linux/drivers/net/bonding/bonding.h

505 lines
14 KiB
C
Raw Normal View History

/*
* Bond several ethernet interfaces into a Cisco, running 'Etherchannel'.
*
* Portions are (c) Copyright 1995 Simon "Guru Aleph-Null" Janes
* NCM: Network and Communications Management, Inc.
*
* BUT, I'm the one who modified it for ethernet, so:
* (c) Copyright 1999, Thomas Davis, tadavis@lbl.gov
*
* This software may be used and distributed according to the terms
* of the GNU Public License, incorporated herein by reference.
*
*/
#ifndef _LINUX_BONDING_H
#define _LINUX_BONDING_H
#include <linux/timer.h>
#include <linux/proc_fs.h>
#include <linux/if_bonding.h>
#include <linux/cpumask.h>
#include <linux/in6.h>
#include <linux/netpoll.h>
bonding: remove entries for master_ip and vlan_ip and query devices instead The following patch aimed to resolve an issue where secondary, tertiary, etc. addresses added to bond interfaces could overwrite the bond->master_ip and vlan_ip values. commit 917fbdb32f37e9a93b00bb12ee83532982982df3 Author: Henrik Saavedra Persson <henrik.e.persson@ericsson.com> Date: Wed Nov 23 23:37:15 2011 +0000 bonding: only use primary address for ARP That patch was good because it prevented bonds using ARP monitoring from sending frames with an invalid source IP address. Unfortunately, it didn't always work as expected. When using an ioctl (like ifconfig does) to set the IP address and netmask, 2 separate ioctls are actually called to set the IP and netmask if the mask chosen doesn't match the standard mask for that class of address. The first ioctl did not have a mask that matched the one in the primary address and would still cause the device address to be overwritten. The second ioctl that was called to set the mask would then detect as secondary and ignored, but the damage was already done. This was not an issue when using an application that used netlink sockets as the setting of IP and netmask came down at once. The inconsistent behavior between those two interfaces was something that needed to be resolved. While I was thinking about how I wanted to resolve this, Ralf Zeidler came with a patch that resolved this on a RHEL kernel by keeping a full shadow of the entries in dev->ifa_list for the bonding device and vlan devices in the bonding driver. I didn't like the duplication of the list as I want to see the 'bonding' struct and code shrink rather than grow, but liked the general idea. As the Subject indicates this patch drops the master_ip and vlan_ip elements from the 'bonding' and 'vlan_entry' structs, respectively. This can be done because a device's address-list is now traversed to determine the optimal source IP address for ARP requests and for checks to see if the bonding device has a particular IP address. This code could have all be contained inside the bonding driver, but it made more sense to me to EXPORT and call inet_confirm_addr since it did exactly what was needed. I tested this and a backported patch and everything works as expected. Ralf also helped with verification of the backported patch. Thanks to Ralf for all his help on this. v2: Whitespace and organizational changes based on suggestions from Jay Vosburgh and Dave Miller. v3: Fixup incorrect usage of rcu_read_unlock based on Dave Miller's suggestion. Signed-off-by: Andy Gospodarek <andy@greyhouse.net> CC: Ralf Zeidler <ralf.zeidler@nsn.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-03-22 16:14:29 +00:00
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include "bond_3ad.h"
#include "bond_alb.h"
#define DRV_VERSION "3.7.1"
#define DRV_RELDATE "April 27, 2011"
#define DRV_NAME "bonding"
#define DRV_DESCRIPTION "Ethernet Channel Bonding Driver"
#define bond_version DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n"
#define BOND_MAX_ARP_TARGETS 16
#define IS_UP(dev) \
((((dev)->flags & IFF_UP) == IFF_UP) && \
netif_running(dev) && \
netif_carrier_ok(dev))
/*
* Checks whether slave is ready for transmit.
*/
#define SLAVE_IS_OK(slave) \
(((slave)->dev->flags & IFF_UP) && \
netif_running((slave)->dev) && \
((slave)->link == BOND_LINK_UP) && \
bond_is_active_slave(slave))
#define USES_PRIMARY(mode) \
(((mode) == BOND_MODE_ACTIVEBACKUP) || \
((mode) == BOND_MODE_TLB) || \
((mode) == BOND_MODE_ALB))
bonding: allow user-controlled output slave selection v2: changed bonding module version, modified to apply on top of changes from previous patch in series, and updated documentation to elaborate on multiqueue awareness that now exists in bonding driver. This patch give the user the ability to control the output slave for round-robin and active-backup bonding. Similar functionality was discussed in the past, but Jay Vosburgh indicated he would rather see a feature like this added to existing modes rather than creating a completely new mode. Jay's thoughts as well as Neil's input surrounding some of the issues with the first implementation pushed us toward a design that relied on the queue_mapping rather than skb marks. Round-robin and active-backup modes were chosen as the first users of this slave selection as they seemed like the most logical choices when considering a multi-switch environment. Round-robin mode works without any modification, but active-backup does require inclusion of the first patch in this series and setting the 'all_slaves_active' flag. This will allow reception of unicast traffic on any of the backup interfaces. This was tested with IPv4-based filters as well as VLAN-based filters with good results. More information as well as a configuration example is available in the patch to Documentation/networking/bonding.txt. Signed-off-by: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-06-02 08:40:18 +00:00
#define TX_QUEUE_OVERRIDE(mode) \
(((mode) == BOND_MODE_ACTIVEBACKUP) || \
((mode) == BOND_MODE_ROUNDROBIN))
/*
* Less bad way to call ioctl from within the kernel; this needs to be
* done some other way to get the call out of interrupt context.
* Needs "ioctl" variable to be supplied by calling context.
