming v2.1 specification to clarify the above description along the following lines: """ LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV 1.4 (or higher) """ Based on my tests Windows uses the non-transparent link training mode for DPCD_REV==1.2 sinks as well (so presumably for all DPCD_REVs), and forcing it to use transparent mode on ICL/TGL platforms leads to the same LT failure as reported at the References: link. Based on the above let's assume that the transparent link training mode is not well tested/supported and align the code to the correct interpretation of what the r1.4 version refers to. Reported-and-tested-by: Casey Harkins <caseyharkins@gmail.com> Tested-by: Khaled Almahallawy <khaled.almahallawy@intel.com> References: https://gitlab.freedesktop.org/drm/intel/-/issues/3415 Fixes: 264613b406eb ("drm/i915: Disable LTTPR support when the DPCD rev < 1.4") Cc: <stable@vger.kernel.org> # v5.11+ Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Khaled Almahallawy <khaled.almahallawy@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20210512212809.1234701-1-imre.deak@intel.com
2021-05-12 21:28:09 +00:00
/**
* intel_dp_init_lttpr_and_dprx_caps - detect LTTPR and DPRX caps, init the LTTPR link training mode
* @intel_dp: Intel DP struct
*
* Read the LTTPR common and DPRX capabilities and switch to non-transparent
* link training mode if any is detected and read the PHY capabilities for all
* detected LTTPRs. In case of an LTTPR detection error or if the number of
* LTTPRs is more than is supported (8), fall back to the no-LTTPR,
* transparent mode link training mode.
*
* Returns:
* >0 if LTTPRs were detected and the non-transparent LT mode was set. The
* DPRX capabilities are read out.
* 0 if no LTTPRs or more than 8 LTTPRs were detected or in case of a
* detection failure and the transparent LT mode was set. The DPRX
* capabilities are read out.
* <0 Reading out the DPRX capabilities failed.
*/
int intel_dp_init_lttpr_and_dprx_caps(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int lttpr_count = 0;
drm/i915: Add a DP1.2 compatible way to read LTTPR capabilities At least some DELL monitors (P2715Q) with DPCD_REV 1.2 return corrupted DPCD register values when reading from the 0xF0000- LTTPR range with an AUX transaction block size bigger than 1. The DP standard requires 0 to be returned - as for any other reserved/invalid addresses - but these monitors return the DPCD_REV register value repeated in each byte of the read buffer. This will in turn corrupt the values returned by the LTTPRs between the source and the monitor: LTTPRs must adjust the values they read from the downstream DPRX, for instance right-shift/init the downstream DP_PHY_REPEATER_CNT value. Since the value returned by the monitor's DPRX is non-zero the adjusted values will be corrupt. Reading the LTTPR registers one-by-one instead of reading all of them with a single AUX transfer works around the issue. According to the DP standard's 0xF0000 register description: "LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher)." While it's unclear if DPCD r1.4 refers to the DPCD_REV or to the LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV register (tickets filed at the VESA site to clarify this haven't been addressed), one possibility is that it's a restriction due to non-compliant monitors described above. Disabling the non-transparent LTTPR mode for all such monitors is not a viable solution: the transparent LTTPR mode has its own issue causing link training failures and this would affect a lot of monitors in use with DPCD_REV < 1.4. Instead this patch works around the problem by reading the LTTPR common and PHY cap registers one-by-one for any monitor with a DPCD_REV < 1.4. The standard requires the DPCD capabilities to be read after the LTTPR common capabilities are read, so re-read the DPCD capabilities after the LTTPR common and PHY caps were read out. v2: - Use for instead of a while loop. (Ville) - Add to code comment the monitor model with the problem. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/4531 Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220322143844.42616-1-imre.deak@intel.com
2022-03-22 14:38:44 +00:00
/*
* Detecting LTTPRs must be avoided on platforms with an AUX timeout
* period < 3.2ms. (see DP Standard v2.0, 2.11.2, 3.6.6.1).
*/
if (!intel_dp_is_edp(intel_dp) &&
(DISPLAY_VER(i915) >= 10 && !IS_GEMINILAKE(i915))) {
u8 dpcd[DP_RECEIVER_CAP_SIZE];
if (drm_dp_dpcd_probe(&intel_dp->aux, DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV))
return -EIO;
drm/i915: Reenable LTTPR non-transparent LT mode for DPCD_REV<1.4 The driver currently disables the LTTPR non-transparent link training mode for sinks with a DPCD_REV<1.4, based on the following description of the LTTPR DPCD register range in DP standard 2.0 (at the 0xF0000 register description): "" LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher). """ The transparent link training mode should still work fine, however the implementation for this in some retimer FWs seems to be broken, see the References: link below. After discussions with DP standard authors the above "DPCD r1.4" does not refer to the DPCD revision (stored in the DPCD_REV reg at 0x00000), rather to the "LTTPR field data structure revision" stored in the 0xF0000 reg. An update request has been filed at vesa.org (see wg/Link/documentComment/3746) for the upcoming v2.1 specification to clarify the above description along the following lines: """ LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV 1.4 (or higher) """ Based on my tests Windows uses the non-transparent link training mode for DPCD_REV==1.2 sinks as well (so presumably for all DPCD_REVs), and forcing it to use transparent mode on ICL/TGL platforms leads to the same LT failure as reported at the References: link. Based on the above let's assume that the transparent link training mode is not well tested/supported and align the code to the correct interpretation of what the r1.4 version refers to. Reported-and-tested-by: Casey Harkins <caseyharkins@gmail.com> Tested-by: Khaled Almahallawy <khaled.almahallawy@intel.com> References: https://gitlab.freedesktop.org/drm/intel/-/issues/3415 Fixes: 264613b406eb ("drm/i915: Disable LTTPR support when the DPCD rev < 1.4") Cc: <stable@vger.kernel.org> # v5.11+ Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Khaled Almahallawy <khaled.almahallawy@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20210512212809.1234701-1-imre.deak@intel.com
2021-05-12 21:28:09 +00:00
if (drm_dp_read_dpcd_caps(&intel_dp->aux, dpcd))
return -EIO;
lttpr_count = intel_dp_init_lttpr(intel_dp, dpcd);
}
drm/i915: Add a DP1.2 compatible way to read LTTPR capabilities At least some DELL monitors (P2715Q) with DPCD_REV 1.2 return corrupted DPCD register values when reading from the 0xF0000- LTTPR range with an AUX transaction block size bigger than 1. The DP standard requires 0 to be returned - as for any other reserved/invalid addresses - but these monitors return the DPCD_REV register value repeated in each byte of the read buffer. This will in turn corrupt the values returned by the LTTPRs between the source and the monitor: LTTPRs must adjust the values they read from the downstream DPRX, for instance right-shift/init the downstream DP_PHY_REPEATER_CNT value. Since the value returned by the monitor's DPRX is non-zero the adjusted values will be corrupt. Reading the LTTPR registers one-by-one instead of reading all of them with a single AUX transfer works around the issue. According to the DP standard's 0xF0000 register description: "LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher)." While it's unclear if DPCD r1.4 refers to the DPCD_REV or to the LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV register (tickets filed at the VESA site to clarify this haven't been addressed), one possibility is that it's a restriction due to non-compliant monitors described above. Disabling the non-transparent LTTPR mode for all such monitors is not a viable solution: the transparent LTTPR mode has its own issue causing link training failures and this would affect a lot of monitors in use with DPCD_REV < 1.4. Instead this patch works around the problem by reading the LTTPR common and PHY cap registers one-by-one for any monitor with a DPCD_REV < 1.4. The standard requires the DPCD capabilities to be read after the LTTPR common capabilities are read, so re-read the DPCD capabilities after the LTTPR common and PHY caps were read out. v2: - Use for instead of a while loop. (Ville) - Add to code comment the monitor model with the problem. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/4531 Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220322143844.42616-1-imre.deak@intel.com
2022-03-22 14:38:44 +00:00
/*
* The DPTX shall read the DPRX caps after LTTPR detection, so re-read
* it here.
*/
drm/i915: Reenable LTTPR non-transparent LT mode for DPCD_REV<1.4 The driver currently disables the LTTPR non-transparent link training mode for sinks with a DPCD_REV<1.4, based on the following description of the LTTPR DPCD register range in DP standard 2.0 (at the 0xF0000 register description): "" LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for DPCD r1.4 (or higher). """ The transparent link training mode should still work fine, however the implementation for this in some retimer FWs seems to be broken, see the References: link below. After discussions with DP standard authors the above "DPCD r1.4" does not refer to the DPCD revision (stored in the DPCD_REV reg at 0x00000), rather to the "LTTPR field data structure revision" stored in the 0xF0000 reg. An update request has been filed at vesa.org (see wg/Link/documentComment/3746) for the upcoming v2.1 specification to clarify the above description along the following lines: """ LTTPR-related registers at DPCD Addresses F0000h through F02FFh are valid only for LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV 1.4 (or higher) """ Based on my tests Windows uses the non-transparent link training mode for DPCD_REV==1.2 sinks as well (so presumably for all DPCD_REVs), and forcing it to use transparent mode on ICL/TGL platforms leads to the same LT failure as reported at the References: link. Based on the above let's assume that the transparent link training mode is not well tested/supported and align the code to the correct interpretation of what the r1.4 version refers to. Reported-and-tested-by: Casey Harkins <caseyharkins@gmail.com> Tested-by: Khaled Almahallawy <khaled.almahallawy@intel.com> References: https://gitlab.freedesktop.org/drm/intel/-/issues/3415 Fixes: 264613b406eb ("drm/i915: Disable LTTPR support when the DPCD rev < 1.4") Cc: <stable@vger.kernel.org> # v5.11+ Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Khaled Almahallawy <khaled.almahallawy@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20210512212809.1234701-1-imre.deak@intel.com
2021-05-12 21:28:09 +00:00
if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd)) {
intel_dp_reset_lttpr_common_caps(intel_dp);
return -EIO;
}
return lttpr_count;
}
static u8 dp_voltage_max(u8 preemph)
{
switch (preemph & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
return DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
default:
return DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
}
}
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
static u8 intel_dp_lttpr_voltage_max(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
const u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy);
if (drm_dp_lttpr_voltage_swing_level_3_supported(phy_caps))
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
else
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
}
static u8 intel_dp_lttpr_preemph_max(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
const u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy);
if (drm_dp_lttpr_pre_emphasis_level_3_supported(phy_caps))
return DP_TRAIN_PRE_EMPH_LEVEL_3;
else
return DP_TRAIN_PRE_EMPH_LEVEL_2;
}
static bool
intel_dp_phy_is_downstream_of_source(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int lttpr_count = drm_dp_lttpr_count(intel_dp->lttpr_common_caps);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
drm_WARN_ON_ONCE(&i915->drm, lttpr_count <= 0 && dp_phy != DP_PHY_DPRX);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
return lttpr_count <= 0 || dp_phy == DP_PHY_LTTPR(lttpr_count - 1);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
}
static u8 intel_dp_phy_voltage_max(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u8 voltage_max;
/*
* Get voltage_max from the DPTX_PHY (source or LTTPR) upstream from
* the DPRX_PHY we train.
