linux/arch/x86/kernel/cpu/sgx/encl.c

759 lines
18 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2016-20 Intel Corporation. */
#include <linux/lockdep.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/shmem_fs.h>
#include <linux/suspend.h>
#include <linux/sched/mm.h>
#include <asm/sgx.h>
#include "encl.h"
#include "encls.h"
#include "sgx.h"
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
/*
* ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC
* Pages" in the SDM.
*/
static int __sgx_encl_eldu(struct sgx_encl_page *encl_page,
struct sgx_epc_page *epc_page,
struct sgx_epc_page *secs_page)
{
unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
struct sgx_encl *encl = encl_page->encl;
struct sgx_pageinfo pginfo;
struct sgx_backing b;
pgoff_t page_index;
int ret;
if (secs_page)
page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
else
page_index = PFN_DOWN(encl->size);
ret = sgx_encl_get_backing(encl, page_index, &b);
if (ret)
return ret;
pginfo.addr = encl_page->desc & PAGE_MASK;
pginfo.contents = (unsigned long)kmap_atomic(b.contents);
pginfo.metadata = (unsigned long)kmap_atomic(b.pcmd) +
b.pcmd_offset;
if (secs_page)
pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page);
else
pginfo.secs = 0;
ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page),
sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset);
if (ret) {
if (encls_failed(ret))
ENCLS_WARN(ret, "ELDU");
ret = -EFAULT;
}
kunmap_atomic((void *)(unsigned long)(pginfo.metadata - b.pcmd_offset));
kunmap_atomic((void *)(unsigned long)pginfo.contents);
sgx_encl_put_backing(&b, false);
return ret;
}
static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page,
struct sgx_epc_page *secs_page)
{
unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
struct sgx_encl *encl = encl_page->encl;
struct sgx_epc_page *epc_page;
int ret;
epc_page = sgx_alloc_epc_page(encl_page, false);
if (IS_ERR(epc_page))
return epc_page;
ret = __sgx_encl_eldu(encl_page, epc_page, secs_page);
if (ret) {
x86/sgx: Wipe out EREMOVE from sgx_free_epc_page() EREMOVE takes a page and removes any association between that page and an enclave. It must be run on a page before it can be added into another enclave. Currently, EREMOVE is run as part of pages being freed into the SGX page allocator. It is not expected to fail, as it would indicate a use-after-free of EPC pages. Rather than add the page back to the pool of available EPC pages, the kernel intentionally leaks the page to avoid additional errors in the future. However, KVM does not track how guest pages are used, which means that SGX virtualization use of EREMOVE might fail. Specifically, it is legitimate that EREMOVE returns SGX_CHILD_PRESENT for EPC assigned to KVM guest, because KVM/kernel doesn't track SECS pages. To allow SGX/KVM to introduce a more permissive EREMOVE helper and to let the SGX virtualization code use the allocator directly, break out the EREMOVE call from the SGX page allocator. Rename the original sgx_free_epc_page() to sgx_encl_free_epc_page(), indicating that it is used to free an EPC page assigned to a host enclave. Replace sgx_free_epc_page() with sgx_encl_free_epc_page() in all call sites so there's no functional change. At the same time, improve the error message when EREMOVE fails, and add documentation to explain to the user what that failure means and to suggest to the user what to do when this bug happens in the case it happens. [ bp: Massage commit message, fix typos and sanitize text, simplify. ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Link: https://lkml.kernel.org/r/20210325093057.122834-1-kai.huang@intel.com
2021-03-25 09:30:57 +00:00
sgx_encl_free_epc_page(epc_page);
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
return ERR_PTR(ret);
}
sgx_free_va_slot(encl_page->va_page, va_offset);
list_move(&encl_page->va_page->list, &encl->va_pages);
encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK;
encl_page->epc_page = epc_page;
return epc_page;
}
static struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl,
unsigned long addr,
unsigned long vm_flags)
{
unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC);
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
struct sgx_epc_page *epc_page;
struct sgx_encl_page *entry;
entry = xa_load(&encl->page_array, PFN_DOWN(addr));
if (!entry)
return ERR_PTR(-EFAULT);
/*
* Verify that the faulted page has equal or higher build time
* permissions than the VMA permissions (i.e. the subset of {VM_READ,
* VM_WRITE, VM_EXECUTE} in vma->vm_flags).