*/
#define IOCTL(dev, arg, cmd) ({ \
int res = 0; \
mm_segment_t fs = get_fs(); \
set_fs(get_ds()); \
res = ioctl(dev, arg, cmd); \
set_fs(fs); \
res; })
/* slave list primitives */
#define bond_to_slave(ptr) list_entry(ptr, struct slave, list)
/* IMPORTANT: bond_first/last_slave can return NULL in case of an empty list */
#define bond_first_slave(bond) \
list_first_entry_or_null(&(bond)->slave_list, struct slave, list)
#define bond_last_slave(bond) \
(list_empty(&(bond)->slave_list) ? NULL : \
bond_to_slave((bond)->slave_list.prev))
#define bond_is_first_slave(bond, pos) ((pos)->list.prev == &(bond)->slave_list)
#define bond_is_last_slave(bond, pos) ((pos)->list.next == &(bond)->slave_list)
/* Since bond_first/last_slave can return NULL, these can return NULL too */
#define bond_next_slave(bond, pos) \
(bond_is_last_slave(bond, pos) ? bond_first_slave(bond) : \
bond_to_slave((pos)->list.next))
#define bond_prev_slave(bond, pos) \
(bond_is_first_slave(bond, pos) ? bond_last_slave(bond) : \
bond_to_slave((pos)->list.prev))
/**
* bond_for_each_slave - iterate over all slaves
* @bond: the bond holding this list
* @pos: current slave
* @iter: list_head * iterator
*
* Caller must hold bond->lock
*/
#define bond_for_each_slave(bond, pos, iter) \
netdev_for_each_lower_private((bond)->dev, pos, iter)
bonding: initial RCU conversion This patch does the initial bonding conversion to RCU. After it the following modes are protected by RCU alone: roundrobin, active-backup, broadcast and xor. Modes ALB/TLB and 3ad still acquire bond->lock for reading, and will be dealt with later. curr_active_slave needs to be dereferenced via rcu in the converted modes because the only thing protecting the slave after this patch is rcu_read_lock, so we need the proper barrier for weakly ordered archs and to make sure we don't have stale pointer. It's not tagged with __rcu yet because there's still work to be done to remove the curr_slave_lock, so sparse will complain when rcu_assign_pointer and rcu_dereference are used, but the alternative to use rcu_dereference_protected would've created much bigger code churn which is more difficult to test and review. That will be converted in time. 1. Active-backup mode 1.1 Perf recording while doing iperf -P 4 - old bonding: iperf spent 0.55% in bonding, system spent 0.29% CPU in bonding - new bonding: iperf spent 0.29% in bonding, system spent 0.15% CPU in bonding 1.2. Bandwidth measurements - old bonding: 16.1 gbps consistently - new bonding: 17.5 gbps consistently 2. Round-robin mode 2.1 Perf recording while doing iperf -P 4 - old bonding: iperf spent 0.51% in bonding, system spent 0.24% CPU in bonding - new bonding: iperf spent 0.16% in bonding, system spent 0.11% CPU in bonding 2.2 Bandwidth measurements - old bonding: 8 gbps (variable due to packet reorderings) - new bonding: 10 gbps (variable due to packet reorderings) Of course the latency has improved in all converted modes, and moreover while doing enslave/release (since it doesn't affect tx anymore). Also I've stress tested all modes doing enslave/release in a loop while transmitting traffic. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-01 14:54:51 +00:00
/* Caller must have rcu_read_lock */
#define bond_for_each_slave_rcu(bond, pos, iter) \
netdev_for_each_lower_private_rcu((bond)->dev, pos, iter)
bonding: initial RCU conversion This patch does the initial bonding conversion to RCU. After it the following modes are protected by RCU alone: roundrobin, active-backup, broadcast and xor. Modes ALB/TLB and 3ad still acquire bond->lock for reading, and will be dealt with later. curr_active_slave needs to be dereferenced via rcu in the converted modes because the only thing protecting the slave after this patch is rcu_read_lock, so we need the proper barrier for weakly ordered archs and to make sure we don't have stale pointer. It's not tagged with __rcu yet because there's still work to be done to remove the curr_slave_lock, so sparse will complain when rcu_assign_pointer and rcu_dereference are used, but the alternative to use rcu_dereference_protected would've created much bigger code churn which is more difficult to test and review. That will be converted in time. 1. Active-backup mode 1.1 Perf recording while doing iperf -P 4 - old bonding: iperf spent 0.55% in bonding, system spent 0.29% CPU in bonding - new bonding: iperf spent 0.29% in bonding, system spent 0.15% CPU in bonding 1.2. Bandwidth measurements - old bonding: 16.1 gbps consistently - new bonding: 17.5 gbps consistently 2. Round-robin mode 2.1 Perf recording while doing iperf -P 4 - old bonding: iperf spent 0.51% in bonding, system spent 0.24% CPU in bonding - new bonding: iperf spent 0.16% in bonding, system spent 0.11% CPU in bonding 2.2 Bandwidth measurements - old bonding: 8 gbps (variable due to packet reorderings) - new bonding: 10 gbps (variable due to packet reorderings) Of course the latency has improved in all converted modes, and moreover while doing enslave/release (since it doesn't affect tx anymore). Also I've stress tested all modes doing enslave/release in a loop while transmitting traffic. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-01 14:54:51 +00:00
#ifdef CONFIG_NET_POLL_CONTROLLER
net: Convert netpoll blocking api in bonding driver to be a counter A while back I made some changes to enable netpoll in the bonding driver. Among them was a per-cpu flag that indicated we were in a path that held locks which could cause the netpoll path to block in during tx, and as such the tx path should queue the frame for later use. This appears to have given rise to a regression. If one of those paths on which we hold the per-cpu flag yields the cpu, its possible for us to come back on a different cpu, leading to us clearing a different flag than we set. This results in odd netpoll drops, and BUG backtraces appearing in the log, as we check to make sure that we only clear set bits, and only set clear bits. I had though briefly about changing the offending paths so that they wouldn't sleep, but looking at my origional work more closely, it doesn't appear that a per-cpu flag is warranted. We alrady gate the checking of this flag on IFF_IN_NETPOLL, so we don't hit this in the normal tx case anyway. And practically speaking, the normal use case for netpoll is to only have one client anyway, so we're not going to erroneously queue netpoll frames when its actually safe to do so. As such, lets just convert that per-cpu flag to an atomic counter. It fixes the rescheduling bugs, is equivalent from a performance perspective and actually eliminates some code in the process. Tested by the reporter and myself, successfully Reported-by: Liang Zheng <lzheng@redhat.com> CC: Jay Vosburgh <fubar@us.ibm.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: David S. Miller <davem@davemloft.net> Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-12-06 09:05:50 +00:00
extern atomic_t netpoll_block_tx;
static inline void block_netpoll_tx(void)
{
