linux/arch/mips/sgi-ip22/ip22-mc.c

209 lines
5.9 KiB
C
Raw Normal View History

/*
* ip22-mc.c: Routines for manipulating SGI Memory Controller.
*
* Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
* Copyright (C) 1999 Andrew R. Baker (andrewb@uab.edu) - Indigo2 changes
* Copyright (C) 2003 Ladislav Michl (ladis@linux-mips.org)
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <asm/io.h>
#include <asm/bootinfo.h>
#include <asm/sgialib.h>
#include <asm/sgi/mc.h>
#include <asm/sgi/hpc3.h>
#include <asm/sgi/ip22.h>
struct sgimc_regs *sgimc;
EXPORT_SYMBOL(sgimc);
static inline unsigned long get_bank_addr(unsigned int memconfig)
{
return ((memconfig & SGIMC_MCONFIG_BASEADDR) <<
((sgimc->systemid & SGIMC_SYSID_MASKREV) >= 5 ? 24 : 22));
}
static inline unsigned long get_bank_size(unsigned int memconfig)
{
return ((memconfig & SGIMC_MCONFIG_RMASK) + 0x0100) <<
((sgimc->systemid & SGIMC_SYSID_MASKREV) >= 5 ? 16 : 14);
}
static inline unsigned int get_bank_config(int bank)
{
unsigned int res = bank > 1 ? sgimc->mconfig1 : sgimc->mconfig0;
return bank % 2 ? res & 0xffff : res >> 16;
}
struct mem {
unsigned long addr;
unsigned long size;
};
/*
* Detect installed memory, do some sanity checks and notify kernel about it
*/
static void probe_memory(void)
{
int i, j, found, cnt = 0;
struct mem bank[4];
struct mem space[2] = {{SGIMC_SEG0_BADDR, 0}, {SGIMC_SEG1_BADDR, 0}};
printk(KERN_INFO "MC: Probing memory configuration:\n");
for (i = 0; i < ARRAY_SIZE(bank); i++) {
unsigned int tmp = get_bank_config(i);
if (!(tmp & SGIMC_MCONFIG_BVALID))
continue;
bank[cnt].size = get_bank_size(tmp);
bank[cnt].addr = get_bank_addr(tmp);
printk(KERN_INFO " bank%d: %3ldM @ %08lx\n",
i, bank[cnt].size / 1024 / 1024, bank[cnt].addr);
cnt++;
}
/* And you thought bubble sort is dead algorithm... */
do {
unsigned long addr, size;
found = 0;
for (i = 1; i < cnt; i++)
if (bank[i-1].addr > bank[i].addr) {
addr = bank[i].addr;
size = bank[i].size;
bank[i].addr = bank[i-1].addr;
bank[i].size = bank[i-1].size;
bank[i-1].addr = addr;
bank[i-1].size = size;
found = 1;
}
} while (found);
/* Figure out how are memory banks mapped into spaces */
for (i = 0; i < cnt; i++) {
found = 0;
for (j = 0; j < ARRAY_SIZE(space) && !found; j++)
if (space[j].addr + space[j].size == bank[i].addr) {
space[j].size += bank[i].size;
found = 1;
}
/* There is either hole or overlapping memory */
if (!found)
printk(KERN_CRIT "MC: Memory configuration mismatch "
"(%08lx), expect Bus Error soon\n",
bank[i].addr);
}
for (i = 0; i < ARRAY_SIZE(space); i++)
if (space[i].size)
add_memory_region(space[i].addr, space[i].size,
BOOT_MEM_RAM);
}
void __init sgimc_init(void)
{
u32 tmp;
/* ioremap can't fail */
sgimc = (struct sgimc_regs *)
ioremap(SGIMC_BASE, sizeof(struct sgimc_regs));
printk(KERN_INFO "MC: SGI memory controller Revision %d\n",
(int) sgimc->systemid & SGIMC_SYSID_MASKREV);
/* Place the MC into a known state. This must be done before
* interrupts are first enabled etc.
*/
/* Step 0: Make sure we turn off the watchdog in case it's
* still running (which might be the case after a
* soft reboot).
*/
tmp = sgimc->cpuctrl0;
tmp &= ~SGIMC_CCTRL0_WDOG;
sgimc->cpuctrl0 = tmp;
/* Step 1: The CPU/GIO error status registers will not latch
* up a new error status until the register has been
* cleared by the cpu. These status registers are
* cleared by writing any value to them.
*/
sgimc->cstat = sgimc->gstat = 0;
/* Step 2: Enable all parity checking in cpu control register
* zero.
*/
tmp = sgimc->cpuctrl0;
tmp |= (SGIMC_CCTRL0_EPERRGIO | SGIMC_CCTRL0_EPERRMEM |
SGIMC_CCTRL0_R4KNOCHKPARR);
sgimc->cpuctrl0 = tmp;
/* Step 3: Setup the MC write buffer depth, this is controlled
* in cpu control register 1 in the lower 4 bits.
*/
tmp = sgimc->cpuctrl1;
tmp &= ~0xf;
tmp |= 0xd;
sgimc->cpuctrl1 = tmp;
/* Step 4: Initialize the RPSS divider register to run as fast
* as it can correctly operate. The register is laid
* out as follows:
*
* ----------------------------------------
* | RESERVED | INCREMENT | DIVIDER |
* ----------------------------------------
* 31 16 15 8 7 0
*
* DIVIDER determines how often a 'tick' happens,
* INCREMENT determines by how the RPSS increment
* registers value increases at each 'tick'. Thus,
* for IP22 we get INCREMENT=1, DIVIDER=1 == 0x101
*/
sgimc->divider = 0x101;
/* Step 5: Initialize GIO64 arbitrator configuration register.
*
* NOTE: HPC init code in sgihpc_init() must run before us because
* we need to know Guiness vs. FullHouse and the board
* revision on this machine. You have been warned.
*/
/* First the basic invariants across all GIO64 implementations. */
tmp = SGIMC_GIOPAR_HPC64; /* All 1st HPC's interface at 64bits */
tmp |= SGIMC_GIOPAR_ONEBUS; /* Only one physical GIO bus exists */
if (ip22_is_fullhouse()) {
/* Fullhouse specific settings. */
if (SGIOC_SYSID_BOARDREV(sgioc->sysid) < 2) {
tmp |= SGIMC_GIOPAR_HPC264; /* 2nd HPC at 64bits */
tmp |= SGIMC_GIOPAR_PLINEEXP0; /* exp0 pipelines */
tmp |= SGIMC_GIOPAR_MASTEREXP1; /* exp1 masters */
tmp |= SGIMC_GIOPAR_RTIMEEXP0; /* exp0 is realtime */
} else {
tmp |= SGIMC_GIOPAR_HPC264; /* 2nd HPC 64bits */
tmp |= SGIMC_GIOPAR_PLINEEXP0; /* exp[01] pipelined */
tmp |= SGIMC_GIOPAR_PLINEEXP1;
tmp |= SGIMC_GIOPAR_MASTEREISA; /* EISA masters */
tmp |= SGIMC_GIOPAR_GFX64; /* GFX at 64 bits */
}
} else {
/* Guiness specific settings. */
tmp |= SGIMC_GIOPAR_EISA64; /* MC talks to EISA at 64bits */
tmp |= SGIMC_GIOPAR_MASTEREISA; /* EISA bus can act as master */
}
sgimc->giopar = tmp; /* poof */
probe_memory();
}
void __init prom_meminit(void) {}
unsigned long __init prom_free_prom_memory(void)
{
return 0;
}