*/
if (intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy))
voltage_max = intel_dp->voltage_max(intel_dp, crtc_state);
else
voltage_max = intel_dp_lttpr_voltage_max(intel_dp, dp_phy + 1);
drm_WARN_ON_ONCE(&i915->drm,
voltage_max != DP_TRAIN_VOLTAGE_SWING_LEVEL_2 &&
voltage_max != DP_TRAIN_VOLTAGE_SWING_LEVEL_3);
return voltage_max;
}
static u8 intel_dp_phy_preemph_max(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u8 preemph_max;
/*
* Get preemph_max from the DPTX_PHY (source or LTTPR) upstream from
* the DPRX_PHY we train.
*/
if (intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy))
preemph_max = intel_dp->preemph_max(intel_dp);
else
preemph_max = intel_dp_lttpr_preemph_max(intel_dp, dp_phy + 1);
drm_WARN_ON_ONCE(&i915->drm,
preemph_max != DP_TRAIN_PRE_EMPH_LEVEL_2 &&
preemph_max != DP_TRAIN_PRE_EMPH_LEVEL_3);
return preemph_max;
}
static bool has_per_lane_signal_levels(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
return !intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy) ||
DISPLAY_VER(i915) >= 11;
}
/* 128b/132b */
static u8 intel_dp_get_lane_adjust_tx_ffe_preset(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
u8 tx_ffe = 0;
if (has_per_lane_signal_levels(intel_dp, dp_phy)) {
lane = min(lane, crtc_state->lane_count - 1);
tx_ffe = drm_dp_get_adjust_tx_ffe_preset(link_status, lane);
} else {
for (lane = 0; lane < crtc_state->lane_count; lane++)
tx_ffe = max(tx_ffe, drm_dp_get_adjust_tx_ffe_preset(link_status, lane));
}
return tx_ffe;
}
/* 8b/10b */
static u8 intel_dp_get_lane_adjust_vswing_preemph(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
u8 v = 0;
u8 p = 0;
u8 voltage_max;
u8 preemph_max;
if (has_per_lane_signal_levels(intel_dp, dp_phy)) {
lane = min(lane, crtc_state->lane_count - 1);
v = drm_dp_get_adjust_request_voltage(link_status, lane);
p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
} else {
for (lane = 0; lane < crtc_state->lane_count; lane++) {
v = max(v, drm_dp_get_adjust_request_voltage(link_status, lane));
p = max(p, drm_dp_get_adjust_request_pre_emphasis(link_status, lane));
}
}
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
preemph_max = intel_dp_phy_preemph_max(intel_dp, dp_phy);
if (p >= preemph_max)
p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
v = min(v, dp_voltage_max(p));
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
voltage_max = intel_dp_phy_voltage_max(intel_dp, crtc_state, dp_phy);
if (v >= voltage_max)
v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
return v | p;
}
static u8 intel_dp_get_lane_adjust_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
if (intel_dp_is_uhbr(crtc_state))
return intel_dp_get_lane_adjust_tx_ffe_preset(intel_dp, crtc_state,
dp_phy, link_status, lane);
else
return intel_dp_get_lane_adjust_vswing_preemph(intel_dp, crtc_state,
dp_phy, link_status, lane);
}
#define TRAIN_REQ_FMT "%d/%d/%d/%d"
#define _TRAIN_REQ_VSWING_ARGS(link_status, lane) \
(drm_dp_get_adjust_request_voltage((link_status), (lane)) >> DP_TRAIN_VOLTAGE_SWING_SHIFT)
#define TRAIN_REQ_VSWING_ARGS(link_status) \
_TRAIN_REQ_VSWING_ARGS(link_status, 0), \
_TRAIN_REQ_VSWING_ARGS(link_status, 1), \
_TRAIN_REQ_VSWING_ARGS(link_status, 2), \
_TRAIN_REQ_VSWING_ARGS(link_status, 3)
#define _TRAIN_REQ_PREEMPH_ARGS(link_status, lane) \
(drm_dp_get_adjust_request_pre_emphasis((link_status), (lane)) >> DP_TRAIN_PRE_EMPHASIS_SHIFT)
#define TRAIN_REQ_PREEMPH_ARGS(link_status) \
_TRAIN_REQ_PREEMPH_ARGS(link_status, 0), \
_TRAIN_REQ_PREEMPH_ARGS(link_status, 1), \
_TRAIN_REQ_PREEMPH_ARGS(link_status, 2), \
_TRAIN_REQ_PREEMPH_ARGS(link_status, 3)
#define _TRAIN_REQ_TX_FFE_ARGS(link_status, lane) \
drm_dp_get_adjust_tx_ffe_preset((link_status), (lane))
#define TRAIN_REQ_TX_FFE_ARGS(link_status) \
_TRAIN_REQ_TX_FFE_ARGS(link_status, 0), \
_TRAIN_REQ_TX_FFE_ARGS(link_status, 1), \
_TRAIN_REQ_TX_FFE_ARGS(link_status, 2), \
_TRAIN_REQ_TX_FFE_ARGS(link_status, 3)
void
intel_dp_get_adjust_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE])
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
char phy_name[10];
int lane;
if (intel_dp_is_uhbr(crtc_state)) {
drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s][%s] 128b/132b, lanes: %d, "
"TX FFE request: " TRAIN_REQ_FMT "\n",
encoder->base.base.id, encoder->base.name,
intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name)),
crtc_state->lane_count,
TRAIN_REQ_TX_FFE_ARGS(link_status));
} else {
drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s][%s] 8b/10b, lanes: %d, "
"vswing request: " TRAIN_REQ_FMT ", "
"pre-emphasis request: " TRAIN_REQ_FMT "\n",
encoder->base.base.id, encoder->base.name,
intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name)),
crtc_state->lane_count,
TRAIN_REQ_VSWING_ARGS(link_status),
TRAIN_REQ_PREEMPH_ARGS(link_status));
}
for (lane = 0; lane < 4; lane++)
intel_dp->train_set[lane] =
intel_dp_get_lane_adjust_train(intel_dp, crtc_state,
dp_phy, link_status, lane);
}
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
static int intel_dp_training_pattern_set_reg(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
return dp_phy == DP_PHY_DPRX ?
DP_TRAINING_PATTERN_SET :
DP_TRAINING_PATTERN_SET_PHY_REPEATER(dp_phy);
}
static bool
intel_dp_set_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
enum drm_dp_phy dp_phy,
u8 dp_train_pat)
{
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
int reg = intel_dp_training_pattern_set_reg(intel_dp, dp_phy);
u8 buf[sizeof(intel_dp->train_set) + 1];
int len;
intel_dp_program_link_training_pattern(intel_dp, crtc_state,
dp_phy, dp_train_pat);
buf[0] = dp_train_pat;
/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
memcpy(buf + 1, intel_dp->train_set, crtc_state->lane_count);
len = crtc_state->lane_count + 1;
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
return drm_dp_dpcd_write(&intel_dp->aux, reg, buf, len) == len;
}
static char dp_training_pattern_name(u8 train_pat)
{
switch (train_pat) {
case DP_TRAINING_PATTERN_1:
case DP_TRAINING_PATTERN_2:
case DP_TRAINING_PATTERN_3:
return '0' + train_pat;
case DP_TRAINING_PATTERN_4:
return '4';
default:
MISSING_CASE(train_pat);
return '?';
}
}
void
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
u8 dp_train_pat)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u8 train_pat = intel_dp_training_pattern_symbol(dp_train_pat);
char phy_name[10];
if (train_pat != DP_TRAINING_PATTERN_DISABLE)
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s][%s] Using DP training pattern TPS%c\n",
encoder->base.base.id, encoder->base.name,
intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name)),
dp_training_pattern_name(train_pat));
intel_dp->set_link_train(intel_dp, crtc_state, dp_train_pat);
}
#define TRAIN_SET_FMT "%d%s/%d%s/%d%s/%d%s"
#define _TRAIN_SET_VSWING_ARGS(train_set) \
((train_set) & DP_TRAIN_VOLTAGE_SWING_MASK) >> DP_TRAIN_VOLTAGE_SWING_SHIFT, \
(train_set) & DP_TRAIN_MAX_SWING_REACHED ? "(max)" : ""
#define TRAIN_SET_VSWING_ARGS(train_set) \
_TRAIN_SET_VSWING_ARGS((train_set)[0]), \
_TRAIN_SET_VSWING_ARGS((train_set)[1]), \
_TRAIN_SET_VSWING_ARGS((train_set)[2]), \
_TRAIN_SET_VSWING_ARGS((train_set)[3])
#define _TRAIN_SET_PREEMPH_ARGS(train_set) \
((train_set) & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT, \
(train_set) & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ? "(max)" : ""
#define TRAIN_SET_PREEMPH_ARGS(train_set) \
_TRAIN_SET_PREEMPH_ARGS((train_set)[0]), \
_TRAIN_SET_PREEMPH_ARGS((train_set)[1]), \
_TRAIN_SET_PREEMPH_ARGS((train_set)[2]), \
_TRAIN_SET_PREEMPH_ARGS((train_set)[3])
#define _TRAIN_SET_TX_FFE_ARGS(train_set) \
((train_set) & DP_TX_FFE_PRESET_VALUE_MASK), ""
#define TRAIN_SET_TX_FFE_ARGS(train_set) \
_TRAIN_SET_TX_FFE_ARGS((train_set)[0]), \
_TRAIN_SET_TX_FFE_ARGS((train_set)[1]), \
_TRAIN_SET_TX_FFE_ARGS((train_set)[2]), \
_TRAIN_SET_TX_FFE_ARGS((train_set)[3])
void intel_dp_set_signal_levels(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
drm/i915: Generalize .set_signal_levels() Currently .set_signal_levels() is only used by encoders in DP mode. For most modern platforms there is no essential difference between DP and HDMI, and both codepaths just end up calling the same function under the hood. Let's get remove the need for that extra indirection by moving .set_signal_levels() into the encoder from intel_dp. Since we already plumb the crtc_state/etc. into .set_signal_levels() the code will do the right thing for both DP and HDMI. HSW/BDW/SKL are the only platforms that need a bit of care on account of having to preload the hardware buf_trans register with the full set of values. So we must still remember to call hsw_prepare_{dp,hdmi}_ddi_buffers() to do said preloading, and .set_signal_levels() will just end up selecting the correct entry for DP, and also setting up the iboost magic for both DP and HDMI. Note that previously on HSW/BDW/SKL we did write to DDI_BUF_CTL to select the correct entry until link training started, now that we call .set_signal_levels() already from hsw_ddi_pre_enable_dp() that is no longer the case. But it's all safe now that the intel_ddi_init_dp_buf_reg() call was hoisted up and it no longer sets up the DDI_BUF_CTL_ENABLE bit (that is still deferred until link training). v2: Rebase due to has_{iboost,buf_trans_select}() Add some notes about the DDI_BUF_CTL situation on HSW/BDW/SKL (Imre) Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211001130107.1746-4-ville.syrjala@linux.intel.com