net: Convert netpoll blocking api in bonding driver to be a counter A while back I made some changes to enable netpoll in the bonding driver. Among them was a per-cpu flag that indicated we were in a path that held locks which could cause the netpoll path to block in during tx, and as such the tx path should queue the frame for later use. This appears to have given rise to a regression. If one of those paths on which we hold the per-cpu flag yields the cpu, its possible for us to come back on a different cpu, leading to us clearing a different flag than we set. This results in odd netpoll drops, and BUG backtraces appearing in the log, as we check to make sure that we only clear set bits, and only set clear bits. I had though briefly about changing the offending paths so that they wouldn't sleep, but looking at my origional work more closely, it doesn't appear that a per-cpu flag is warranted. We alrady gate the checking of this flag on IFF_IN_NETPOLL, so we don't hit this in the normal tx case anyway. And practically speaking, the normal use case for netpoll is to only have one client anyway, so we're not going to erroneously queue netpoll frames when its actually safe to do so. As such, lets just convert that per-cpu flag to an atomic counter. It fixes the rescheduling bugs, is equivalent from a performance perspective and actually eliminates some code in the process. Tested by the reporter and myself, successfully Reported-by: Liang Zheng <lzheng@redhat.com> CC: Jay Vosburgh <fubar@us.ibm.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: David S. Miller <davem@davemloft.net> Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-12-06 09:05:50 +00:00
atomic_inc(&netpoll_block_tx);
}
static inline void unblock_netpoll_tx(void)
{
net: Convert netpoll blocking api in bonding driver to be a counter A while back I made some changes to enable netpoll in the bonding driver. Among them was a per-cpu flag that indicated we were in a path that held locks which could cause the netpoll path to block in during tx, and as such the tx path should queue the frame for later use. This appears to have given rise to a regression. If one of those paths on which we hold the per-cpu flag yields the cpu, its possible for us to come back on a different cpu, leading to us clearing a different flag than we set. This results in odd netpoll drops, and BUG backtraces appearing in the log, as we check to make sure that we only clear set bits, and only set clear bits. I had though briefly about changing the offending paths so that they wouldn't sleep, but looking at my origional work more closely, it doesn't appear that a per-cpu flag is warranted. We alrady gate the checking of this flag on IFF_IN_NETPOLL, so we don't hit this in the normal tx case anyway. And practically speaking, the normal use case for netpoll is to only have one client anyway, so we're not going to erroneously queue netpoll frames when its actually safe to do so. As such, lets just convert that per-cpu flag to an atomic counter. It fixes the rescheduling bugs, is equivalent from a performance perspective and actually eliminates some code in the process. Tested by the reporter and myself, successfully Reported-by: Liang Zheng <lzheng@redhat.com> CC: Jay Vosburgh <fubar@us.ibm.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: David S. Miller <davem@davemloft.net> Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-12-06 09:05:50 +00:00
atomic_dec(&netpoll_block_tx);
}
static inline int is_netpoll_tx_blocked(struct net_device *dev)
{
if (unlikely(netpoll_tx_running(dev)))
net: Convert netpoll blocking api in bonding driver to be a counter A while back I made some changes to enable netpoll in the bonding driver. Among them was a per-cpu flag that indicated we were in a path that held locks which could cause the netpoll path to block in during tx, and as such the tx path should queue the frame for later use. This appears to have given rise to a regression. If one of those paths on which we hold the per-cpu flag yields the cpu, its possible for us to come back on a different cpu, leading to us clearing a different flag than we set. This results in odd netpoll drops, and BUG backtraces appearing in the log, as we check to make sure that we only clear set bits, and only set clear bits. I had though briefly about changing the offending paths so that they wouldn't sleep, but looking at my origional work more closely, it doesn't appear that a per-cpu flag is warranted. We alrady gate the checking of this flag on IFF_IN_NETPOLL, so we don't hit this in the normal tx case anyway. And practically speaking, the normal use case for netpoll is to only have one client anyway, so we're not going to erroneously queue netpoll frames when its actually safe to do so. As such, lets just convert that per-cpu flag to an atomic counter. It fixes the rescheduling bugs, is equivalent from a performance perspective and actually eliminates some code in the process. Tested by the reporter and myself, successfully Reported-by: Liang Zheng <lzheng@redhat.com> CC: Jay Vosburgh <fubar@us.ibm.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: David S. Miller <davem@davemloft.net> Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-12-06 09:05:50 +00:00
return atomic_read(&netpoll_block_tx);
return 0;
}
#else
#define block_netpoll_tx()
#define unblock_netpoll_tx()
#define is_netpoll_tx_blocked(dev) (0)
#endif
struct bond_params {
int mode;
int xmit_policy;
int miimon;
u8 num_peer_notif;
int arp_interval;
int arp_validate;
bonding: add an option to fail when any of arp_ip_target is inaccessible Currently, we fail only when all of the ips in arp_ip_target are gone. However, in some situations we might need to fail if even one host from arp_ip_target becomes unavailable. All situations, obviously, rely on the idea that we need *completely* functional network, with all interfaces/addresses working correctly. One real world example might be: vlans on top on bond (hybrid port). If bond and vlans have ips assigned and we have their peers monitored via arp_ip_target - in case of switch misconfiguration (trunk/access port), slave driver malfunction or tagged/untagged traffic dropped on the way - we will be able to switch to another slave. Though any other configuration needs that if we need to have access to all arp_ip_targets. This patch adds this possibility by adding a new parameter - arp_all_targets (both as a module parameter and as a sysfs knob). It can be set to: 0 or any (the default) - which works exactly as it's working now - the slave is up if any of the arp_ip_targets are up. 1 or all - the slave is up if all of the arp_ip_targets are up. This parameter can be changed on the fly (via sysfs), and requires the mode to be active-backup and arp_validate to be enabled (it obeys the arp_validate config on which slaves to validate). Internally it's done through: 1) Add target_last_arp_rx[BOND_MAX_ARP_TARGETS] array to slave struct. It's an array of jiffies, meaning that slave->target_last_arp_rx[i] is the last time we've received arp from bond->params.arp_targets[i] on this slave. 2) If we successfully validate an arp from bond->params.arp_targets[i] in bond_validate_arp() - update the slave->target_last_arp_rx[i] with the current jiffies value. 3) When getting slave's last_rx via slave_last_rx(), we return the oldest time when we've received an arp from any address in bond->params.arp_targets[]. If the value of arp_all_targets == 0 - we still work the same way as before. Also, update the documentation to reflect the new parameter. v3->v4: Kill the forgotten rtnl_unlock(), rephrase the documentation part to be more clear, don't fail setting arp_all_targets if arp_validate is not set - it has no effect anyway but can be easier to set up. Also, print a warning if the last arp_ip_target is removed while the arp_interval is on, but not the arp_validate. v2->v3: Use _bh spinlock, remove useless rtnl_lock() and use jiffies for new arp_ip_target last arp, instead of slave_last_rx(). On bond_enslave(), use the same initialization value for target_last_arp_rx[] as is used for the default last_arp_rx, to avoid useless interface flaps. Also, instead of failing to remove the last arp_ip_target just print a warning - otherwise it might break existing scripts. v1->v2: Correctly handle adding/removing hosts in arp_ip_target - we need to shift/initialize all slave's target_last_arp_rx. Also, don't fail module loading on arp_all_targets misconfiguration, just disable it, and some minor style fixes. Signed-off-by: Veaceslav Falico <vfalico@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-24 09:49:34 +00:00
