linux/arch/ppc64/mm/init.c

871 lines
22 KiB
C
Raw Normal View History

/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
* Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Dave Engebretsen <engebret@us.ibm.com>
* Rework for PPC64 port.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/stddef.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/idr.h>
#include <linux/nodemask.h>
#include <linux/module.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/prom.h>
#include <asm/lmb.h>
#include <asm/rtas.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/uaccess.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/tlb.h>
#include <asm/eeh.h>
#include <asm/processor.h>
#include <asm/mmzone.h>
#include <asm/cputable.h>
#include <asm/ppcdebug.h>
#include <asm/sections.h>
#include <asm/system.h>
#include <asm/iommu.h>
#include <asm/abs_addr.h>
#include <asm/vdso.h>
#include <asm/imalloc.h>
#if PGTABLE_RANGE > USER_VSID_RANGE
#warning Limited user VSID range means pagetable space is wasted
#endif
#if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
#warning TASK_SIZE is smaller than it needs to be.
#endif
int mem_init_done;
unsigned long ioremap_bot = IMALLOC_BASE;
static unsigned long phbs_io_bot = PHBS_IO_BASE;
extern pgd_t swapper_pg_dir[];
extern struct task_struct *current_set[NR_CPUS];
unsigned long klimit = (unsigned long)_end;
unsigned long _SDR1=0;
unsigned long _ASR=0;
/* max amount of RAM to use */
unsigned long __max_memory;
/* info on what we think the IO hole is */
unsigned long io_hole_start;
unsigned long io_hole_size;
void show_mem(void)
{
unsigned long total = 0, reserved = 0;
unsigned long shared = 0, cached = 0;
struct page *page;
pg_data_t *pgdat;
unsigned long i;
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
for_each_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; i++) {
2005-06-23 07:07:37 +00:00
page = pgdat_page_nr(pgdat, i);
total++;
if (PageReserved(page))
reserved++;
else if (PageSwapCache(page))
cached++;
else if (page_count(page))
shared += page_count(page) - 1;
}
}
printk("%ld pages of RAM\n", total);
printk("%ld reserved pages\n", reserved);
printk("%ld pages shared\n", shared);
printk("%ld pages swap cached\n", cached);
}
#ifdef CONFIG_PPC_ISERIES
void __iomem *ioremap(unsigned long addr, unsigned long size)
{
return (void __iomem *)addr;
}
extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
unsigned long flags)
{
return (void __iomem *)addr;
}
void iounmap(volatile void __iomem *addr)
{
return;
}
#else
/*
* map_io_page currently only called by __ioremap
* map_io_page adds an entry to the ioremap page table
* and adds an entry to the HPT, possibly bolting it
*/
static int map_io_page(unsigned long ea, unsigned long pa, int flags)
{
pgd_t *pgdp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
unsigned long vsid;
if (mem_init_done) {
spin_lock(&init_mm.page_table_lock);
pgdp = pgd_offset_k(ea);
pudp = pud_alloc(&init_mm, pgdp, ea);
if (!pudp)
return -ENOMEM;
pmdp = pmd_alloc(&init_mm, pudp, ea);
if (!pmdp)
return -ENOMEM;
ptep = pte_alloc_kernel(&init_mm, pmdp, ea);
if (!ptep)
return -ENOMEM;
set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
__pgprot(flags)));
spin_unlock(&init_mm.page_table_lock);
} else {
unsigned long va, vpn, hash, hpteg;
/*
* If the mm subsystem is not fully up, we cannot create a
* linux page table entry for this mapping. Simply bolt an
* entry in the hardware page table.
*/
vsid = get_kernel_vsid(ea);
va = (vsid << 28) | (ea & 0xFFFFFFF);
vpn = va >> PAGE_SHIFT;
hash = hpt_hash(vpn, 0);
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
/* Panic if a pte grpup is full */
if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT,
HPTE_V_BOLTED,
_PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX)
== -1) {
panic("map_io_page: could not insert mapping");
}
}
return 0;
}
static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
unsigned long ea, unsigned long size,
unsigned long flags)
{
unsigned long i;
if ((flags & _PAGE_PRESENT) == 0)
flags |= pgprot_val(PAGE_KERNEL);
for (i = 0; i < size; i += PAGE_SIZE)
if (map_io_page(ea+i, pa+i, flags))
return NULL;
return (void __iomem *) (ea + (addr & ~PAGE_MASK));
}
void __iomem *
ioremap(unsigned long addr, unsigned long size)
{
return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
}
void __iomem * __ioremap(unsigned long addr, unsigned long size,
unsigned long flags)
{
unsigned long pa, ea;
void __iomem *ret;
/*
* Choose an address to map it to.