2021-10-01 13:01:00 +00:00
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
char phy_name[10];
if (intel_dp_is_uhbr(crtc_state)) {
drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s][%s] 128b/132b, lanes: %d, "
"TX FFE presets: " TRAIN_SET_FMT "\n",
encoder->base.base.id, encoder->base.name,
intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name)),
crtc_state->lane_count,
TRAIN_SET_TX_FFE_ARGS(intel_dp->train_set));
} else {
drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s][%s] 8b/10b, lanes: %d, "
"vswing levels: " TRAIN_SET_FMT ", "
"pre-emphasis levels: " TRAIN_SET_FMT "\n",
encoder->base.base.id, encoder->base.name,
intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name)),
crtc_state->lane_count,
TRAIN_SET_VSWING_ARGS(intel_dp->train_set),
TRAIN_SET_PREEMPH_ARGS(intel_dp->train_set));
}
if (intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy))
drm/i915: Generalize .set_signal_levels() Currently .set_signal_levels() is only used by encoders in DP mode. For most modern platforms there is no essential difference between DP and HDMI, and both codepaths just end up calling the same function under the hood. Let's get remove the need for that extra indirection by moving .set_signal_levels() into the encoder from intel_dp. Since we already plumb the crtc_state/etc. into .set_signal_levels() the code will do the right thing for both DP and HDMI. HSW/BDW/SKL are the only platforms that need a bit of care on account of having to preload the hardware buf_trans register with the full set of values. So we must still remember to call hsw_prepare_{dp,hdmi}_ddi_buffers() to do said preloading, and .set_signal_levels() will just end up selecting the correct entry for DP, and also setting up the iboost magic for both DP and HDMI. Note that previously on HSW/BDW/SKL we did write to DDI_BUF_CTL to select the correct entry until link training started, now that we call .set_signal_levels() already from hsw_ddi_pre_enable_dp() that is no longer the case. But it's all safe now that the intel_ddi_init_dp_buf_reg() call was hoisted up and it no longer sets up the DDI_BUF_CTL_ENABLE bit (that is still deferred until link training). v2: Rebase due to has_{iboost,buf_trans_select}() Add some notes about the DDI_BUF_CTL situation on HSW/BDW/SKL (Imre) Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211001130107.1746-4-ville.syrjala@linux.intel.com
2021-10-01 13:01:00 +00:00
encoder->set_signal_levels(encoder, crtc_state);
}
static bool
intel_dp_reset_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
enum drm_dp_phy dp_phy,
u8 dp_train_pat)
{
memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
intel_dp_set_signal_levels(intel_dp, crtc_state, dp_phy);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
return intel_dp_set_link_train(intel_dp, crtc_state, dp_phy, dp_train_pat);
}
static bool
intel_dp_update_link_train(struct intel_dp *intel_dp,
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
int reg = dp_phy == DP_PHY_DPRX ?
DP_TRAINING_LANE0_SET :
DP_TRAINING_LANE0_SET_PHY_REPEATER(dp_phy);
int ret;
intel_dp_set_signal_levels(intel_dp, crtc_state, dp_phy);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
ret = drm_dp_dpcd_write(&intel_dp->aux, reg,
intel_dp->train_set, crtc_state->lane_count);
return ret == crtc_state->lane_count;
}
/* 128b/132b */
static bool intel_dp_lane_max_tx_ffe_reached(u8 train_set_lane)
{
return (train_set_lane & DP_TX_FFE_PRESET_VALUE_MASK) ==
DP_TX_FFE_PRESET_VALUE_MASK;
}
/*
* 8b/10b
*
* FIXME: The DP spec is very confusing here, also the Link CTS spec seems to
* have self contradicting tests around this area.
*
* In lieu of better ideas let's just stop when we've reached the max supported
* vswing with its max pre-emphasis, which is either 2+1 or 3+0 depending on
* whether vswing level 3 is supported or not.
*/
static bool intel_dp_lane_max_vswing_reached(u8 train_set_lane)
{
u8 v = (train_set_lane & DP_TRAIN_VOLTAGE_SWING_MASK) >>
DP_TRAIN_VOLTAGE_SWING_SHIFT;
u8 p = (train_set_lane & DP_TRAIN_PRE_EMPHASIS_MASK) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT;
if ((train_set_lane & DP_TRAIN_MAX_SWING_REACHED) == 0)
return false;
if (v + p != 3)
return false;
return true;
}
static bool intel_dp_link_max_vswing_reached(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
int lane;
drm/i915: Tweak the DP "max vswing reached?" condition Currently we consider the max vswing reached when we transmit a the max voltage level, but we don't consider pre-emphasis at all. This kinda matches older DP specs that only had some vague text about transmitting the maximum voltage swing. Latest versions now say something vague about consider the sum of the vswing and pre-emphasis fields in the ADJUST_REQUEST_LANE registers. Very vague, and super confusing especially the fact that it talks about transmitted voltgage swing in the same sentence as it say to look at the requested values. Also glanced at the link CTS spec, and that one seems to have tests that assume contradicting behaviour. Some say to consider just the vswing level we transmit, others say to check for sum of transmitted vswing+preemph being 3. So let's try to take some kind of sane middle ground here. I think what could make sense is only consider max vswing reached if MAX_SWING_REACHED==1 _and_ vswing+preemph==3. That will allow things to go all the way up to vswing 3 + pre-emph 0 or vswing 2 + pre-emph 1, depending on what the maximum supported vswing is. Only considering the sum of vswing+pre-emph doesn't make much sense to me since we could terminate too early if the sink requests eg. vswing 0 + pre-emph 3. And if we'd stick to the current code we could terminate too early of the sink asks for vswing 2 + pre-emph 0 when vswing level 3 is not supported. Side note: I don't really understand why any of this stuff is "specified" at all. There is already a limit of 5 attempts at the same vswing+pre-emph level, and a total limit of 10 attempts. So might as well stick to the same max 5 attempts across the board IMO. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211004170535.4173-2-ville.syrjala@linux.intel.com Reviewed-by: Imre Deak <imre.deak@intel.com>
2021-10-04 17:05:31 +00:00
for (lane = 0; lane < crtc_state->lane_count; lane++) {
u8 train_set_lane = intel_dp->train_set[lane];
if (intel_dp_is_uhbr(crtc_state)) {
if (!intel_dp_lane_max_tx_ffe_reached(train_set_lane))
return false;
} else {
if (!intel_dp_lane_max_vswing_reached(train_set_lane))
return false;
}
drm/i915: Tweak the DP "max vswing reached?" condition Currently we consider the max vswing reached when we transmit a the max voltage level, but we don't consider pre-emphasis at all. This kinda matches older DP specs that only had some vague text about transmitting the maximum voltage swing. Latest versions now say something vague about consider the sum of the vswing and pre-emphasis fields in the ADJUST_REQUEST_LANE registers. Very vague, and super confusing especially the fact that it talks about transmitted voltgage swing in the same sentence as it say to look at the requested values. Also glanced at the link CTS spec, and that one seems to have tests that assume contradicting behaviour. Some say to consider just the vswing level we transmit, others say to check for sum of transmitted vswing+preemph being 3. So let's try to take some kind of sane middle ground here. I think what could make sense is only consider max vswing reached if MAX_SWING_REACHED==1 _and_ vswing+preemph==3. That will allow things to go all the way up to vswing 3 + pre-emph 0 or vswing 2 + pre-emph 1, depending on what the maximum supported vswing is. Only considering the sum of vswing+pre-emph doesn't make much sense to me since we could terminate too early if the sink requests eg. vswing 0 + pre-emph 3. And if we'd stick to the current code we could terminate too early of the sink asks for vswing 2 + pre-emph 0 when vswing level 3 is not supported. Side note: I don't really understand why any of this stuff is "specified" at all. There is already a limit of 5 attempts at the same vswing+pre-emph level, and a total limit of 10 attempts. So might as well stick to the same max 5 attempts across the board IMO. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211004170535.4173-2-ville.syrjala@linux.intel.com Reviewed-by: Imre Deak <imre.deak@intel.com>
2021-10-04 17:05:31 +00:00
}
return true;
}
/*
* Prepare link training by configuring the link parameters. On DDI platforms
* also enable the port here.