int arp_all_targets;
int use_carrier;
int fail_over_mac;
int updelay;
int downdelay;
int lacp_fast;
unsigned int min_links;
int ad_select;
char primary[IFNAMSIZ];
int primary_reselect;
__be32 arp_targets[BOND_MAX_ARP_TARGETS];
bonding: allow user-controlled output slave selection v2: changed bonding module version, modified to apply on top of changes from previous patch in series, and updated documentation to elaborate on multiqueue awareness that now exists in bonding driver. This patch give the user the ability to control the output slave for round-robin and active-backup bonding. Similar functionality was discussed in the past, but Jay Vosburgh indicated he would rather see a feature like this added to existing modes rather than creating a completely new mode. Jay's thoughts as well as Neil's input surrounding some of the issues with the first implementation pushed us toward a design that relied on the queue_mapping rather than skb marks. Round-robin and active-backup modes were chosen as the first users of this slave selection as they seemed like the most logical choices when considering a multi-switch environment. Round-robin mode works without any modification, but active-backup does require inclusion of the first patch in this series and setting the 'all_slaves_active' flag. This will allow reception of unicast traffic on any of the backup interfaces. This was tested with IPv4-based filters as well as VLAN-based filters with good results. More information as well as a configuration example is available in the patch to Documentation/networking/bonding.txt. Signed-off-by: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-06-02 08:40:18 +00:00
int tx_queues;
int all_slaves_active;
int resend_igmp;
int lp_interval;
};
struct bond_parm_tbl {
char *modename;
int mode;
};
#define BOND_MAX_MODENAME_LEN 20
struct slave {
struct net_device *dev; /* first - useful for panic debug */
struct list_head list;
struct bonding *bond; /* our master */
int delay;
unsigned long jiffies;
unsigned long last_arp_rx;
bonding: add an option to fail when any of arp_ip_target is inaccessible Currently, we fail only when all of the ips in arp_ip_target are gone. However, in some situations we might need to fail if even one host from arp_ip_target becomes unavailable. All situations, obviously, rely on the idea that we need *completely* functional network, with all interfaces/addresses working correctly. One real world example might be: vlans on top on bond (hybrid port). If bond and vlans have ips assigned and we have their peers monitored via arp_ip_target - in case of switch misconfiguration (trunk/access port), slave driver malfunction or tagged/untagged traffic dropped on the way - we will be able to switch to another slave. Though any other configuration needs that if we need to have access to all arp_ip_targets. This patch adds this possibility by adding a new parameter - arp_all_targets (both as a module parameter and as a sysfs knob). It can be set to: 0 or any (the default) - which works exactly as it's working now - the slave is up if any of the arp_ip_targets are up. 1 or all - the slave is up if all of the arp_ip_targets are up. This parameter can be changed on the fly (via sysfs), and requires the mode to be active-backup and arp_validate to be enabled (it obeys the arp_validate config on which slaves to validate). Internally it's done through: 1) Add target_last_arp_rx[BOND_MAX_ARP_TARGETS] array to slave struct. It's an array of jiffies, meaning that slave->target_last_arp_rx[i] is the last time we've received arp from bond->params.arp_targets[i] on this slave. 2) If we successfully validate an arp from bond->params.arp_targets[i] in bond_validate_arp() - update the slave->target_last_arp_rx[i] with the current jiffies value. 3) When getting slave's last_rx via slave_last_rx(), we return the oldest time when we've received an arp from any address in bond->params.arp_targets[]. If the value of arp_all_targets == 0 - we still work the same way as before. Also, update the documentation to reflect the new parameter. v3->v4: Kill the forgotten rtnl_unlock(), rephrase the documentation part to be more clear, don't fail setting arp_all_targets if arp_validate is not set - it has no effect anyway but can be easier to set up. Also, print a warning if the last arp_ip_target is removed while the arp_interval is on, but not the arp_validate. v2->v3: Use _bh spinlock, remove useless rtnl_lock() and use jiffies for new arp_ip_target last arp, instead of slave_last_rx(). On bond_enslave(), use the same initialization value for target_last_arp_rx[] as is used for the default last_arp_rx, to avoid useless interface flaps. Also, instead of failing to remove the last arp_ip_target just print a warning - otherwise it might break existing scripts. v1->v2: Correctly handle adding/removing hosts in arp_ip_target - we need to shift/initialize all slave's target_last_arp_rx. Also, don't fail module loading on arp_all_targets misconfiguration, just disable it, and some minor style fixes. Signed-off-by: Veaceslav Falico <vfalico@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-24 09:49:34 +00:00
unsigned long target_last_arp_rx[BOND_MAX_ARP_TARGETS];
s8 link; /* one of BOND_LINK_XXXX */
s8 new_link;
u8 backup:1, /* indicates backup slave. Value corresponds with
BOND_STATE_ACTIVE and BOND_STATE_BACKUP */
inactive:1; /* indicates inactive slave */
u8 duplex;
u32 original_mtu;
u32 link_failure_count;
u32 speed;
bonding: allow user-controlled output slave selection v2: changed bonding module version, modified to apply on top of changes from previous patch in series, and updated documentation to elaborate on multiqueue awareness that now exists in bonding driver. This patch give the user the ability to control the output slave for round-robin and active-backup bonding. Similar functionality was discussed in the past, but Jay Vosburgh indicated he would rather see a feature like this added to existing modes rather than creating a completely new mode. Jay's thoughts as well as Neil's input surrounding some of the issues with the first implementation pushed us toward a design that relied on the queue_mapping rather than skb marks. Round-robin and active-backup modes were chosen as the first users of this slave selection as they seemed like the most logical choices when considering a multi-switch environment. Round-robin mode works without any modification, but active-backup does require inclusion of the first patch in this series and setting the 'all_slaves_active' flag. This will allow reception of unicast traffic on any of the backup interfaces. This was tested with IPv4-based filters as well as VLAN-based filters with good results. More information as well as a configuration example is available in the patch to Documentation/networking/bonding.txt. Signed-off-by: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-06-02 08:40:18 +00:00
u16 queue_id;
u8 perm_hwaddr[ETH_ALEN];
struct ad_slave_info ad_info; /* HUGE - better to dynamically alloc */
struct tlb_slave_info tlb_info;
#ifdef CONFIG_NET_POLL_CONTROLLER
struct netpoll *np;
#endif
};
/*
* Link pseudo-state only used internally by monitors
*/
#define BOND_LINK_NOCHANGE -1
/*
* Here are the locking policies for the two bonding locks:
*
* 1) Get bond->lock when reading/writing slave list.
