linux/arch/x86/kernel/cpu/perf_event_p6.c

143 lines
3.4 KiB
C
Raw Normal View History

#ifdef CONFIG_CPU_SUP_INTEL
/*
* Not sure about some of these
*/
static const u64 p6_perfmon_event_map[] =
{
[PERF_COUNT_HW_CPU_CYCLES] = 0x0079,
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x0f2e,
[PERF_COUNT_HW_CACHE_MISSES] = 0x012e,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
[PERF_COUNT_HW_BUS_CYCLES] = 0x0062,
};
static u64 p6_pmu_event_map(int hw_event)
{
return p6_perfmon_event_map[hw_event];
}
/*
* Event setting that is specified not to count anything.
* We use this to effectively disable a counter.
*
* L2_RQSTS with 0 MESI unit mask.
*/
#define P6_NOP_EVENT 0x0000002EULL
static struct event_constraint p6_event_constraints[] =
{
INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FLOPS */
INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
INTEL_EVENT_CONSTRAINT(0x11, 0x1), /* FP_ASSIST */
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
EVENT_CONSTRAINT_END
};
static void p6_pmu_disable_all(void)
{
u64 val;
/* p6 only has one enable register */
rdmsrl(MSR_P6_EVNTSEL0, val);
val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
wrmsrl(MSR_P6_EVNTSEL0, val);
}
static void p6_pmu_enable_all(int added)
{
unsigned long val;
/* p6 only has one enable register */
rdmsrl(MSR_P6_EVNTSEL0, val);
val |= ARCH_PERFMON_EVENTSEL_ENABLE;
wrmsrl(MSR_P6_EVNTSEL0, val);
}
static inline void
p6_pmu_disable_event(struct perf_event *event)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
u64 val = P6_NOP_EVENT;
if (cpuc->enabled)
val |= ARCH_PERFMON_EVENTSEL_ENABLE;
(void)checking_wrmsrl(hwc->config_base + hwc->idx, val);
}
static void p6_pmu_enable_event(struct perf_event *event)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
u64 val;
val = hwc->config;
if (cpuc->enabled)
val |= ARCH_PERFMON_EVENTSEL_ENABLE;
(void)checking_wrmsrl(hwc->config_base + hwc->idx, val);
}
static __initconst struct x86_pmu p6_pmu = {
.name = "p6",
.handle_irq = x86_pmu_handle_irq,
.disable_all = p6_pmu_disable_all,
.enable_all = p6_pmu_enable_all,
.enable = p6_pmu_enable_event,
.disable = p6_pmu_disable_event,
.hw_config = x86_pmu_hw_config,
perf, x86: Implement initial P4 PMU driver The netburst PMU is way different from the "architectural perfomance monitoring" specification that current CPUs use. P4 uses a tuple of ESCR+CCCR+COUNTER MSR registers to handle perfomance monitoring events. A few implementational details: 1) We need a separate x86_pmu::hw_config helper in struct x86_pmu since register bit-fields are quite different from P6, Core and later cpu series. 2) For the same reason is a x86_pmu::schedule_events helper introduced. 3) hw_perf_event::config consists of packed ESCR+CCCR values. It's allowed since in reality both registers only use a half of their size. Of course before making a real write into a particular MSR we need to unpack the value and extend it to a proper size. 4) The tuple of packed ESCR+CCCR in hw_perf_event::config doesn't describe the memory address of ESCR MSR register so that we need to keep a mapping between these tuples used and available ESCR (various P4 events may use same ESCRs but not simultaneously), for this sake every active event has a per-cpu map of hw_perf_event::idx <--> ESCR addresses. 5) Since hw_perf_event::idx is an offset to counter/control register we need to lift X86_PMC_MAX_GENERIC up, otherwise kernel strips it down to 8 registers and event armed may never be turned off (ie the bit in active_mask is set but the loop never reaches this index to check), thanks to Peter Zijlstra Restrictions: - No cascaded counters support (do we ever need them?) - No dependent events support (so PERF_COUNT_HW_INSTRUCTIONS doesn't work for now) - There are events with same counters which can't work simultaneously (need to use intersected ones due to broken counter 1) - No PERF_COUNT_HW_CACHE_ events yet Todo: - Implement dependent events - Need proper hashing for event opcodes (no linear search, good for debugging stage but not in real loads) - Some events counted during a clock cycle -- need to set threshold for them and count every clock cycle just to get summary statistics (ie to behave the same way as other PMUs do) - Need to swicth to use event_constraints - To support RAW events we need to encode a global list of P4 events into p4_templates - Cache events need to be added Event support status matrix: Event status ----------------------------- cycles works cache-references works cache-misses works branch-misses works bus-cycles partially (does not work on 64bit cpu with HT enabled) instruction doesnt work (needs dependent event [mop tagging]) branches doesnt work Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Stephane Eranian <eranian@google.com> Cc: Robert Richter <robert.richter@amd.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <20100311165439.GB5129@lenovo> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-11 16:54:39 +00:00
.schedule_events = x86_schedule_events,
.eventsel = MSR_P6_EVNTSEL0,
.perfctr = MSR_P6_PERFCTR0,
.event_map = p6_pmu_event_map,
.max_events = ARRAY_SIZE(p6_perfmon_event_map),
.apic = 1,
.max_period = (1ULL << 31) - 1,
.version = 0,
.num_counters = 2,
/*
* Events have 40 bits implemented. However they are designed such
* that bits [32-39] are sign extensions of bit 31. As such the
* effective width of a event for P6-like PMU is 32 bits only.
*
* See IA-32 Intel Architecture Software developer manual Vol 3B
*/
.cntval_bits = 32,
.cntval_mask = (1ULL << 32) - 1,
.get_event_constraints = x86_get_event_constraints,
.event_constraints = p6_event_constraints,
};
static __init int p6_pmu_init(void)
{
switch (boot_cpu_data.x86_model) {
case 1:
case 3: /* Pentium Pro */
case 5:
case 6: /* Pentium II */
case 7:
case 8:
case 11: /* Pentium III */
case 9:
case 13:
/* Pentium M */
break;
default:
pr_cont("unsupported p6 CPU model %d ",
boot_cpu_data.x86_model);
return -ENODEV;
}
x86_pmu = p6_pmu;
return 0;
}
#endif /* CONFIG_CPU_SUP_INTEL */