*/
static bool
intel_dp_prepare_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u8 link_config[2];
u8 link_bw, rate_select;
if (intel_dp->prepare_link_retrain)
intel_dp->prepare_link_retrain(intel_dp, crtc_state);
intel_dp_compute_rate(intel_dp, crtc_state->port_clock,
&link_bw, &rate_select);
if (link_bw)
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] Using LINK_BW_SET value %02x\n",
encoder->base.base.id, encoder->base.name, link_bw);
else
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] Using LINK_RATE_SET value %02x\n",
encoder->base.base.id, encoder->base.name, rate_select);
/* Write the link configuration data */
link_config[0] = link_bw;
link_config[1] = crtc_state->lane_count;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
drm/i915/dp: generate and cache sink rate array for all DP, not just eDP 1.4 There is some conflation related to sink rates, making this change more complicated than it would otherwise have to be. There are three changes here that are rather difficult to split up: 1) Use the intel_dp->sink_rates array for all DP, not just eDP 1.4. We initialize it from DPCD on eDP 1.4 like before, but generate it based on DP_MAX_LINK_RATE on others. This reduces code complexity when we need to use the sink rates; they are all always in the sink_rates array. 2) Update the sink rate array whenever we read DPCD, and use the information from there. This increases code readability when we need the sink rates. 3) Disentangle fallback rate limiting from sink rates. In the code, the max rate is a dynamic property of the *link*, not of the *sink*. Do the limiting after intersecting the source and sink rates, which are static properties of the devices. This paves the way for follow-up refactoring that I've refrained from doing here to keep this change as simple as it possibly can. v2: introduce use_rate_select and handle non-confirming eDP (Ville) v3: don't clobber cached eDP rates on short pulse (Ville) Cc: Manasi Navare <manasi.d.navare@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Manasi Navare <manasi.d.navare@intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/071bad76467f8ab2e73f3f61ad52d5a468004c71.1490712890.git.jani.nikula@intel.com
2017-03-28 14:59:05 +00:00
/* eDP 1.4 rate select method. */
if (!link_bw)
drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
&rate_select, 1);
link_config[0] = crtc_state->vrr.enable ? DP_MSA_TIMING_PAR_IGNORE_EN : 0;
link_config[1] = intel_dp_is_uhbr(crtc_state) ?
DP_SET_ANSI_128B132B : DP_SET_ANSI_8B10B;
drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
return true;
}
static bool intel_dp_adjust_request_changed(const struct intel_crtc_state *crtc_state,
const u8 old_link_status[DP_LINK_STATUS_SIZE],
const u8 new_link_status[DP_LINK_STATUS_SIZE])
{
int lane;
for (lane = 0; lane < crtc_state->lane_count; lane++) {
u8 old, new;
if (intel_dp_is_uhbr(crtc_state)) {
old = drm_dp_get_adjust_tx_ffe_preset(old_link_status, lane);
new = drm_dp_get_adjust_tx_ffe_preset(new_link_status, lane);
} else {
old = drm_dp_get_adjust_request_voltage(old_link_status, lane) |
drm_dp_get_adjust_request_pre_emphasis(old_link_status, lane);
new = drm_dp_get_adjust_request_voltage(new_link_status, lane) |
drm_dp_get_adjust_request_pre_emphasis(new_link_status, lane);
}
if (old != new)
return true;
}
return false;
}
void
intel_dp_dump_link_status(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE])
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
char phy_name[10];
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s][%s] ln0_1:0x%x ln2_3:0x%x align:0x%x sink:0x%x adj_req0_1:0x%x adj_req2_3:0x%x\n",
encoder->base.base.id, encoder->base.name,
intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name)),
link_status[0], link_status[1], link_status[2],
link_status[3], link_status[4], link_status[5]);
}
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
/*
* Perform the link training clock recovery phase on the given DP PHY using
* training pattern 1.
*/
static bool
intel_dp_link_training_clock_recovery(struct intel_dp *intel_dp,
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u8 old_link_status[DP_LINK_STATUS_SIZE] = {};
int voltage_tries, cr_tries, max_cr_tries;
u8 link_status[DP_LINK_STATUS_SIZE];
bool max_vswing_reached = false;
char phy_name[10];
int delay_us;
delay_us = drm_dp_read_clock_recovery_delay(&intel_dp->aux,
intel_dp->dpcd, dp_phy,
intel_dp_is_uhbr(crtc_state));
intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name));
/* clock recovery */
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
if (!intel_dp_reset_link_train(intel_dp, crtc_state, dp_phy,
DP_TRAINING_PATTERN_1 |
DP_LINK_SCRAMBLING_DISABLE)) {
drm_err(&i915->drm, "[ENCODER:%d:%s][%s] Failed to enable link training\n",
encoder->base.base.id, encoder->base.name, phy_name);
return false;
}
drm/i915/dp: Limit link training clock recovery loop Limit the link training clock recovery loop to 10 attempts at LANEx_CR_DONE per DP 1.4 spec section 3.5.1.2.2 and 80 attempts for pre-DP 1.4 (4 voltage levels x 4 preemphasis levels x x 5 identical voltages tries). Some faulty USB-C MST hubs can cause us to get stuck in this loop indefinitely requesting something like: voltage swing: 0, pre-emphasis level: 2 voltage swing: 1, pre-emphasis level: 2 voltage swing: 0, pre-emphasis level: 3 over and over so max_vswing would never be reached, drm_dp_clock_recovery_ok() would never return true and voltage_tries would always get reset to 1. The driver sends those values to the hub but the hub keeps requesting new values every time. Changes in v2: - updated commit message (DK, Manasi) - defined DP_DP14_MAX_CR_TRIES (Marc) - made the loop iterate for max 10 times (Rodrigo, Marc) Changes in v3: - changed error message to use DP_DP14_MAX_CR_TRIES Changes in v4: - Updated the title to reflect the change - Updated the commit message - Added 80 attempts for pre-DP 1.4 devices Changes in v5: - Removed DP_DP14_MAX_CR_TRIES from drm v6: Updated comment to match kernel style (Rodrigo) Cc: Dhinakaran Pandiyan <dhinakaran.pandiyan@intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Marc Herbert <marc.herbert@intel.com> Cc: Manasi Navare <manasi.d.navare@intel.com> Signed-off-by: Nathan Ciobanu <nathan.d.ciobanu@linux.intel.com> Reviewed-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180720214413.29506-1-rodrigo.vivi@intel.com
2018-07-20 21:44:12 +00:00
/*
* The DP 1.4 spec defines the max clock recovery retries value
* as 10 but for pre-DP 1.4 devices we set a very tolerant
* retry limit of 80 (4 voltage levels x 4 preemphasis levels x
* x 5 identical voltage retries). Since the previous specs didn't
* define a limit and created the possibility of an infinite loop
* we want to prevent any sync from triggering that corner case.
drm/i915/dp: Limit link training clock recovery loop Limit the link training clock recovery loop to 10 attempts at LANEx_CR_DONE per DP 1.4 spec section 3.5.1.2.2 and 80 attempts for pre-DP 1.4 (4 voltage levels x 4 preemphasis levels x x 5 identical voltages tries). Some faulty USB-C MST hubs can cause us to get stuck in this loop indefinitely requesting something like: voltage swing: 0, pre-emphasis level: 2 voltage swing: 1, pre-emphasis level: 2 voltage swing: 0, pre-emphasis level: 3 over and over so max_vswing would never be reached, drm_dp_clock_recovery_ok() would never return true and voltage_tries would always get reset to 1. The driver sends those values to the hub but the hub keeps requesting new values every time. Changes in v2: - updated commit message (DK, Manasi) - defined DP_DP14_MAX_CR_TRIES (Marc) - made the loop iterate for max 10 times (Rodrigo, Marc) Changes in v3: - changed error message to use DP_DP14_MAX_CR_TRIES Changes in v4: - Updated the title to reflect the change - Updated the commit message - Added 80 attempts for pre-DP 1.4 devices Changes in v5: - Removed DP_DP14_MAX_CR_TRIES from drm v6: Updated comment to match kernel style (Rodrigo) Cc: Dhinakaran Pandiyan <dhinakaran.pandiyan@intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Marc Herbert <marc.herbert@intel.com> Cc: Manasi Navare <manasi.d.navare@intel.com> Signed-off-by: Nathan Ciobanu <nathan.d.ciobanu@linux.intel.com> Reviewed-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180720214413.29506-1-rodrigo.vivi@intel.com
2018-07-20 21:44:12 +00:00
*/
if (intel_dp->dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
max_cr_tries = 10;
else
max_cr_tries = 80;
voltage_tries = 1;
drm/i915/dp: Limit link training clock recovery loop Limit the link training clock recovery loop to 10 attempts at LANEx_CR_DONE per DP 1.4 spec section 3.5.1.2.2 and 80 attempts for pre-DP 1.4 (4 voltage levels x 4 preemphasis levels x x 5 identical voltages tries). Some faulty USB-C MST hubs can cause us to get stuck in this loop indefinitely requesting something like: voltage swing: 0, pre-emphasis level: 2 voltage swing: 1, pre-emphasis level: 2 voltage swing: 0, pre-emphasis level: 3 over and over so max_vswing would never be reached, drm_dp_clock_recovery_ok() would never return true and voltage_tries would always get reset to 1. The driver sends those values to the hub but the hub keeps requesting new values every time. Changes in v2: - updated commit message (DK, Manasi) - defined DP_DP14_MAX_CR_TRIES (Marc) - made the loop iterate for max 10 times (Rodrigo, Marc) Changes in v3: - changed error message to use DP_DP14_MAX_CR_TRIES Changes in v4: - Updated the title to reflect the change - Updated the commit message - Added 80 attempts for pre-DP 1.4 devices Changes in v5: - Removed DP_DP14_MAX_CR_TRIES from drm v6: Updated comment to match kernel style (Rodrigo) Cc: Dhinakaran Pandiyan <dhinakaran.pandiyan@intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Marc Herbert <marc.herbert@intel.com> Cc: Manasi Navare <manasi.d.navare@intel.com> Signed-off-by: Nathan Ciobanu <nathan.d.ciobanu@linux.intel.com> Reviewed-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180720214413.29506-1-rodrigo.vivi@intel.com
2018-07-20 21:44:12 +00:00
for (cr_tries = 0; cr_tries < max_cr_tries; ++cr_tries) {
usleep_range(delay_us, 2 * delay_us);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, dp_phy,
link_status) < 0) {
drm_err(&i915->drm, "[ENCODER:%d:%s][%s] Failed to get link status\n",
encoder->base.base.id, encoder->base.name, phy_name);
return false;
}
if (drm_dp_clock_recovery_ok(link_status, crtc_state->lane_count)) {
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s][%s] Clock recovery OK\n",
encoder->base.base.id, encoder->base.name, phy_name);
return true;
}
if (voltage_tries == 5) {
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s][%s] Same voltage tried 5 times\n",
encoder->base.base.id, encoder->base.name, phy_name);
return false;
}
if (max_vswing_reached) {
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s][%s] Max Voltage Swing reached\n",
encoder->base.base.id, encoder->base.name, phy_name);
return false;
}
/* Update training set as requested by target */
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
intel_dp_get_adjust_train(intel_dp, crtc_state, dp_phy,
link_status);
if (!intel_dp_update_link_train(intel_dp, crtc_state, dp_phy)) {
drm_err(&i915->drm,
"[ENCODER:%d:%s][%s] Failed to update link training\n",
encoder->base.base.id, encoder->base.name, phy_name);
return false;
}
if (!intel_dp_adjust_request_changed(crtc_state, old_link_status, link_status))
++voltage_tries;
else
voltage_tries = 1;
memcpy(old_link_status, link_status, sizeof(link_status));
if (intel_dp_link_max_vswing_reached(intel_dp, crtc_state))
max_vswing_reached = true;
}
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
drm_err(&i915->drm,
"[ENCODER:%d:%s][%s] Failed clock recovery %d times, giving up!\n",
encoder->base.base.id, encoder->base.name, phy_name, max_cr_tries);
drm/i915/dp: Limit link training clock recovery loop Limit the link training clock recovery loop to 10 attempts at LANEx_CR_DONE per DP 1.4 spec section 3.5.1.2.2 and 80 attempts for pre-DP 1.4 (4 voltage levels x 4 preemphasis levels x x 5 identical voltages tries). Some faulty USB-C MST hubs can cause us to get stuck in this loop indefinitely requesting something like: voltage swing: 0, pre-emphasis level: 2 voltage swing: 1, pre-emphasis level: 2 voltage swing: 0, pre-emphasis level: 3 over and over so max_vswing would never be reached, drm_dp_clock_recovery_ok() would never return true and voltage_tries would always get reset to 1. The driver sends those values to the hub but the hub keeps requesting new values every time. Changes in v2: - updated commit message (DK, Manasi) - defined DP_DP14_MAX_CR_TRIES (Marc) - made the loop iterate for max 10 times (Rodrigo, Marc) Changes in v3: - changed error message to use DP_DP14_MAX_CR_TRIES Changes in v4: - Updated the title to reflect the change - Updated the commit message - Added 80 attempts for pre-DP 1.4 devices Changes in v5: - Removed DP_DP14_MAX_CR_TRIES from drm v6: Updated comment to match kernel style (Rodrigo) Cc: Dhinakaran Pandiyan <dhinakaran.pandiyan@intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Marc Herbert <marc.herbert@intel.com> Cc: Manasi Navare <manasi.d.navare@intel.com> Signed-off-by: Nathan Ciobanu <nathan.d.ciobanu@linux.intel.com> Reviewed-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180720214413.29506-1-rodrigo.vivi@intel.com
2018-07-20 21:44:12 +00:00
return false;
}
/*
* Pick Training Pattern Sequence (TPS) for channel equalization. 128b/132b TPS2
* for UHBR+, TPS4 for HBR3 or for 1.4 devices that support it, TPS3 for HBR2 or
* 1.2 devices that support it, TPS2 otherwise.