* 2) Get bond->curr_slave_lock when reading/writing bond->curr_active_slave.
* (It is unnecessary when the write-lock is put with bond->lock.)
* 3) When we lock with bond->curr_slave_lock, we must lock with bond->lock
* beforehand.
*/
struct bonding {
struct net_device *dev; /* first - useful for panic debug */
struct list_head slave_list;
struct slave *curr_active_slave;
struct slave *current_arp_slave;
struct slave *primary_slave;
bool force_primary;
s32 slave_cnt; /* never change this value outside the attach/detach wrappers */
int (*recv_probe)(const struct sk_buff *, struct bonding *,
struct slave *);
rwlock_t lock;
rwlock_t curr_slave_lock;
u8 send_peer_notif;
bonding: fix igmp_retrans type and two related races First the type of igmp_retrans (which is the actual counter of igmp_resend parameter) is changed to u8 to be able to store values up to 255 (as per documentation). There are two races that were hidden there and which are easy to trigger after the previous fix, the first is between bond_resend_igmp_join_requests and bond_change_active_slave where igmp_retrans is set and can be altered by the periodic. The second race condition is between multiple running instances of the periodic (upon execution it can be scheduled again for immediate execution which can cause the counter to go < 0 which in the unsigned case leads to unnecessary igmp retransmissions). Since in bond_change_active_slave bond->lock is held for reading and curr_slave_lock for writing, we use curr_slave_lock for mutual exclusion. We can't drop them as there're cases where RTNL is not held when bond_change_active_slave is called. RCU is unlocked in bond_resend_igmp_join_requests before getting curr_slave_lock since we don't need it there and it's pointless to delay. The decrement is moved inside the "if" block because if we decrement unconditionally there's still a possibility for a race condition although it is much more difficult to hit (many changes have to happen in a very short period in order to trigger) which in the case of 3 parallel running instances of this function and igmp_retrans == 1 (with check bond->igmp_retrans-- > 1) is: f1 passes, doesn't re-schedule, but decrements - igmp_retrans = 0 f2 then passes, doesn't re-schedule, but decrements - igmp_retrans = 255 f3 does the unnecessary retransmissions. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-11 22:07:02 +00:00
u8 igmp_retrans;
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *proc_entry;
char proc_file_name[IFNAMSIZ];
#endif /* CONFIG_PROC_FS */
struct list_head bond_list;
int (*xmit_hash_policy)(struct sk_buff *, int);
u16 rr_tx_counter;
struct ad_bond_info ad_info;
struct alb_bond_info alb_info;
struct bond_params params;
struct workqueue_struct *wq;
struct delayed_work mii_work;
struct delayed_work arp_work;
struct delayed_work alb_work;
struct delayed_work ad_work;
struct delayed_work mcast_work;
#ifdef CONFIG_DEBUG_FS
/* debugging support via debugfs */
struct dentry *debug_dir;
#endif /* CONFIG_DEBUG_FS */
};
#define bond_slave_get_rcu(dev) \
((struct slave *) rcu_dereference(dev->rx_handler_data))
#define bond_slave_get_rtnl(dev) \
((struct slave *) rtnl_dereference(dev->rx_handler_data))
/**
* Returns NULL if the net_device does not belong to any of the bond's slaves
*
* Caller must hold bond lock for read
*/
static inline struct slave *bond_get_slave_by_dev(struct bonding *bond,
struct net_device *slave_dev)
{
return netdev_lower_dev_get_private(bond->dev, slave_dev);
}
static inline struct bonding *bond_get_bond_by_slave(struct slave *slave)
{
if (!slave || !slave->bond)
return NULL;
return slave->bond;
}
static inline bool bond_is_lb(const struct bonding *bond)
{
return (bond->params.mode == BOND_MODE_TLB ||
bond->params.mode == BOND_MODE_ALB);
}
static inline void bond_set_active_slave(struct slave *slave)
{
slave->backup = 0;
}
static inline void bond_set_backup_slave(struct slave *slave)
{
slave->backup = 1;
}
static inline int bond_slave_state(struct slave *slave)
{
return slave->backup;
}
static inline bool bond_is_active_slave(struct slave *slave)
{
return !bond_slave_state(slave);
}
#define BOND_PRI_RESELECT_ALWAYS 0
#define BOND_PRI_RESELECT_BETTER 1
#define BOND_PRI_RESELECT_FAILURE 2
#define BOND_FOM_NONE 0
#define BOND_FOM_ACTIVE 1
#define BOND_FOM_FOLLOW 2
bonding: add an option to fail when any of arp_ip_target is inaccessible Currently, we fail only when all of the ips in arp_ip_target are gone. However, in some situations we might need to fail if even one host from arp_ip_target becomes unavailable. All situations, obviously, rely on the idea that we need *completely* functional network, with all interfaces/addresses working correctly. One real world example might be: vlans on top on bond (hybrid port). If bond and vlans have ips assigned and we have their peers monitored via arp_ip_target - in case of switch misconfiguration (trunk/access port), slave driver malfunction or tagged/untagged traffic dropped on the way - we will be able to switch to another slave. Though any other configuration needs that if we need to have access to all arp_ip_targets. This patch adds this possibility by adding a new parameter - arp_all_targets (both as a module parameter and as a sysfs knob). It can be set to: 0 or any (the default) - which works exactly as it's working now - the slave is up if any of the arp_ip_targets are up. 1 or all - the slave is up if all of the arp_ip_targets are up. This parameter can be changed on the fly (via sysfs), and requires the mode to be active-backup and arp_validate to be enabled (it obeys the arp_validate config on which slaves to validate). Internally it's done through: 1) Add target_last_arp_rx[BOND_MAX_ARP_TARGETS] array to slave struct. It's an array of jiffies, meaning that slave->target_last_arp_rx[i] is the last time we've received arp from bond->params.arp_targets[i] on this slave. 