* Once the imalloc system is running, we use it.
* Before that, we map using addresses going
* up from ioremap_bot. imalloc will use
* the addresses from ioremap_bot through
* IMALLOC_END
*
*/
pa = addr & PAGE_MASK;
size = PAGE_ALIGN(addr + size) - pa;
if (size == 0)
return NULL;
if (mem_init_done) {
struct vm_struct *area;
area = im_get_free_area(size);
if (area == NULL)
return NULL;
ea = (unsigned long)(area->addr);
ret = __ioremap_com(addr, pa, ea, size, flags);
if (!ret)
im_free(area->addr);
} else {
ea = ioremap_bot;
ret = __ioremap_com(addr, pa, ea, size, flags);
if (ret)
ioremap_bot += size;
}
return ret;
}
#define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
int __ioremap_explicit(unsigned long pa, unsigned long ea,
unsigned long size, unsigned long flags)
{
struct vm_struct *area;
void __iomem *ret;
/* For now, require page-aligned values for pa, ea, and size */
if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
!IS_PAGE_ALIGNED(size)) {
printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
return 1;
}
if (!mem_init_done) {
/* Two things to consider in this case:
* 1) No records will be kept (imalloc, etc) that the region
* has been remapped
* 2) It won't be easy to iounmap() the region later (because
* of 1)
*/
;
} else {
area = im_get_area(ea, size,
IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
if (area == NULL) {
/* Expected when PHB-dlpar is in play */
return 1;
}
if (ea != (unsigned long) area->addr) {
printk(KERN_ERR "unexpected addr return from "
"im_get_area\n");
return 1;
}
}
ret = __ioremap_com(pa, pa, ea, size, flags);
if (ret == NULL) {
printk(KERN_ERR "ioremap_explicit() allocation failure !\n");
return 1;
}
if (ret != (void *) ea) {
printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
return 1;
}
return 0;
}
/*
* Unmap an IO region and remove it from imalloc'd list.
* Access to IO memory should be serialized by driver.
* This code is modeled after vmalloc code - unmap_vm_area()
*
* XXX what about calls before mem_init_done (ie python_countermeasures())
*/
void iounmap(volatile void __iomem *token)
{
void *addr;
if (!mem_init_done)
return;
addr = (void *) ((unsigned long __force) token & PAGE_MASK);
im_free(addr);
}
static int iounmap_subset_regions(unsigned long addr, unsigned long size)
{
struct vm_struct *area;
/* Check whether subsets of this region exist */
area = im_get_area(addr, size, IM_REGION_SUPERSET);
if (area == NULL)
return 1;
while (area) {
iounmap((void __iomem *) area->addr);
area = im_get_area(addr, size,
IM_REGION_SUPERSET);
}
return 0;
}
int iounmap_explicit(volatile void __iomem *start, unsigned long size)
{
struct vm_struct *area;
unsigned long addr;
int rc;
addr = (unsigned long __force) start & PAGE_MASK;
/* Verify that the region either exists or is a subset of an existing
* region. In the latter case, split the parent region to create
* the exact region
*/
area = im_get_area(addr, size,
IM_REGION_EXISTS | IM_REGION_SUBSET);
if (area == NULL) {
/* Determine whether subset regions exist. If so, unmap */
rc = iounmap_subset_regions(addr, size);
if (rc) {
printk(KERN_ERR
"%s() cannot unmap nonexistent range 0x%lx\n",
__FUNCTION__, addr);
return 1;
}
} else {
iounmap((void __iomem *) area->addr);
}
/*
* FIXME! This can't be right:
iounmap(area->addr);
* Maybe it should be "iounmap(area);"
*/
return 0;
}
#endif
EXPORT_SYMBOL(ioremap);
EXPORT_SYMBOL(__ioremap);
EXPORT_SYMBOL(iounmap);
void free_initmem(void)
{
unsigned long addr;
addr = (unsigned long)__init_begin;
for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
memset((void *)addr, 0xcc, PAGE_SIZE);
ClearPageReserved(virt_to_page(addr));
set_page_count(virt_to_page(addr), 1);
free_page(addr);
totalram_pages++;
}
printk ("Freeing unused kernel memory: %luk freed\n",
((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (start < end)
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
ClearPageReserved(virt_to_page(start));
set_page_count(virt_to_page(start), 1);
free_page(start);
totalram_pages++;
}
}
#endif
static DEFINE_SPINLOCK(mmu_context_lock);
static DEFINE_IDR(mmu_context_idr);
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
{
int index;
int err;
again:
if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
return -ENOMEM;
spin_lock(&mmu_context_lock);
err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
spin_unlock(&mmu_context_lock);
if (err == -EAGAIN)
goto again;
else if (err)
return err;
if (index > MAX_CONTEXT) {
idr_remove(&mmu_context_idr, index);
return -ENOMEM;
}
mm->context.id = index;
return 0;
}
void destroy_context(struct mm_struct *mm)
{
spin_lock(&mmu_context_lock);
idr_remove(&mmu_context_idr, mm->context.id);
spin_unlock(&mmu_context_lock);
mm->context.id = NO_CONTEXT;
}
/*
* Do very early mm setup.