*/
static u32 intel_dp_training_pattern(struct intel_dp *intel_dp,
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
bool source_tps3, sink_tps3, source_tps4, sink_tps4;
/* UHBR+ use separate 128b/132b TPS2 */
if (intel_dp_is_uhbr(crtc_state))
return DP_TRAINING_PATTERN_2;
/*
* TPS4 support is mandatory for all downstream devices that
* support HBR3. There are no known eDP panels that support
* TPS4 as of Feb 2018 as per VESA eDP_v1.4b_E1 specification.
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
* LTTPRs must support TPS4.
*/
source_tps4 = intel_dp_source_supports_tps4(i915);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
sink_tps4 = dp_phy != DP_PHY_DPRX ||
drm_dp_tps4_supported(intel_dp->dpcd);
if (source_tps4 && sink_tps4) {
return DP_TRAINING_PATTERN_4;
} else if (crtc_state->port_clock == 810000) {
if (!source_tps4)
drm_dbg_kms(&i915->drm,
"8.1 Gbps link rate without source TPS4 support\n");
if (!sink_tps4)
drm_dbg_kms(&i915->drm,
"8.1 Gbps link rate without sink TPS4 support\n");
}
/*
* TPS3 support is mandatory for downstream devices that
* support HBR2. However, not all sinks follow the spec.
*/
source_tps3 = intel_dp_source_supports_tps3(i915);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
sink_tps3 = dp_phy != DP_PHY_DPRX ||
drm_dp_tps3_supported(intel_dp->dpcd);
if (source_tps3 && sink_tps3) {
return DP_TRAINING_PATTERN_3;
} else if (crtc_state->port_clock >= 540000) {
if (!source_tps3)
drm_dbg_kms(&i915->drm,
">=5.4/6.48 Gbps link rate without source TPS3 support\n");
if (!sink_tps3)
drm_dbg_kms(&i915->drm,
">=5.4/6.48 Gbps link rate without sink TPS3 support\n");
}
return DP_TRAINING_PATTERN_2;
}
/*
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
* Perform the link training channel equalization phase on the given DP PHY
* using one of training pattern 2, 3 or 4 depending on the source and
* sink capabilities.
*/
static bool
intel_dp_link_training_channel_equalization(struct intel_dp *intel_dp,
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
int tries;
u32 training_pattern;
u8 link_status[DP_LINK_STATUS_SIZE];
bool channel_eq = false;
char phy_name[10];
int delay_us;
delay_us = drm_dp_read_channel_eq_delay(&intel_dp->aux,
intel_dp->dpcd, dp_phy,
intel_dp_is_uhbr(crtc_state));
intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name));
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
training_pattern = intel_dp_training_pattern(intel_dp, crtc_state, dp_phy);
/* Scrambling is disabled for TPS2/3 and enabled for TPS4 */
if (training_pattern != DP_TRAINING_PATTERN_4)
training_pattern |= DP_LINK_SCRAMBLING_DISABLE;
/* channel equalization */
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
if (!intel_dp_set_link_train(intel_dp, crtc_state, dp_phy,
training_pattern)) {
drm_err(&i915->drm,
"[ENCODER:%d:%s][%s] Failed to start channel equalization\n",
encoder->base.base.id, encoder->base.name,
phy_name);
return false;
}
for (tries = 0; tries < 5; tries++) {
usleep_range(delay_us, 2 * delay_us);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, dp_phy,
link_status) < 0) {
drm_err(&i915->drm,
"[ENCODER:%d:%s][%s] Failed to get link status\n",
encoder->base.base.id, encoder->base.name, phy_name);
break;
}
/* Make sure clock is still ok */
if (!drm_dp_clock_recovery_ok(link_status,
crtc_state->lane_count)) {
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s][%s] Clock recovery check failed, cannot "
"continue channel equalization\n",
encoder->base.base.id, encoder->base.name, phy_name);
break;
}
if (drm_dp_channel_eq_ok(link_status,
crtc_state->lane_count)) {
channel_eq = true;
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s][%s] Channel EQ done. DP Training successful\n",
encoder->base.base.id, encoder->base.name, phy_name);
break;
}
/* Update training set as requested by target */
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
intel_dp_get_adjust_train(intel_dp, crtc_state, dp_phy,
link_status);
if (!intel_dp_update_link_train(intel_dp, crtc_state, dp_phy)) {
drm_err(&i915->drm,
"[ENCODER:%d:%s][%s] Failed to update link training\n",
encoder->base.base.id, encoder->base.name, phy_name);
break;
}
}
/* Try 5 times, else fail and try at lower BW */
if (tries == 5) {
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s][%s] Channel equalization failed 5 times\n",
encoder->base.base.id, encoder->base.name, phy_name);
}
return channel_eq;
}
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
static bool intel_dp_disable_dpcd_training_pattern(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
int reg = intel_dp_training_pattern_set_reg(intel_dp, dp_phy);
u8 val = DP_TRAINING_PATTERN_DISABLE;
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
return drm_dp_dpcd_write(&intel_dp->aux, reg, &val, 1) == 1;
}
drm/i915/dp: rewrite DP 2.0 128b/132b link training based on errata The DP 2.0 errata completely overhauls the 128b/132b link training, with no provisions for backward compatibility with the original DP 2.0 specification. The changes are too intrusive to consider reusing the same code for both 8b/10b and 128b/132b, mainly because the LTTPR channel equalisation is done concurrently instead of serialized. NOTES: * It's a bit unclear when to wait for DP_INTERLANE_ALIGN_DONE and per-lane DP_LANE_SYMBOL_LOCKED. Figure xx4 in the SCR implies the LANEx_CHANNEL_EQ_DONE sequence may end with either 0x77,0x77,0x85 *or* 0x33,0x33,0x84 (for four lane configuration in DPCD 0x202..0x204) i.e. without the above bits set. Text elsewhere seems contradictory or incomplete. * We read entire link status (6 bytes) everywhere instead of individual DPCD addresses. * There are some subtle ambiguities or contradictions in the order of some DPCD access and TPS signal enables/disables. It's also not clear whether these are significant. v4: - Wait for intra-hop clear after link training end (Ville) - Wait instead of single check for intra-hop clear before link train v3: - Use msecs_to_jiffies_timeout() (Ville) - Read status at the beginning of interlane align done loop (Ville) - Try to simplify timeout flag use where possible (Ville) v2: - Always try one last time after timeouts to avoid races (Ville) - Extend timeout to cover the entire LANEx_EQ_DONE sequence (Ville) - Also check for eq interlane align done in LANEx_CDS_DONE Sequence (Ville) - Check for Intra-hop status before link training Cc: Uma Shankar <uma.shankar@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220208143209.2997337-1-jani.nikula@intel.com
2022-02-08 14:32:09 +00:00
static int
intel_dp_128b132b_intra_hop(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u8 sink_status;
int ret;
ret = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_STATUS, &sink_status);
if (ret != 1) {
drm_dbg_kms(&i915->drm, "Failed to read sink status\n");
return ret < 0 ? ret : -EIO;
}
return sink_status & DP_INTRA_HOP_AUX_REPLY_INDICATION ? 1 : 0;
}
/**
* intel_dp_stop_link_train - stop link training
* @intel_dp: DP struct
* @crtc_state: state for CRTC attached to the encoder
*
* Stop the link training of the @intel_dp port, disabling the training
* pattern in the sink's DPCD, and disabling the test pattern symbol
* generation on the port.
*
* What symbols are output on the port after this point is
* platform specific: On DDI/VLV/CHV platforms it will be the idle pattern
* with the pipe being disabled, on older platforms it's HW specific if/how an
* idle pattern is generated, as the pipe is already enabled here for those.
*
* This function must be called after intel_dp_start_link_train().