2) If we successfully validate an arp from bond->params.arp_targets[i] in bond_validate_arp() - update the slave->target_last_arp_rx[i] with the current jiffies value. 3) When getting slave's last_rx via slave_last_rx(), we return the oldest time when we've received an arp from any address in bond->params.arp_targets[]. If the value of arp_all_targets == 0 - we still work the same way as before. Also, update the documentation to reflect the new parameter. v3->v4: Kill the forgotten rtnl_unlock(), rephrase the documentation part to be more clear, don't fail setting arp_all_targets if arp_validate is not set - it has no effect anyway but can be easier to set up. Also, print a warning if the last arp_ip_target is removed while the arp_interval is on, but not the arp_validate. v2->v3: Use _bh spinlock, remove useless rtnl_lock() and use jiffies for new arp_ip_target last arp, instead of slave_last_rx(). On bond_enslave(), use the same initialization value for target_last_arp_rx[] as is used for the default last_arp_rx, to avoid useless interface flaps. Also, instead of failing to remove the last arp_ip_target just print a warning - otherwise it might break existing scripts. v1->v2: Correctly handle adding/removing hosts in arp_ip_target - we need to shift/initialize all slave's target_last_arp_rx. Also, don't fail module loading on arp_all_targets misconfiguration, just disable it, and some minor style fixes. Signed-off-by: Veaceslav Falico <vfalico@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-24 09:49:34 +00:00
#define BOND_ARP_TARGETS_ANY 0
#define BOND_ARP_TARGETS_ALL 1
#define BOND_ARP_VALIDATE_NONE 0
#define BOND_ARP_VALIDATE_ACTIVE (1 << BOND_STATE_ACTIVE)
#define BOND_ARP_VALIDATE_BACKUP (1 << BOND_STATE_BACKUP)
#define BOND_ARP_VALIDATE_ALL (BOND_ARP_VALIDATE_ACTIVE | \
BOND_ARP_VALIDATE_BACKUP)
static inline int slave_do_arp_validate(struct bonding *bond,
struct slave *slave)
{
return bond->params.arp_validate & (1 << bond_slave_state(slave));
}
bonding: add an option to fail when any of arp_ip_target is inaccessible Currently, we fail only when all of the ips in arp_ip_target are gone. However, in some situations we might need to fail if even one host from arp_ip_target becomes unavailable. All situations, obviously, rely on the idea that we need *completely* functional network, with all interfaces/addresses working correctly. One real world example might be: vlans on top on bond (hybrid port). If bond and vlans have ips assigned and we have their peers monitored via arp_ip_target - in case of switch misconfiguration (trunk/access port), slave driver malfunction or tagged/untagged traffic dropped on the way - we will be able to switch to another slave. Though any other configuration needs that if we need to have access to all arp_ip_targets. This patch adds this possibility by adding a new parameter - arp_all_targets (both as a module parameter and as a sysfs knob). It can be set to: 0 or any (the default) - which works exactly as it's working now - the slave is up if any of the arp_ip_targets are up. 1 or all - the slave is up if all of the arp_ip_targets are up. This parameter can be changed on the fly (via sysfs), and requires the mode to be active-backup and arp_validate to be enabled (it obeys the arp_validate config on which slaves to validate). Internally it's done through: 1) Add target_last_arp_rx[BOND_MAX_ARP_TARGETS] array to slave struct. It's an array of jiffies, meaning that slave->target_last_arp_rx[i] is the last time we've received arp from bond->params.arp_targets[i] on this slave. 2) If we successfully validate an arp from bond->params.arp_targets[i] in bond_validate_arp() - update the slave->target_last_arp_rx[i] with the current jiffies value. 3) When getting slave's last_rx via slave_last_rx(), we return the oldest time when we've received an arp from any address in bond->params.arp_targets[]. If the value of arp_all_targets == 0 - we still work the same way as before. Also, update the documentation to reflect the new parameter. v3->v4: Kill the forgotten rtnl_unlock(), rephrase the documentation part to be more clear, don't fail setting arp_all_targets if arp_validate is not set - it has no effect anyway but can be easier to set up. Also, print a warning if the last arp_ip_target is removed while the arp_interval is on, but not the arp_validate. v2->v3: Use _bh spinlock, remove useless rtnl_lock() and use jiffies for new arp_ip_target last arp, instead of slave_last_rx(). On bond_enslave(), use the same initialization value for target_last_arp_rx[] as is used for the default last_arp_rx, to avoid useless interface flaps. Also, instead of failing to remove the last arp_ip_target just print a warning - otherwise it might break existing scripts. v1->v2: Correctly handle adding/removing hosts in arp_ip_target - we need to shift/initialize all slave's target_last_arp_rx. Also, don't fail module loading on arp_all_targets misconfiguration, just disable it, and some minor style fixes. Signed-off-by: Veaceslav Falico <vfalico@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-24 09:49:34 +00:00
/* Get the oldest arp which we've received on this slave for bond's
* arp_targets.