*/
void __init mm_init_ppc64(void)
{
#ifndef CONFIG_PPC_ISERIES
unsigned long i;
#endif
ppc64_boot_msg(0x100, "MM Init");
/* This is the story of the IO hole... please, keep seated,
* unfortunately, we are out of oxygen masks at the moment.
* So we need some rough way to tell where your big IO hole
* is. On pmac, it's between 2G and 4G, on POWER3, it's around
* that area as well, on POWER4 we don't have one, etc...
* We need that as a "hint" when sizing the TCE table on POWER3
* So far, the simplest way that seem work well enough for us it
* to just assume that the first discontinuity in our physical
* RAM layout is the IO hole. That may not be correct in the future
* (and isn't on iSeries but then we don't care ;)
*/
#ifndef CONFIG_PPC_ISERIES
for (i = 1; i < lmb.memory.cnt; i++) {
unsigned long base, prevbase, prevsize;
prevbase = lmb.memory.region[i-1].base;
prevsize = lmb.memory.region[i-1].size;
base = lmb.memory.region[i].base;
if (base > (prevbase + prevsize)) {
io_hole_start = prevbase + prevsize;
io_hole_size = base - (prevbase + prevsize);
break;
}
}
#endif /* CONFIG_PPC_ISERIES */
if (io_hole_start)
printk("IO Hole assumed to be %lx -> %lx\n",
io_hole_start, io_hole_start + io_hole_size - 1);
ppc64_boot_msg(0x100, "MM Init Done");
}
/*
* This is called by /dev/mem to know if a given address has to
* be mapped non-cacheable or not
*/
int page_is_ram(unsigned long pfn)
{
int i;
unsigned long paddr = (pfn << PAGE_SHIFT);
for (i=0; i < lmb.memory.cnt; i++) {
unsigned long base;
base = lmb.memory.region[i].base;
if ((paddr >= base) &&
(paddr < (base + lmb.memory.region[i].size))) {
return 1;
}
}
return 0;
}
EXPORT_SYMBOL(page_is_ram);
/*
* Initialize the bootmem system and give it all the memory we
* have available.
*/
#ifndef CONFIG_NEED_MULTIPLE_NODES
void __init do_init_bootmem(void)
{
unsigned long i;
unsigned long start, bootmap_pages;
unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
int boot_mapsize;
/*
* Find an area to use for the bootmem bitmap. Calculate the size of
* bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
* Add 1 additional page in case the address isn't page-aligned.
*/
bootmap_pages = bootmem_bootmap_pages(total_pages);
[PATCH] ppc64: Remove redundant abs_to_phys() macro abs_to_phys() is a macro that turns out to do nothing, and also has the unfortunate property that it's not the inverse of phys_to_abs() on iSeries. The following is for my benefit as much as everyone else. With CONFIG_MSCHUNKS enabled, the lmb code is changed such that it keeps a physbase variable for each lmb region. This is used to take the possibly discontiguous lmb regions and present them as a contiguous address space beginning from zero. In this context each lmb region's base address is its "absolute" base address, and its physbase is it's "physical" address (from Linux's point of view). The abs_to_phys() macro does the mapping from "absolute" to "physical". Note: This is not related to the iSeries mapping of physical to absolute (ie. Hypervisor) addresses which is maintained with the msChunks structure. And the msChunks structure is not controlled via CONFIG_MSCHUNKS. Once upon a time you could compile for non-iSeries with CONFIG_MSCHUNKS enabled. But these days CONFIG_MSCHUNKS depends on CONFIG_PPC_ISERIES, so for non-iSeries code abs_to_phys() is a no-op. On iSeries we always have one lmb region which spans from 0 to systemcfg->physicalMemorySize (arch/ppc64/kernel/iSeries_setup.c line 383). This region has a base (ie. absolute) address of 0, and a physbase address of 0 (as calculated in lmb_analyze() (arch/ppc64/kernel/lmb.c line 144)). On iSeries, abs_to_phys(aa) is defined as lmb_abs_to_phys(aa), which finds the lmb region containing aa (and there's only one, ie. 0), and then does: return lmb.memory.region[0].physbase + (aa - lmb.memory.region[0].base) physbase == base == 0, so you're left with "return aa". So remove abs_to_phys(), and lmb_abs_to_phys() which is the implementation of abs_to_phys() for iSeries. Signed-off-by: Michael Ellerman <michael@ellerman.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-08-03 10:21:25 +00:00
start = lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
BUG_ON(!start);
boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
max_pfn = max_low_pfn;
/* Add all physical memory to the bootmem map, mark each area
* present.