*/
void intel_dp_stop_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
drm/i915/dp: rewrite DP 2.0 128b/132b link training based on errata The DP 2.0 errata completely overhauls the 128b/132b link training, with no provisions for backward compatibility with the original DP 2.0 specification. The changes are too intrusive to consider reusing the same code for both 8b/10b and 128b/132b, mainly because the LTTPR channel equalisation is done concurrently instead of serialized. NOTES: * It's a bit unclear when to wait for DP_INTERLANE_ALIGN_DONE and per-lane DP_LANE_SYMBOL_LOCKED. Figure xx4 in the SCR implies the LANEx_CHANNEL_EQ_DONE sequence may end with either 0x77,0x77,0x85 *or* 0x33,0x33,0x84 (for four lane configuration in DPCD 0x202..0x204) i.e. without the above bits set. Text elsewhere seems contradictory or incomplete. * We read entire link status (6 bytes) everywhere instead of individual DPCD addresses. * There are some subtle ambiguities or contradictions in the order of some DPCD access and TPS signal enables/disables. It's also not clear whether these are significant. v4: - Wait for intra-hop clear after link training end (Ville) - Wait instead of single check for intra-hop clear before link train v3: - Use msecs_to_jiffies_timeout() (Ville) - Read status at the beginning of interlane align done loop (Ville) - Try to simplify timeout flag use where possible (Ville) v2: - Always try one last time after timeouts to avoid races (Ville) - Extend timeout to cover the entire LANEx_EQ_DONE sequence (Ville) - Also check for eq interlane align done in LANEx_CDS_DONE Sequence (Ville) - Check for Intra-hop status before link training Cc: Uma Shankar <uma.shankar@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220208143209.2997337-1-jani.nikula@intel.com
2022-02-08 14:32:09 +00:00
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
intel_dp->link_trained = true;
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
intel_dp_disable_dpcd_training_pattern(intel_dp, DP_PHY_DPRX);
intel_dp_program_link_training_pattern(intel_dp, crtc_state, DP_PHY_DPRX,
DP_TRAINING_PATTERN_DISABLE);
drm/i915/dp: rewrite DP 2.0 128b/132b link training based on errata The DP 2.0 errata completely overhauls the 128b/132b link training, with no provisions for backward compatibility with the original DP 2.0 specification. The changes are too intrusive to consider reusing the same code for both 8b/10b and 128b/132b, mainly because the LTTPR channel equalisation is done concurrently instead of serialized. NOTES: * It's a bit unclear when to wait for DP_INTERLANE_ALIGN_DONE and per-lane DP_LANE_SYMBOL_LOCKED. Figure xx4 in the SCR implies the LANEx_CHANNEL_EQ_DONE sequence may end with either 0x77,0x77,0x85 *or* 0x33,0x33,0x84 (for four lane configuration in DPCD 0x202..0x204) i.e. without the above bits set. Text elsewhere seems contradictory or incomplete. * We read entire link status (6 bytes) everywhere instead of individual DPCD addresses. * There are some subtle ambiguities or contradictions in the order of some DPCD access and TPS signal enables/disables. It's also not clear whether these are significant. v4: - Wait for intra-hop clear after link training end (Ville) - Wait instead of single check for intra-hop clear before link train v3: - Use msecs_to_jiffies_timeout() (Ville) - Read status at the beginning of interlane align done loop (Ville) - Try to simplify timeout flag use where possible (Ville) v2: - Always try one last time after timeouts to avoid races (Ville) - Extend timeout to cover the entire LANEx_EQ_DONE sequence (Ville) - Also check for eq interlane align done in LANEx_CDS_DONE Sequence (Ville) - Check for Intra-hop status before link training Cc: Uma Shankar <uma.shankar@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220208143209.2997337-1-jani.nikula@intel.com
2022-02-08 14:32:09 +00:00
if (intel_dp_is_uhbr(crtc_state) &&
wait_for(intel_dp_128b132b_intra_hop(intel_dp, crtc_state) == 0, 500)) {
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] 128b/132b intra-hop not clearing\n",
encoder->base.base.id, encoder->base.name);
}
}
static bool
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
intel_dp_link_train_phy(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
struct intel_connector *connector = intel_dp->attached_connector;
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
char phy_name[10];
bool ret = false;
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
if (!intel_dp_link_training_clock_recovery(intel_dp, crtc_state, dp_phy))
goto out;
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
if (!intel_dp_link_training_channel_equalization(intel_dp, crtc_state, dp_phy))
goto out;
drm/i915: Implement Link Rate fallback on Link training failure If link training at a link rate optimal for a particular mode fails during modeset's atomic commit phase, then we let the modeset complete and then retry. We save the link rate value at which link training failed, update the link status property to "BAD" and use a lower link rate to prune the modes. It will redo the modeset on the current mode at lower link rate or if the current mode gets pruned due to lower link constraints then, it will send a hotplug uevent for userspace to handle it. This is also required to pass DP CTS tests 4.3.1.3, 4.3.1.4, 4.3.1.6. This patch is a resend of the original commit id (233ce881dd91fb "drm/i915: Implement Link Rate fallback on Link training failure") which got reverted in this commit id (afc1ebf4562a14 Revert "drm/i915: Implement Link Rate fallback on Link training failure") due to CI failures. After investigating the CI failures it was found that these were essentially the failures which were always there but hidden because they used to be DRM_DEBUG_KMS messages for link failures so never got caught by CI. But now this patch actually throws DRM_ERROR if the link training fails at RBR and 1 lane. So it caught these link train failures. There were two failures: 1. On SKL 6700k this was because the machine in CI lab is a SKL desktop without eDP on Port A. But our VBT initialization code in the driver writes VBT defaults in a way that it always sets DP flag on Port A and this does not get cleared after parsing the VBT outputs. This has been fixed in commit id (bb1d132935c2f8 "drm/i915/vbt: split out defaults that are set when there is no VBT) and (665788572c6410b "drm/i915/vbt: don't propagate errors from intel_bios_init()) 2. On ILK-650 desktop - This was happening because of a bad monitor desktop combination. I switched the monitor in the CI lab and that helped get rid of the link failures on ILK system. v10: * Rebase on drm-tip and resend after revert v9: * Use the trimmed max values of link rate/lane count based on link train fallback (Daniel Vetter) v8: * Set link_status to BAD first and then call mode_valid (Jani Nikula) v7: Remove the redundant variable in previous patch itself v6: * Obtain link rate index from fallback_link_rate using the helper intel_dp_link_rate_index (Jani Nikula) * Include fallback within intel_dp_start_link_train (Jani Nikula) v5: * Move set link status to drm core (Daniel Vetter, Jani Nikula) v4: * Add fallback support for non DDI platforms too * Set connector->link status inside set_link_status function (Jani Nikula) v3: * Set link status property to BAd unconditionally (Jani Nikula) * Dont use two separate variables link_train_failed and link_status to indicate same thing (Jani Nikula) v2: * Squashed a few patches (Jani Nikula) Acked-by: Tony Cheng <tony.cheng@amd.com> Acked-by: Harry Wentland <Harry.wentland@amd.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Signed-off-by: Manasi Navare <manasi.d.navare@intel.com> Reviewed-by: Jani Nikula <jani.nikula@intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/16ca48b1e74c618929245e9a085b9e3483c3a16d.1491485983.git.jani.nikula@intel.com
2017-04-06 13:44:19 +00:00
ret = true;
drm/i915: Implement Link Rate fallback on Link training failure If link training at a link rate optimal for a particular mode fails during modeset's atomic commit phase, then we let the modeset complete and then retry. We save the link rate value at which link training failed, update the link status property to "BAD" and use a lower link rate to prune the modes. It will redo the modeset on the current mode at lower link rate or if the current mode gets pruned due to lower link constraints then, it will send a hotplug uevent for userspace to handle it. This is also required to pass DP CTS tests 4.3.1.3, 4.3.1.4, 4.3.1.6. This patch is a resend of the original commit id (233ce881dd91fb "drm/i915: Implement Link Rate fallback on Link training failure") which got reverted in this commit id (afc1ebf4562a14 Revert "drm/i915: Implement Link Rate fallback on Link training failure") due to CI failures. After investigating the CI failures it was found that these were essentially the failures which were always there but hidden because they used to be DRM_DEBUG_KMS messages for link failures so never got caught by CI. But now this patch actually throws DRM_ERROR if the link training fails at RBR and 1 lane. So it caught these link train failures. There were two failures: 1. On SKL 6700k this was because the machine in CI lab is a SKL desktop without eDP on Port A. But our VBT initialization code in the driver writes VBT defaults in a way that it always sets DP flag on Port A and this does not get cleared after parsing the VBT outputs. This has been fixed in commit id (bb1d132935c2f8 "drm/i915/vbt: split out defaults that are set when there is no VBT) and (665788572c6410b "drm/i915/vbt: don't propagate errors from intel_bios_init()) 2. On ILK-650 desktop - This was happening because of a bad monitor desktop combination. I switched the monitor in the CI lab and that helped get rid of the link failures on ILK system. v10: * Rebase on drm-tip and resend after revert v9: * Use the trimmed max values of link rate/lane count based on link train fallback (Daniel Vetter) v8: * Set link_status to BAD first and then call mode_valid (Jani Nikula) v7: Remove the redundant variable in previous patch itself v6: * Obtain link rate index from fallback_link_rate using the helper intel_dp_link_rate_index (Jani Nikula) * Include fallback within intel_dp_start_link_train (Jani Nikula) v5: * Move set link status to drm core (Daniel Vetter, Jani Nikula) v4: * Add fallback support for non DDI platforms too * Set connector->link status inside set_link_status function (Jani Nikula) v3: * Set link status property to BAd unconditionally (Jani Nikula) * Dont use two separate variables link_train_failed and link_status to indicate same thing (Jani Nikula) v2: * Squashed a few patches (Jani Nikula) Acked-by: Tony Cheng <tony.cheng@amd.com> Acked-by: Harry Wentland <Harry.wentland@amd.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Signed-off-by: Manasi Navare <manasi.d.navare@intel.com> Reviewed-by: Jani Nikula <jani.nikula@intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/16ca48b1e74c618929245e9a085b9e3483c3a16d.1491485983.git.jani.nikula@intel.com
2017-04-06 13:44:19 +00:00
out:
drm_dbg_kms(&dp_to_i915(intel_dp)->drm,
"[CONNECTOR:%d:%s][ENCODER:%d:%s][%s] Link Training %s at link rate = %d, lane count = %d\n",