*/
static inline unsigned long slave_oldest_target_arp_rx(struct bonding *bond,
struct slave *slave)
{
int i = 1;
unsigned long ret = slave->target_last_arp_rx[0];
for (; (i < BOND_MAX_ARP_TARGETS) && bond->params.arp_targets[i]; i++)
if (time_before(slave->target_last_arp_rx[i], ret))
ret = slave->target_last_arp_rx[i];
return ret;
}
static inline unsigned long slave_last_rx(struct bonding *bond,
struct slave *slave)
{
bonding: add an option to fail when any of arp_ip_target is inaccessible Currently, we fail only when all of the ips in arp_ip_target are gone. However, in some situations we might need to fail if even one host from arp_ip_target becomes unavailable. All situations, obviously, rely on the idea that we need *completely* functional network, with all interfaces/addresses working correctly. One real world example might be: vlans on top on bond (hybrid port). If bond and vlans have ips assigned and we have their peers monitored via arp_ip_target - in case of switch misconfiguration (trunk/access port), slave driver malfunction or tagged/untagged traffic dropped on the way - we will be able to switch to another slave. Though any other configuration needs that if we need to have access to all arp_ip_targets. This patch adds this possibility by adding a new parameter - arp_all_targets (both as a module parameter and as a sysfs knob). It can be set to: 0 or any (the default) - which works exactly as it's working now - the slave is up if any of the arp_ip_targets are up. 1 or all - the slave is up if all of the arp_ip_targets are up. This parameter can be changed on the fly (via sysfs), and requires the mode to be active-backup and arp_validate to be enabled (it obeys the arp_validate config on which slaves to validate). Internally it's done through: 1) Add target_last_arp_rx[BOND_MAX_ARP_TARGETS] array to slave struct. It's an array of jiffies, meaning that slave->target_last_arp_rx[i] is the last time we've received arp from bond->params.arp_targets[i] on this slave. 2) If we successfully validate an arp from bond->params.arp_targets[i] in bond_validate_arp() - update the slave->target_last_arp_rx[i] with the current jiffies value. 3) When getting slave's last_rx via slave_last_rx(), we return the oldest time when we've received an arp from any address in bond->params.arp_targets[]. If the value of arp_all_targets == 0 - we still work the same way as before. Also, update the documentation to reflect the new parameter. v3->v4: Kill the forgotten rtnl_unlock(), rephrase the documentation part to be more clear, don't fail setting arp_all_targets if arp_validate is not set - it has no effect anyway but can be easier to set up. Also, print a warning if the last arp_ip_target is removed while the arp_interval is on, but not the arp_validate. v2->v3: Use _bh spinlock, remove useless rtnl_lock() and use jiffies for new arp_ip_target last arp, instead of slave_last_rx(). On bond_enslave(), use the same initialization value for target_last_arp_rx[] as is used for the default last_arp_rx, to avoid useless interface flaps. Also, instead of failing to remove the last arp_ip_target just print a warning - otherwise it might break existing scripts. v1->v2: Correctly handle adding/removing hosts in arp_ip_target - we need to shift/initialize all slave's target_last_arp_rx. Also, don't fail module loading on arp_all_targets misconfiguration, just disable it, and some minor style fixes. Signed-off-by: Veaceslav Falico <vfalico@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-24 09:49:34 +00:00
if (slave_do_arp_validate(bond, slave)) {
if (bond->params.arp_all_targets == BOND_ARP_TARGETS_ALL)
return slave_oldest_target_arp_rx(bond, slave);
else
return slave->last_arp_rx;
}
return slave->dev->last_rx;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static inline void bond_netpoll_send_skb(const struct slave *slave,
struct sk_buff *skb)
{
struct netpoll *np = slave->np;
if (np)
netpoll_send_skb(np, skb);
}
#else
static inline void bond_netpoll_send_skb(const struct slave *slave,
struct sk_buff *skb)
{
}
#endif
static inline void bond_set_slave_inactive_flags(struct slave *slave)
{
if (!bond_is_lb(slave->bond))
bond_set_backup_slave(slave);
if (!slave->bond->params.all_slaves_active)
slave->inactive = 1;
}
static inline void bond_set_slave_active_flags(struct slave *slave)
{
bond_set_active_slave(slave);
slave->inactive = 0;
}
static inline bool bond_is_slave_inactive(struct slave *slave)
{
return slave->inactive;
}
bonding: remove entries for master_ip and vlan_ip and query devices instead The following patch aimed to resolve an issue where secondary, tertiary, etc. addresses added to bond interfaces could overwrite the bond->master_ip and vlan_ip values. commit 917fbdb32f37e9a93b00bb12ee83532982982df3 Author: Henrik Saavedra Persson <henrik.e.persson@ericsson.com> Date: Wed Nov 23 23:37:15 2011 +0000 bonding: only use primary address for ARP That patch was good because it prevented bonds using ARP monitoring from sending frames with an invalid source IP address. Unfortunately, it didn't always work as expected. When using an ioctl (like ifconfig does) to set the IP address and netmask, 2 separate ioctls are actually called to set the IP and netmask if the mask chosen doesn't match the standard mask for that class of address. The first ioctl did not have a mask that matched the one in the primary address and would still cause the device address to be overwritten. The second ioctl that was called to set the mask would then detect as secondary and ignored, but the damage was already done. This was not an issue when using an application that used netlink sockets as the setting of IP and netmask came down at once. The inconsistent behavior between those two interfaces was something that needed to be resolved. While I was thinking about how I wanted to resolve this, Ralf Zeidler came with a patch that resolved this on a RHEL kernel by keeping a full shadow of the entries in dev->ifa_list for the bonding device and vlan devices in the bonding driver. I didn't like the duplication of the list as I want to see the 'bonding' struct and code shrink rather than grow, but liked the general idea. As the Subject indicates this patch drops the master_ip and vlan_ip elements from the 'bonding' and 'vlan_entry' structs, respectively. This can be done because a device's address-list is now traversed to determine the optimal source IP address for ARP requests and for checks to see if the bonding device has a particular IP address. This code could have all be contained inside the bonding driver, but it made more sense to me to EXPORT and call inet_confirm_addr since it did exactly what was needed. I tested this and a backported patch and everything works as expected. Ralf also helped with verification of the backported patch. Thanks to Ralf for all his help on this. v2: Whitespace and organizational changes based on suggestions from Jay Vosburgh and Dave Miller. v3: Fixup incorrect usage of rcu_read_unlock based on Dave Miller's suggestion. Signed-off-by: Andy Gospodarek <andy@greyhouse.net> CC: Ralf Zeidler <ralf.zeidler@nsn.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-03-22 16:14:29 +00:00