*/
if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits)
return ERR_PTR(-EFAULT);
/* Entry successfully located. */
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
if (entry->epc_page) {
if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)
return ERR_PTR(-EBUSY);
return entry;
}
if (!(encl->secs.epc_page)) {
epc_page = sgx_encl_eldu(&encl->secs, NULL);
if (IS_ERR(epc_page))
return ERR_CAST(epc_page);
}
epc_page = sgx_encl_eldu(entry, encl->secs.epc_page);
if (IS_ERR(epc_page))
return ERR_CAST(epc_page);
encl->secs_child_cnt++;
sgx_mark_page_reclaimable(entry->epc_page);
return entry;
}
static vm_fault_t sgx_vma_fault(struct vm_fault *vmf)
{
unsigned long addr = (unsigned long)vmf->address;
struct vm_area_struct *vma = vmf->vma;
struct sgx_encl_page *entry;
unsigned long phys_addr;
struct sgx_encl *encl;
vm_fault_t ret;
encl = vma->vm_private_data;
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
/*
* It's very unlikely but possible that allocating memory for the
* mm_list entry of a forked process failed in sgx_vma_open(). When
* this happens, vm_private_data is set to NULL.
*/
if (unlikely(!encl))
return VM_FAULT_SIGBUS;
mutex_lock(&encl->lock);
entry = sgx_encl_load_page(encl, addr, vma->vm_flags);
if (IS_ERR(entry)) {
mutex_unlock(&encl->lock);
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
if (PTR_ERR(entry) == -EBUSY)
return VM_FAULT_NOPAGE;
return VM_FAULT_SIGBUS;
}
phys_addr = sgx_get_epc_phys_addr(entry->epc_page);
ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
if (ret != VM_FAULT_NOPAGE) {
mutex_unlock(&encl->lock);
return VM_FAULT_SIGBUS;
}
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
sgx_encl_test_and_clear_young(vma->vm_mm, entry);
mutex_unlock(&encl->lock);
return VM_FAULT_NOPAGE;
}
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
static void sgx_vma_open(struct vm_area_struct *vma)
{
struct sgx_encl *encl = vma->vm_private_data;
/*
* It's possible but unlikely that vm_private_data is NULL. This can
* happen in a grandchild of a process, when sgx_encl_mm_add() had
* failed to allocate memory in this callback.
*/
if (unlikely(!encl))
return;
if (sgx_encl_mm_add(encl, vma->vm_mm))
vma->vm_private_data = NULL;
}
/**
* sgx_encl_may_map() - Check if a requested VMA mapping is allowed
* @encl: an enclave pointer
* @start: lower bound of the address range, inclusive
* @end: upper bound of the address range, exclusive
* @vm_flags: VMA flags
*
* Iterate through the enclave pages contained within [@start, @end) to verify
* that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC}
* do not contain any permissions that are not contained in the build time
* permissions of any of the enclave pages within the given address range.
*
* An enclave creator must declare the strongest permissions that will be
* needed for each enclave page. This ensures that mappings have the identical
* or weaker permissions than the earlier declared permissions.
*
* Return: 0 on success, -EACCES otherwise
*/
int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start,
unsigned long end, unsigned long vm_flags)
{
unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC);
struct sgx_encl_page *page;
unsigned long count = 0;
int ret = 0;
XA_STATE(xas, &encl->page_array, PFN_DOWN(start));
/*
* Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might
* conflict with the enclave page permissions.