connector->base.base.id, connector->base.name,
encoder->base.base.id, encoder->base.name,
intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name)),
ret ? "passed" : "failed",
crtc_state->port_clock, crtc_state->lane_count);
drm/i915/display: Implement HOBL Hours Of Battery Life is a new GEN12+ power-saving feature that allows supported motherboards to use a special voltage swing table for eDP panels that uses less power. So here if supported by HW, OEM will set it in VBT and i915 will try to train link with HOBL vswing table if link training fails it fall back to the original table. intel_ddi_dp_preemph_max() was optimized to only check the HOBL flag instead of do something like is done in intel_ddi_dp_voltage_max() because it is only called after the first entry of the voltage swing table was loaded so the HOBL flag is valid at that point. v3: - removed a few parameters of icl_ddi_combo_vswing_program() that can be taken from encoder v4: - using the HOBL vswing table until training fails completely (Ville) v5: - not reducing lane or link rate when link training fails with HOBL active - duplicated the HOBL voltage swing entry to match DP spec requirement v6: - removed the optional VS 3 & pre-emp 0 from HOBL table - changed from u8:1 to bool to store hobl_failed/active BSpec: 49291 BSpec: 49399 Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Animesh Manna <animesh.manna@intel.com> Cc: Manasi Navare <manasi.d.navare@intel.com> Signed-off-by: José Roberto de Souza <jose.souza@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200715175637.33763-1-jose.souza@intel.com Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
2020-07-15 17:56:37 +00:00
return ret;
}
static void intel_dp_schedule_fallback_link_training(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
drm/i915/display: Implement HOBL Hours Of Battery Life is a new GEN12+ power-saving feature that allows supported motherboards to use a special voltage swing table for eDP panels that uses less power. So here if supported by HW, OEM will set it in VBT and i915 will try to train link with HOBL vswing table if link training fails it fall back to the original table. intel_ddi_dp_preemph_max() was optimized to only check the HOBL flag instead of do something like is done in intel_ddi_dp_voltage_max() because it is only called after the first entry of the voltage swing table was loaded so the HOBL flag is valid at that point. v3: - removed a few parameters of icl_ddi_combo_vswing_program() that can be taken from encoder v4: - using the HOBL vswing table until training fails completely (Ville) v5: - not reducing lane or link rate when link training fails with HOBL active - duplicated the HOBL voltage swing entry to match DP spec requirement v6: - removed the optional VS 3 & pre-emp 0 from HOBL table - changed from u8:1 to bool to store hobl_failed/active BSpec: 49291 BSpec: 49399 Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Animesh Manna <animesh.manna@intel.com> Cc: Manasi Navare <manasi.d.navare@intel.com> Signed-off-by: José Roberto de Souza <jose.souza@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200715175637.33763-1-jose.souza@intel.com Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
2020-07-15 17:56:37 +00:00
if (intel_dp->hobl_active) {
drm_dbg_kms(&dp_to_i915(intel_dp)->drm,
"[ENCODER:%d:%s] Link Training failed with HOBL active, "
"not enabling it from now on",
encoder->base.base.id, encoder->base.name);
drm/i915/display: Implement HOBL Hours Of Battery Life is a new GEN12+ power-saving feature that allows supported motherboards to use a special voltage swing table for eDP panels that uses less power. So here if supported by HW, OEM will set it in VBT and i915 will try to train link with HOBL vswing table if link training fails it fall back to the original table. intel_ddi_dp_preemph_max() was optimized to only check the HOBL flag instead of do something like is done in intel_ddi_dp_voltage_max() because it is only called after the first entry of the voltage swing table was loaded so the HOBL flag is valid at that point. v3: - removed a few parameters of icl_ddi_combo_vswing_program() that can be taken from encoder v4: - using the HOBL vswing table until training fails completely (Ville) v5: - not reducing lane or link rate when link training fails with HOBL active - duplicated the HOBL voltage swing entry to match DP spec requirement v6: - removed the optional VS 3 & pre-emp 0 from HOBL table - changed from u8:1 to bool to store hobl_failed/active BSpec: 49291 BSpec: 49399 Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Animesh Manna <animesh.manna@intel.com> Cc: Manasi Navare <manasi.d.navare@intel.com> Signed-off-by: José Roberto de Souza <jose.souza@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200715175637.33763-1-jose.souza@intel.com Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
2020-07-15 17:56:37 +00:00
intel_dp->hobl_failed = true;
} else if (intel_dp_get_link_train_fallback_values(intel_dp,
crtc_state->port_clock,
crtc_state->lane_count)) {
drm/i915/display: Implement HOBL Hours Of Battery Life is a new GEN12+ power-saving feature that allows supported motherboards to use a special voltage swing table for eDP panels that uses less power. So here if supported by HW, OEM will set it in VBT and i915 will try to train link with HOBL vswing table if link training fails it fall back to the original table. intel_ddi_dp_preemph_max() was optimized to only check the HOBL flag instead of do something like is done in intel_ddi_dp_voltage_max() because it is only called after the first entry of the voltage swing table was loaded so the HOBL flag is valid at that point. v3: - removed a few parameters of icl_ddi_combo_vswing_program() that can be taken from encoder v4: - using the HOBL vswing table until training fails completely (Ville) v5: - not reducing lane or link rate when link training fails with HOBL active - duplicated the HOBL voltage swing entry to match DP spec requirement v6: - removed the optional VS 3 & pre-emp 0 from HOBL table - changed from u8:1 to bool to store hobl_failed/active BSpec: 49291 BSpec: 49399 Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Animesh Manna <animesh.manna@intel.com> Cc: Manasi Navare <manasi.d.navare@intel.com> Signed-off-by: José Roberto de Souza <jose.souza@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200715175637.33763-1-jose.souza@intel.com Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
2020-07-15 17:56:37 +00:00
return;
}
/* Schedule a Hotplug Uevent to userspace to start modeset */
schedule_work(&intel_connector->modeset_retry_work);
}
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
/* Perform the link training on all LTTPRs and the DPRX on a link. */
static bool
intel_dp_link_train_all_phys(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int lttpr_count)
{
bool ret = true;
int i;
for (i = lttpr_count - 1; i >= 0; i--) {
enum drm_dp_phy dp_phy = DP_PHY_LTTPR(i);
ret = intel_dp_link_train_phy(intel_dp, crtc_state, dp_phy);
intel_dp_disable_dpcd_training_pattern(intel_dp, dp_phy);
if (!ret)
break;
}
if (ret)
ret = intel_dp_link_train_phy(intel_dp, crtc_state, DP_PHY_DPRX);
drm/i915: Switch to LTTPR non-transparent mode link training The DP Standard's recommendation is to use the LTTPR non-transparent mode link training if LTTPRs are detected, so let's do this. Besides power-saving, the advantages of this are that the maximum number of LTTPRs can only be used in non-transparent mode (the limit is 5-8 in transparent mode), and it provides a way to narrow down the reason for a link training failure to a given link segment. Non-transparent mode is probably also the mode that was tested the most by the industry. The changes in this patchset: - Pass the DP PHY that is currently link trained to all LT helpers, so that these can access the correct LTTPR/DPRX DPCD registers. - During LT take into account the LTTPR common lane rate/count and the per LTTPR-PHY vswing/pre-emph limits. - Switch to LTTPR non-transparent LT mode and train each link segment according to the sequence in DP Standard v2.0 (complete CR/EQ for each segment before continuing with the next segment). v2: - Switch to non-transparent mode during connector detection, which is required before reading the per-PHY LTTPR capabilities. - Move the DP_PHY_LTTPR() macro to drm_dp_helper.h (Ville) - Use the new drm_dp_dpcd_read_phy_link_status() instead of adding the same logic to intel_dp_get_link_status(). (Ville) - Make intel_dp_lttpr_phy_caps() return a pointer to the whole array instead of a pointer to its first element. (Ville) - Add the intel_dp_phy_is_downstream_of_source() helper. (Ville) - Add a code comment about the disable->enable quirk of non-transparent mode. - Add the intel_dp_training_pattern_set_reg() helper. - Fix checkpatch/sparse warns. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201007170917.1764556-7-imre.deak@intel.com
2020-10-07 17:09:17 +00:00
if (intel_dp->set_idle_link_train)
intel_dp->set_idle_link_train(intel_dp, crtc_state);
return ret;
}
drm/i915/dp: rewrite DP 2.0 128b/132b link training based on errata The DP 2.0 errata completely overhauls the 128b/132b link training, with no provisions for backward compatibility with the original DP 2.0 specification. The changes are too intrusive to consider reusing the same code for both 8b/10b and 128b/132b, mainly because the LTTPR channel equalisation is done concurrently instead of serialized. NOTES: * It's a bit unclear when to wait for DP_INTERLANE_ALIGN_DONE and per-lane DP_LANE_SYMBOL_LOCKED. Figure xx4 in the SCR implies the LANEx_CHANNEL_EQ_DONE sequence may end with either 0x77,0x77,0x85 *or* 0x33,0x33,0x84 (for four lane configuration in DPCD 0x202..0x204) i.e. without the above bits set. Text elsewhere seems contradictory or incomplete. * We read entire link status (6 bytes) everywhere instead of individual DPCD addresses. * There are some subtle ambiguities or contradictions in the order of some DPCD access and TPS signal enables/disables. It's also not clear whether these are significant. v4: - Wait for intra-hop clear after link training end (Ville) - Wait instead of single check for intra-hop clear before link train v3: - Use msecs_to_jiffies_timeout() (Ville) - Read status at the beginning of interlane align done loop (Ville) - Try to simplify timeout flag use where possible (Ville) v2: - Always try one last time after timeouts to avoid races (Ville) - Extend timeout to cover the entire LANEx_EQ_DONE sequence (Ville) - Also check for eq interlane align done in LANEx_CDS_DONE Sequence (Ville) - Check for Intra-hop status before link training Cc: Uma Shankar <uma.shankar@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220208143209.2997337-1-jani.nikula@intel.com
2022-02-08 14:32:09 +00:00
/*
* 128b/132b DP LANEx_EQ_DONE Sequence (DP 2.0 E11 3.5.2.16.1)
*/
static bool
intel_dp_128b132b_lane_eq(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u8 link_status[DP_LINK_STATUS_SIZE];
int delay_us;
int try, max_tries = 20;
unsigned long deadline;
bool timeout = false;
/*
* Reset signal levels. Start transmitting 128b/132b TPS1.
*
* Put DPRX and LTTPRs (if any) into intra-hop AUX mode by writing TPS1
* in DP_TRAINING_PATTERN_SET.