static inline __be32 bond_confirm_addr(struct net_device *dev, __be32 dst, __be32 local)
{
struct in_device *in_dev;
__be32 addr = 0;
rcu_read_lock();
in_dev = __in_dev_get_rcu(dev);
if (in_dev)
addr = inet_confirm_addr(in_dev, dst, local, RT_SCOPE_HOST);
rcu_read_unlock();
return addr;
}
static inline bool slave_can_tx(struct slave *slave)
{
if (IS_UP(slave->dev) && slave->link == BOND_LINK_UP &&
bond_is_active_slave(slave))
return true;
else
return false;
}
struct bond_net;
int bond_arp_rcv(const struct sk_buff *skb, struct bonding *bond, struct slave *slave);
struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr);
int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev);
void bond_xmit_slave_id(struct bonding *bond, struct sk_buff *skb, int slave_id);
int bond_create(struct net *net, const char *name);
int bond_create_sysfs(struct bond_net *net);
void bond_destroy_sysfs(struct bond_net *net);
void bond_prepare_sysfs_group(struct bonding *bond);
int bond_create_slave_symlinks(struct net_device *master, struct net_device *slave);
void bond_destroy_slave_symlinks(struct net_device *master, struct net_device *slave);
int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev);
int bond_release(struct net_device *bond_dev, struct net_device *slave_dev);
void bond_mii_monitor(struct work_struct *);
void bond_loadbalance_arp_mon(struct work_struct *);
void bond_activebackup_arp_mon(struct work_struct *);
void bond_set_mode_ops(struct bonding *bond, int mode);
int bond_parse_parm(const char *mode_arg, const struct bond_parm_tbl *tbl);
void bond_select_active_slave(struct bonding *bond);
void bond_change_active_slave(struct bonding *bond, struct slave *new_active);
void bond_create_debugfs(void);
void bond_destroy_debugfs(void);
void bond_debug_register(struct bonding *bond);
void bond_debug_unregister(struct bonding *bond);
void bond_debug_reregister(struct bonding *bond);
const char *bond_mode_name(int mode);
struct bond_net {
struct net * net; /* Associated network namespace */
struct list_head dev_list;
#ifdef CONFIG_PROC_FS
struct proc_dir_entry * proc_dir;
#endif
struct class_attribute class_attr_bonding_masters;
};
#ifdef CONFIG_PROC_FS
void bond_create_proc_entry(struct bonding *bond);
void bond_remove_proc_entry(struct bonding *bond);
void bond_create_proc_dir(struct bond_net *bn);
void bond_destroy_proc_dir(struct bond_net *bn);
#else
static inline void bond_create_proc_entry(struct bonding *bond)
{
}
static inline void bond_remove_proc_entry(struct bonding *bond)
{
}
static inline void bond_create_proc_dir(struct bond_net *bn)
{
}
static inline void bond_destroy_proc_dir(struct bond_net *bn)
{
}
#endif
static inline struct slave *bond_slave_has_mac(struct bonding *bond,
const u8 *mac)
{
struct list_head *iter;
struct slave *tmp;
bond_for_each_slave(bond, tmp, iter)
if (ether_addr_equal_64bits(mac, tmp->dev->dev_addr))
return tmp;
return NULL;
}
/* Check if the ip is present in arp ip list, or first free slot if ip == 0
* Returns -1 if not found, index if found
*/
static inline int bond_get_targets_ip(__be32 *targets, __be32 ip)
{
int i;
for (i = 0; i < BOND_MAX_ARP_TARGETS; i++)
if (targets[i] == ip)
return i;
else if (targets[i] == 0)
break;
return -1;
}
/* exported from bond_main.c */
extern int bond_net_id;
extern const struct bond_parm_tbl bond_lacp_tbl[];
extern const struct bond_parm_tbl bond_mode_tbl[];
extern const struct bond_parm_tbl xmit_hashtype_tbl[];
extern const struct bond_parm_tbl arp_validate_tbl[];
bonding: add an option to fail when any of arp_ip_target is inaccessible Currently, we fail only when all of the ips in arp_ip_target are gone. However, in some situations we might need to fail if even one host from arp_ip_target becomes unavailable. All situations, obviously, rely on the idea that we need *completely* functional network, with all interfaces/addresses working correctly. One real world example might be: vlans on top on bond (hybrid port). If bond and vlans have ips assigned and we have their peers monitored via arp_ip_target - in case of switch misconfiguration (trunk/access port), slave driver malfunction or tagged/untagged traffic dropped on the way - we will be able to switch to another slave. Though any other configuration needs that if we need to have access to all arp_ip_targets. This patch adds this possibility by adding a new parameter - arp_all_targets (both as a module parameter and as a sysfs knob). It can be set to: 0 or any (the default) - which works exactly as it's working now - the slave is up if any of the arp_ip_targets are up. 1 or all - the slave is up if all of the arp_ip_targets are up. This parameter can be changed on the fly (via sysfs), and requires the mode to be active-backup and arp_validate to be enabled (it obeys the arp_validate config on which slaves to validate). Internally it's done through: 1) Add target_last_arp_rx[BOND_MAX_ARP_TARGETS] array to slave struct. It's an array of jiffies, meaning that slave->target_last_arp_rx[i] is the last time we've received arp from bond->params.arp_targets[i] on this slave. 2) If we successfully validate an arp from bond->params.arp_targets[i] in bond_validate_arp() - update the slave->target_last_arp_rx[i] with the current jiffies value. 3) When getting slave's last_rx via slave_last_rx(), we return the oldest time when we've received an arp from any address in bond->params.arp_targets[]. If the value of arp_all_targets == 0 - we still work the same way as before. Also, update the documentation to reflect the new parameter. v3->v4: Kill the forgotten rtnl_unlock(), rephrase the documentation part to be more clear, don't fail setting arp_all_targets if arp_validate is not set - it has no effect anyway but can be easier to set up. Also, print a warning if the last arp_ip_target is removed while the arp_interval is on, but not the arp_validate. v2->v3: Use _bh spinlock, remove useless rtnl_lock() and use jiffies for new arp_ip_target last arp, instead of slave_last_rx(). On bond_enslave(), use the same initialization value for target_last_arp_rx[] as is used for the default last_arp_rx, to avoid useless interface flaps. Also, instead of failing to remove the last arp_ip_target just print a warning - otherwise it might break existing scripts. v1->v2: Correctly handle adding/removing hosts in arp_ip_target - we need to shift/initialize all slave's target_last_arp_rx. Also, don't fail module loading on arp_all_targets misconfiguration, just disable it, and some minor style fixes. Signed-off-by: Veaceslav Falico <vfalico@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-24 09:49:34 +00:00
extern const struct bond_parm_tbl arp_all_targets_tbl[];
extern const struct bond_parm_tbl fail_over_mac_tbl[];
extern const struct bond_parm_tbl pri_reselect_tbl[];
extern struct bond_parm_tbl ad_select_tbl[];
#endif /* _LINUX_BONDING_H */