*/
if (current->personality & READ_IMPLIES_EXEC)
return -EACCES;
mutex_lock(&encl->lock);
xas_lock(&xas);
xas_for_each(&xas, page, PFN_DOWN(end - 1)) {
if (~page->vm_max_prot_bits & vm_prot_bits) {
ret = -EACCES;
break;
}
/* Reschedule on every XA_CHECK_SCHED iteration. */
if (!(++count % XA_CHECK_SCHED)) {
xas_pause(&xas);
xas_unlock(&xas);
mutex_unlock(&encl->lock);
cond_resched();
mutex_lock(&encl->lock);
xas_lock(&xas);
}
}
xas_unlock(&xas);
mutex_unlock(&encl->lock);
return ret;
}
static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start,
unsigned long end, unsigned long newflags)
{
return sgx_encl_may_map(vma->vm_private_data, start, end, newflags);
}
static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page,
unsigned long addr, void *data)
{
unsigned long offset = addr & ~PAGE_MASK;
int ret;
ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
if (ret)
return -EIO;
return 0;
}
static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page,
unsigned long addr, void *data)
{
unsigned long offset = addr & ~PAGE_MASK;
int ret;
ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
if (ret)
return -EIO;
return 0;
}
/*
* Load an enclave page to EPC if required, and take encl->lock.
*/
static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl,
unsigned long addr,
unsigned long vm_flags)
{
struct sgx_encl_page *entry;
for ( ; ; ) {
mutex_lock(&encl->lock);
entry = sgx_encl_load_page(encl, addr, vm_flags);
if (PTR_ERR(entry) != -EBUSY)
break;
mutex_unlock(&encl->lock);
}
if (IS_ERR(entry))
mutex_unlock(&encl->lock);
return entry;
}
static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write)
{
struct sgx_encl *encl = vma->vm_private_data;
struct sgx_encl_page *entry = NULL;
char data[sizeof(unsigned long)];
unsigned long align;
int offset;
int cnt;
int ret = 0;
int i;
/*
* If process was forked, VMA is still there but vm_private_data is set
* to NULL.
*/
if (!encl)
return -EFAULT;
if (!test_bit(SGX_ENCL_DEBUG, &encl->flags))
return -EFAULT;
for (i = 0; i < len; i += cnt) {
entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK,
vma->vm_flags);
if (IS_ERR(entry)) {
ret = PTR_ERR(entry);
break;
}
align = ALIGN_DOWN(addr + i, sizeof(unsigned long));
offset = (addr + i) & (sizeof(unsigned long) - 1);
cnt = sizeof(unsigned long) - offset;
cnt = min(cnt, len - i);
ret = sgx_encl_debug_read(encl, entry, align, data);
if (ret)
goto out;
if (write) {
memcpy(data + offset, buf + i, cnt);
ret = sgx_encl_debug_write(encl, entry, align, data);
if (ret)
goto out;
} else {
memcpy(buf + i, data + offset, cnt);
}
out:
mutex_unlock(&encl->lock);
if (ret)
break;
}
return ret < 0 ? ret : i;
}
const struct vm_operations_struct sgx_vm_ops = {
.fault = sgx_vma_fault,
.mprotect = sgx_vma_mprotect,
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
.open = sgx_vma_open,
.access = sgx_vma_access,
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
};
/**
* sgx_encl_release - Destroy an enclave instance
* @ref: address of a kref inside &sgx_encl
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
*
* Used together with kref_put(). Frees all the resources associated with the
* enclave and the instance itself.
*/
void sgx_encl_release(struct kref *ref)
{
struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount);
struct sgx_va_page *va_page;
struct sgx_encl_page *entry;
unsigned long index;
xa_for_each(&encl->page_array, index, entry) {
if (entry->epc_page) {
/*
* The page and its radix tree entry cannot be freed
* if the page is being held by the reclaimer.
