linux/include/crypto/sha.h

112 lines
2.9 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Common values for SHA algorithms
*/
#ifndef _CRYPTO_SHA_H
#define _CRYPTO_SHA_H
#include <linux/types.h>
#define SHA1_DIGEST_SIZE 20
#define SHA1_BLOCK_SIZE 64
#define SHA224_DIGEST_SIZE 28
#define SHA224_BLOCK_SIZE 64
#define SHA256_DIGEST_SIZE 32
#define SHA256_BLOCK_SIZE 64
#define SHA384_DIGEST_SIZE 48
#define SHA384_BLOCK_SIZE 128
#define SHA512_DIGEST_SIZE 64
#define SHA512_BLOCK_SIZE 128
#define SHA1_H0 0x67452301UL
#define SHA1_H1 0xefcdab89UL
#define SHA1_H2 0x98badcfeUL
#define SHA1_H3 0x10325476UL
#define SHA1_H4 0xc3d2e1f0UL
#define SHA224_H0 0xc1059ed8UL
#define SHA224_H1 0x367cd507UL
#define SHA224_H2 0x3070dd17UL
#define SHA224_H3 0xf70e5939UL
#define SHA224_H4 0xffc00b31UL
#define SHA224_H5 0x68581511UL
#define SHA224_H6 0x64f98fa7UL
#define SHA224_H7 0xbefa4fa4UL
#define SHA256_H0 0x6a09e667UL
#define SHA256_H1 0xbb67ae85UL
#define SHA256_H2 0x3c6ef372UL
#define SHA256_H3 0xa54ff53aUL
#define SHA256_H4 0x510e527fUL
#define SHA256_H5 0x9b05688cUL
#define SHA256_H6 0x1f83d9abUL
#define SHA256_H7 0x5be0cd19UL
#define SHA384_H0 0xcbbb9d5dc1059ed8ULL
#define SHA384_H1 0x629a292a367cd507ULL
#define SHA384_H2 0x9159015a3070dd17ULL
#define SHA384_H3 0x152fecd8f70e5939ULL
#define SHA384_H4 0x67332667ffc00b31ULL
#define SHA384_H5 0x8eb44a8768581511ULL
#define SHA384_H6 0xdb0c2e0d64f98fa7ULL
#define SHA384_H7 0x47b5481dbefa4fa4ULL
#define SHA512_H0 0x6a09e667f3bcc908ULL
#define SHA512_H1 0xbb67ae8584caa73bULL
#define SHA512_H2 0x3c6ef372fe94f82bULL
#define SHA512_H3 0xa54ff53a5f1d36f1ULL
#define SHA512_H4 0x510e527fade682d1ULL
#define SHA512_H5 0x9b05688c2b3e6c1fULL
#define SHA512_H6 0x1f83d9abfb41bd6bULL
#define SHA512_H7 0x5be0cd19137e2179ULL
extern const u8 sha1_zero_message_hash[SHA1_DIGEST_SIZE];
extern const u8 sha224_zero_message_hash[SHA224_DIGEST_SIZE];
extern const u8 sha256_zero_message_hash[SHA256_DIGEST_SIZE];
struct sha1_state {
u32 state[SHA1_DIGEST_SIZE / 4];
u64 count;
u8 buffer[SHA1_BLOCK_SIZE];
};
struct sha256_state {
u32 state[SHA256_DIGEST_SIZE / 4];
u64 count;
u8 buf[SHA256_BLOCK_SIZE];
};
struct sha512_state {
u64 state[SHA512_DIGEST_SIZE / 8];
u64 count[2];
u8 buf[SHA512_BLOCK_SIZE];
};
struct shash_desc;
extern int crypto_sha1_update(struct shash_desc *desc, const u8 *data,
unsigned int len);
extern int crypto_sha1_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *hash);
extern int crypto_sha256_update(struct shash_desc *desc, const u8 *data,
unsigned int len);
extern int crypto_sha256_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *hash);
extern int crypto_sha512_update(struct shash_desc *desc, const u8 *data,
unsigned int len);
extern int crypto_sha512_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *hash);
#endif