*/
for (i=0; i < lmb.memory.cnt; i++)
free_bootmem(lmb.memory.region[i].base,
lmb_size_bytes(&lmb.memory, i));
/* reserve the sections we're already using */
for (i=0; i < lmb.reserved.cnt; i++)
reserve_bootmem(lmb.reserved.region[i].base,
lmb_size_bytes(&lmb.reserved, i));
for (i=0; i < lmb.memory.cnt; i++)
memory_present(0, lmb_start_pfn(&lmb.memory, i),
lmb_end_pfn(&lmb.memory, i));
}
/*
* paging_init() sets up the page tables - in fact we've already done this.
*/
void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
unsigned long total_ram = lmb_phys_mem_size();
unsigned long top_of_ram = lmb_end_of_DRAM();
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
top_of_ram, total_ram);
printk(KERN_INFO "Memory hole size: %ldMB\n",
(top_of_ram - total_ram) >> 20);
/*
* All pages are DMA-able so we put them all in the DMA zone.
*/
memset(zones_size, 0, sizeof(zones_size));
memset(zholes_size, 0, sizeof(zholes_size));
zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
free_area_init_node(0, NODE_DATA(0), zones_size,
__pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
}
#endif /* ! CONFIG_NEED_MULTIPLE_NODES */
static struct kcore_list kcore_vmem;
static int __init setup_kcore(void)
{
int i;
for (i=0; i < lmb.memory.cnt; i++) {
unsigned long base, size;
struct kcore_list *kcore_mem;
base = lmb.memory.region[i].base;
size = lmb.memory.region[i].size;
/* GFP_ATOMIC to avoid might_sleep warnings during boot */
kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
if (!kcore_mem)
panic("mem_init: kmalloc failed\n");
kclist_add(kcore_mem, __va(base), size);
}
kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
return 0;
}
module_init(setup_kcore);
void __init mem_init(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
int nid;
#endif
pg_data_t *pgdat;
unsigned long i;
struct page *page;
unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
num_physpages = max_low_pfn; /* RAM is assumed contiguous */
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
#ifdef CONFIG_NEED_MULTIPLE_NODES
for_each_online_node(nid) {
if (NODE_DATA(nid)->node_spanned_pages != 0) {
printk("freeing bootmem node %x\n", nid);
totalram_pages +=
free_all_bootmem_node(NODE_DATA(nid));
}
}
#else
max_mapnr = num_physpages;
totalram_pages += free_all_bootmem();
#endif
for_each_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; i++) {
2005-06-23 07:07:37 +00:00
page = pgdat_page_nr(pgdat, i);
if (PageReserved(page))
reservedpages++;
}
}
codesize = (unsigned long)&_etext - (unsigned long)&_stext;
initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
"%luk reserved, %luk data, %luk bss, %luk init)\n",
(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
bsssize >> 10,
initsize >> 10);
mem_init_done = 1;
/* Initialize the vDSO */
vdso_init();
}
/*
* This is called when a page has been modified by the kernel.
* It just marks the page as not i-cache clean. We do the i-cache
* flush later when the page is given to a user process, if necessary.