*/
if (sgx_unmark_page_reclaimable(entry->epc_page))
continue;
x86/sgx: Wipe out EREMOVE from sgx_free_epc_page() EREMOVE takes a page and removes any association between that page and an enclave. It must be run on a page before it can be added into another enclave. Currently, EREMOVE is run as part of pages being freed into the SGX page allocator. It is not expected to fail, as it would indicate a use-after-free of EPC pages. Rather than add the page back to the pool of available EPC pages, the kernel intentionally leaks the page to avoid additional errors in the future. However, KVM does not track how guest pages are used, which means that SGX virtualization use of EREMOVE might fail. Specifically, it is legitimate that EREMOVE returns SGX_CHILD_PRESENT for EPC assigned to KVM guest, because KVM/kernel doesn't track SECS pages. To allow SGX/KVM to introduce a more permissive EREMOVE helper and to let the SGX virtualization code use the allocator directly, break out the EREMOVE call from the SGX page allocator. Rename the original sgx_free_epc_page() to sgx_encl_free_epc_page(), indicating that it is used to free an EPC page assigned to a host enclave. Replace sgx_free_epc_page() with sgx_encl_free_epc_page() in all call sites so there's no functional change. At the same time, improve the error message when EREMOVE fails, and add documentation to explain to the user what that failure means and to suggest to the user what to do when this bug happens in the case it happens. [ bp: Massage commit message, fix typos and sanitize text, simplify. ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Link: https://lkml.kernel.org/r/20210325093057.122834-1-kai.huang@intel.com
2021-03-25 09:30:57 +00:00
sgx_encl_free_epc_page(entry->epc_page);
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
encl->secs_child_cnt--;
entry->epc_page = NULL;
}
kfree(entry);
}
xa_destroy(&encl->page_array);
if (!encl->secs_child_cnt && encl->secs.epc_page) {
x86/sgx: Wipe out EREMOVE from sgx_free_epc_page() EREMOVE takes a page and removes any association between that page and an enclave. It must be run on a page before it can be added into another enclave. Currently, EREMOVE is run as part of pages being freed into the SGX page allocator. It is not expected to fail, as it would indicate a use-after-free of EPC pages. Rather than add the page back to the pool of available EPC pages, the kernel intentionally leaks the page to avoid additional errors in the future. However, KVM does not track how guest pages are used, which means that SGX virtualization use of EREMOVE might fail. Specifically, it is legitimate that EREMOVE returns SGX_CHILD_PRESENT for EPC assigned to KVM guest, because KVM/kernel doesn't track SECS pages. To allow SGX/KVM to introduce a more permissive EREMOVE helper and to let the SGX virtualization code use the allocator directly, break out the EREMOVE call from the SGX page allocator. Rename the original sgx_free_epc_page() to sgx_encl_free_epc_page(), indicating that it is used to free an EPC page assigned to a host enclave. Replace sgx_free_epc_page() with sgx_encl_free_epc_page() in all call sites so there's no functional change. At the same time, improve the error message when EREMOVE fails, and add documentation to explain to the user what that failure means and to suggest to the user what to do when this bug happens in the case it happens. [ bp: Massage commit message, fix typos and sanitize text, simplify. ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Link: https://lkml.kernel.org/r/20210325093057.122834-1-kai.huang@intel.com
2021-03-25 09:30:57 +00:00
sgx_encl_free_epc_page(encl->secs.epc_page);
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
encl->secs.epc_page = NULL;
}
while (!list_empty(&encl->va_pages)) {
va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
list);
list_del(&va_page->list);