*/
if (!intel_dp_reset_link_train(intel_dp, crtc_state, DP_PHY_DPRX,
DP_TRAINING_PATTERN_1)) {
drm_err(&i915->drm,
"[ENCODER:%d:%s] Failed to start 128b/132b TPS1\n",
encoder->base.base.id, encoder->base.name);
return false;
}
delay_us = drm_dp_128b132b_read_aux_rd_interval(&intel_dp->aux);
/* Read the initial TX FFE settings. */
if (drm_dp_dpcd_read_link_status(&intel_dp->aux, link_status) < 0) {
drm_err(&i915->drm,
"[ENCODER:%d:%s] Failed to read TX FFE presets\n",
encoder->base.base.id, encoder->base.name);
return false;
}
/* Update signal levels and training set as requested. */
intel_dp_get_adjust_train(intel_dp, crtc_state, DP_PHY_DPRX, link_status);
if (!intel_dp_update_link_train(intel_dp, crtc_state, DP_PHY_DPRX)) {
drm_err(&i915->drm,
"[ENCODER:%d:%s] Failed to set initial TX FFE settings\n",
encoder->base.base.id, encoder->base.name);
return false;
}
/* Start transmitting 128b/132b TPS2. */
if (!intel_dp_set_link_train(intel_dp, crtc_state, DP_PHY_DPRX,
DP_TRAINING_PATTERN_2)) {
drm_err(&i915->drm,
"[ENCODER:%d:%s] Failed to start 128b/132b TPS2\n",
encoder->base.base.id, encoder->base.name);
return false;
}
/* Time budget for the LANEx_EQ_DONE Sequence */
deadline = jiffies + msecs_to_jiffies_timeout(400);
for (try = 0; try < max_tries; try++) {
usleep_range(delay_us, 2 * delay_us);
/*
* The delay may get updated. The transmitter shall read the
* delay before link status during link training.
*/
delay_us = drm_dp_128b132b_read_aux_rd_interval(&intel_dp->aux);
if (drm_dp_dpcd_read_link_status(&intel_dp->aux, link_status) < 0) {
drm_err(&i915->drm,
"[ENCODER:%d:%s] Failed to read link status\n",
encoder->base.base.id, encoder->base.name);
return false;
}
if (drm_dp_128b132b_link_training_failed(link_status)) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
drm_err(&i915->drm,
"[ENCODER:%d:%s] Downstream link training failure\n",
encoder->base.base.id, encoder->base.name);
return false;
}
if (drm_dp_128b132b_lane_channel_eq_done(link_status, crtc_state->lane_count)) {
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] Lane channel eq done\n",
encoder->base.base.id, encoder->base.name);
break;
}
if (timeout) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
drm_err(&i915->drm,
"[ENCODER:%d:%s] Lane channel eq timeout\n",
encoder->base.base.id, encoder->base.name);
return false;
}
if (time_after(jiffies, deadline))
timeout = true; /* try one last time after deadline */
/* Update signal levels and training set as requested. */
intel_dp_get_adjust_train(intel_dp, crtc_state, DP_PHY_DPRX, link_status);
if (!intel_dp_update_link_train(intel_dp, crtc_state, DP_PHY_DPRX)) {
drm_err(&i915->drm,
"[ENCODER:%d:%s] Failed to update TX FFE settings\n",
encoder->base.base.id, encoder->base.name);
return false;
}
}
if (try == max_tries) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
drm_err(&i915->drm,
"[ENCODER:%d:%s] Max loop count reached\n",
encoder->base.base.id, encoder->base.name);
return false;
}
for (;;) {
if (time_after(jiffies, deadline))
timeout = true; /* try one last time after deadline */
if (drm_dp_dpcd_read_link_status(&intel_dp->aux, link_status) < 0) {
drm_err(&i915->drm,
"[ENCODER:%d:%s] Failed to read link status\n",
encoder->base.base.id, encoder->base.name);
return false;
}
if (drm_dp_128b132b_link_training_failed(link_status)) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
drm_err(&i915->drm,
"[ENCODER:%d:%s] Downstream link training failure\n",
encoder->base.base.id, encoder->base.name);
return false;
}
if (drm_dp_128b132b_eq_interlane_align_done(link_status)) {
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] Interlane align done\n",
encoder->base.base.id, encoder->base.name);
break;
}
if (timeout) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
drm_err(&i915->drm,
"[ENCODER:%d:%s] Interlane align timeout\n",
encoder->base.base.id, encoder->base.name);
return false;
}
usleep_range(2000, 3000);
}
return true;
}
/*
* 128b/132b DP LANEx_CDS_DONE Sequence (DP 2.0 E11 3.5.2.16.2)
*/
static bool
intel_dp_128b132b_lane_cds(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int lttpr_count)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u8 link_status[DP_LINK_STATUS_SIZE];
unsigned long deadline;
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_2_CDS) != 1) {
drm_err(&i915->drm,
"[ENCODER:%d:%s] Failed to start 128b/132b TPS2 CDS\n",
encoder->base.base.id, encoder->base.name);
return false;
}
/* Time budget for the LANEx_CDS_DONE Sequence */
deadline = jiffies + msecs_to_jiffies_timeout((lttpr_count + 1) * 20);
for (;;) {
bool timeout = false;
if (time_after(jiffies, deadline))
timeout = true; /* try one last time after deadline */
usleep_range(2000, 3000);
if (drm_dp_dpcd_read_link_status(&intel_dp->aux, link_status) < 0) {
drm_err(&i915->drm,
"[ENCODER:%d:%s] Failed to read link status\n",
encoder->base.base.id, encoder->base.name);
return false;
}
if (drm_dp_128b132b_eq_interlane_align_done(link_status) &&
drm_dp_128b132b_cds_interlane_align_done(link_status) &&
drm_dp_128b132b_lane_symbol_locked(link_status, crtc_state->lane_count)) {
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] CDS interlane align done\n",
encoder->base.base.id, encoder->base.name);
break;
}
if (drm_dp_128b132b_link_training_failed(link_status)) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
drm_err(&i915->drm,
"[ENCODER:%d:%s] Downstream link training failure\n",
encoder->base.base.id, encoder->base.name);
return false;
}
if (timeout) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
drm_err(&i915->drm,
"[ENCODER:%d:%s] CDS timeout\n",
encoder->base.base.id, encoder->base.name);
return false;
}
}
/* FIXME: Should DP_TRAINING_PATTERN_DISABLE be written first? */
if (intel_dp->set_idle_link_train)
intel_dp->set_idle_link_train(intel_dp, crtc_state);
return true;
}
/*
* 128b/132b link training sequence. (DP 2.0 E11 SCR on link training.)
*/
static bool
intel_dp_128b132b_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int lttpr_count)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_connector *connector = intel_dp->attached_connector;
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
bool passed = false;
if (wait_for(intel_dp_128b132b_intra_hop(intel_dp, crtc_state) == 0, 500)) {
drm_err(&i915->drm,
"[ENCODER:%d:%s] 128b/132b intra-hop not clear\n",
encoder->base.base.id, encoder->base.name);
return false;
}
if (intel_dp_128b132b_lane_eq(intel_dp, crtc_state) &&
intel_dp_128b132b_lane_cds(intel_dp, crtc_state, lttpr_count))
passed = true;
drm_dbg_kms(&i915->drm,
"[CONNECTOR:%d:%s][ENCODER:%d:%s] 128b/132b Link Training %s at link rate = %d, lane count = %d\n",
connector->base.base.id, connector->base.name,
encoder->base.base.id, encoder->base.name,
passed ? "passed" : "failed",
crtc_state->port_clock, crtc_state->lane_count);
return passed;
}
/**
* intel_dp_start_link_train - start link training
* @intel_dp: DP struct
* @crtc_state: state for CRTC attached to the encoder
*
* Start the link training of the @intel_dp port, scheduling a fallback
* retraining with reduced link rate/lane parameters if the link training
* fails.
* After calling this function intel_dp_stop_link_train() must be called.
*/
void intel_dp_start_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
bool passed;
/*
* TODO: Reiniting LTTPRs here won't be needed once proper connector
* HW state readout is added.
*/
int lttpr_count = intel_dp_init_lttpr_and_dprx_caps(intel_dp);
if (lttpr_count < 0)
/* Still continue with enabling the port and link training. */
lttpr_count = 0;
intel_dp_prepare_link_train(intel_dp, crtc_state);
drm/i915/dp: rewrite DP 2.0 128b/132b link training based on errata The DP 2.0 errata completely overhauls the 128b/132b link training, with no provisions for backward compatibility with the original DP 2.0 specification. The changes are too intrusive to consider reusing the same code for both 8b/10b and 128b/132b, mainly because the LTTPR channel equalisation is done concurrently instead of serialized. NOTES: * It's a bit unclear when to wait for DP_INTERLANE_ALIGN_DONE and per-lane DP_LANE_SYMBOL_LOCKED. Figure xx4 in the SCR implies the LANEx_CHANNEL_EQ_DONE sequence may end with either 0x77,0x77,0x85 *or* 0x33,0x33,0x84 (for four lane configuration in DPCD 0x202..0x204) i.e. without the above bits set. Text elsewhere seems contradictory or incomplete. * We read entire link status (6 bytes) everywhere instead of individual DPCD addresses. * There are some subtle ambiguities or contradictions in the order of some DPCD access and TPS signal enables/disables. It's also not clear whether these are significant. v4: - Wait for intra-hop clear after link training end (Ville) - Wait instead of single check for intra-hop clear before link train v3: - Use msecs_to_jiffies_timeout() (Ville) - Read status at the beginning of interlane align done loop (Ville) - Try to simplify timeout flag use where possible (Ville) v2: - Always try one last time after timeouts to avoid races (Ville) - Extend timeout to cover the entire LANEx_EQ_DONE sequence (Ville) - Also check for eq interlane align done in LANEx_CDS_DONE Sequence (Ville) - Check for Intra-hop status before link training Cc: Uma Shankar <uma.shankar@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220208143209.2997337-1-jani.nikula@intel.com
2022-02-08 14:32:09 +00:00
if (intel_dp_is_uhbr(crtc_state))
passed = intel_dp_128b132b_link_train(intel_dp, crtc_state, lttpr_count);
else
passed = intel_dp_link_train_all_phys(intel_dp, crtc_state, lttpr_count);
if (!passed)
intel_dp_schedule_fallback_link_training(intel_dp, crtc_state);
}