*/
void flush_dcache_page(struct page *page)
{
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
return;
/* avoid an atomic op if possible */
if (test_bit(PG_arch_1, &page->flags))
clear_bit(PG_arch_1, &page->flags);
}
EXPORT_SYMBOL(flush_dcache_page);
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
{
clear_page(page);
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
return;
/*
* We shouldnt have to do this, but some versions of glibc
* require it (ld.so assumes zero filled pages are icache clean)
* - Anton
*/
/* avoid an atomic op if possible */
if (test_bit(PG_arch_1, &pg->flags))
clear_bit(PG_arch_1, &pg->flags);
}
EXPORT_SYMBOL(clear_user_page);
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
struct page *pg)
{
copy_page(vto, vfrom);
/*
* We should be able to use the following optimisation, however
* there are two problems.
* Firstly a bug in some versions of binutils meant PLT sections
* were not marked executable.
* Secondly the first word in the GOT section is blrl, used
* to establish the GOT address. Until recently the GOT was
* not marked executable.
* - Anton
*/
#if 0
if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
return;
#endif
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
return;
/* avoid an atomic op if possible */
if (test_bit(PG_arch_1, &pg->flags))
clear_bit(PG_arch_1, &pg->flags);
}
void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
unsigned long addr, int len)
{
unsigned long maddr;
maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
flush_icache_range(maddr, maddr + len);
}
EXPORT_SYMBOL(flush_icache_user_range);
/*
* This is called at the end of handling a user page fault, when the
* fault has been handled by updating a PTE in the linux page tables.
* We use it to preload an HPTE into the hash table corresponding to
* the updated linux PTE.
*
* This must always be called with the mm->page_table_lock held
*/
void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
pte_t pte)
{
unsigned long vsid;
void *pgdir;
pte_t *ptep;
int local = 0;
cpumask_t tmp;
unsigned long flags;
/* handle i-cache coherency */
if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
!cpu_has_feature(CPU_FTR_NOEXECUTE)) {
unsigned long pfn = pte_pfn(pte);
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
if (!PageReserved(page)
&& !test_bit(PG_arch_1, &page->flags)) {
__flush_dcache_icache(page_address(page));
set_bit(PG_arch_1, &page->flags);
}
}
}
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
if (!pte_young(pte))
return;
pgdir = vma->vm_mm->pgd;
if (pgdir == NULL)
return;
ptep = find_linux_pte(pgdir, ea);
if (!ptep)
return;
vsid = get_vsid(vma->vm_mm->context.id, ea);
local_irq_save(flags);
tmp = cpumask_of_cpu(smp_processor_id());
if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
local = 1;
__hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
0x300, local);
local_irq_restore(flags);
}
void __iomem * reserve_phb_iospace(unsigned long size)
{
void __iomem *virt_addr;
if (phbs_io_bot >= IMALLOC_BASE)
panic("reserve_phb_iospace(): phb io space overflow\n");
virt_addr = (void __iomem *) phbs_io_bot;
phbs_io_bot += size;
return virt_addr;
}
static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
{
memset(addr, 0, kmem_cache_size(cache));
}
static const int pgtable_cache_size[2] = {
PTE_TABLE_SIZE, PMD_TABLE_SIZE
};
static const char *pgtable_cache_name[ARRAY_SIZE(pgtable_cache_size)] = {
"pgd_pte_cache", "pud_pmd_cache",
};
kmem_cache_t *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)];
void pgtable_cache_init(void)
{
int i;
BUILD_BUG_ON(PTE_TABLE_SIZE != pgtable_cache_size[PTE_CACHE_NUM]);
BUILD_BUG_ON(PMD_TABLE_SIZE != pgtable_cache_size[PMD_CACHE_NUM]);
BUILD_BUG_ON(PUD_TABLE_SIZE != pgtable_cache_size[PUD_CACHE_NUM]);
BUILD_BUG_ON(PGD_TABLE_SIZE != pgtable_cache_size[PGD_CACHE_NUM]);
for (i = 0; i < ARRAY_SIZE(pgtable_cache_size); i++) {
int size = pgtable_cache_size[i];
const char *name = pgtable_cache_name[i];
pgtable_cache[i] = kmem_cache_create(name,
size, size,
SLAB_HWCACHE_ALIGN
| SLAB_MUST_HWCACHE_ALIGN,
zero_ctor,
NULL);
if (! pgtable_cache[i])
panic("pgtable_cache_init(): could not create %s!\n",
name);
}
}
pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
unsigned long size, pgprot_t vma_prot)
{
if (ppc_md.phys_mem_access_prot)
return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
if (!page_is_ram(addr >> PAGE_SHIFT))
vma_prot = __pgprot(pgprot_val(vma_prot)
| _PAGE_GUARDED | _PAGE_NO_CACHE);
return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);