x86/sgx: Wipe out EREMOVE from sgx_free_epc_page() EREMOVE takes a page and removes any association between that page and an enclave. It must be run on a page before it can be added into another enclave. Currently, EREMOVE is run as part of pages being freed into the SGX page allocator. It is not expected to fail, as it would indicate a use-after-free of EPC pages. Rather than add the page back to the pool of available EPC pages, the kernel intentionally leaks the page to avoid additional errors in the future. However, KVM does not track how guest pages are used, which means that SGX virtualization use of EREMOVE might fail. Specifically, it is legitimate that EREMOVE returns SGX_CHILD_PRESENT for EPC assigned to KVM guest, because KVM/kernel doesn't track SECS pages. To allow SGX/KVM to introduce a more permissive EREMOVE helper and to let the SGX virtualization code use the allocator directly, break out the EREMOVE call from the SGX page allocator. Rename the original sgx_free_epc_page() to sgx_encl_free_epc_page(), indicating that it is used to free an EPC page assigned to a host enclave. Replace sgx_free_epc_page() with sgx_encl_free_epc_page() in all call sites so there's no functional change. At the same time, improve the error message when EREMOVE fails, and add documentation to explain to the user what that failure means and to suggest to the user what to do when this bug happens in the case it happens. [ bp: Massage commit message, fix typos and sanitize text, simplify. ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Link: https://lkml.kernel.org/r/20210325093057.122834-1-kai.huang@intel.com
2021-03-25 09:30:57 +00:00
sgx_encl_free_epc_page(va_page->epc_page);
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
kfree(va_page);
}
if (encl->backing)
fput(encl->backing);
cleanup_srcu_struct(&encl->srcu);
WARN_ON_ONCE(!list_empty(&encl->mm_list));
/* Detect EPC page leak's. */
WARN_ON_ONCE(encl->secs_child_cnt);
WARN_ON_ONCE(encl->secs.epc_page);
kfree(encl);
}
/*
* 'mm' is exiting and no longer needs mmu notifications.
*/
static void sgx_mmu_notifier_release(struct mmu_notifier *mn,
struct mm_struct *mm)
{
struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
struct sgx_encl_mm *tmp = NULL;
/*
* The enclave itself can remove encl_mm. Note, objects can't be moved
* off an RCU protected list, but deletion is ok.
*/
spin_lock(&encl_mm->encl->mm_lock);
list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
if (tmp == encl_mm) {
list_del_rcu(&encl_mm->list);
break;
}
}
spin_unlock(&encl_mm->encl->mm_lock);
if (tmp == encl_mm) {
synchronize_srcu(&encl_mm->encl->srcu);
mmu_notifier_put(mn);
}
}
static void sgx_mmu_notifier_free(struct mmu_notifier *mn)
{
struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
x86/sgx: Maintain encl->refcount for each encl->mm_list entry This has been shown in tests: [ +0.000008] WARNING: CPU: 3 PID: 7620 at kernel/rcu/srcutree.c:374 cleanup_srcu_struct+0xed/0x100 This is essentially a use-after free, although SRCU notices it as an SRCU cleanup in an invalid context. == Background == SGX has a data structure (struct sgx_encl_mm) which keeps per-mm SGX metadata. This is separate from struct sgx_encl because, in theory, an enclave can be mapped from more than one mm. sgx_encl_mm includes a pointer back to the sgx_encl. This means that sgx_encl must have a longer lifetime than all of the sgx_encl_mm's that point to it. That's usually the case: sgx_encl_mm is freed only after the mmu_notifier is unregistered in sgx_release(). However, there's a race. If the process is exiting, sgx_mmu_notifier_release() can be called in parallel with sgx_release() instead of being called *by* it. The mmu_notifier path keeps encl_mm alive past when sgx_encl can be freed. This inverts the lifetime rules and means that sgx_mmu_notifier_release() can access a freed sgx_encl. == Fix == Increase encl->refcount when encl_mm->encl is established. Release this reference when encl_mm is freed. This ensures that encl outlives encl_mm. [ bp: Massage commit message. ] Fixes: 1728ab54b4be ("x86/sgx: Add a page reclaimer") Reported-by: Haitao Huang <haitao.huang@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20210207221401.29933-1-jarkko@kernel.org
2021-02-07 22:14:01 +00:00
/* 'encl_mm' is going away, put encl_mm->encl reference: */
kref_put(&encl_mm->encl->refcount, sgx_encl_release);
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
kfree(encl_mm);
}
static const struct mmu_notifier_ops sgx_mmu_notifier_ops = {
.release = sgx_mmu_notifier_release,
.free_notifier = sgx_mmu_notifier_free,
};
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl,
struct mm_struct *mm)
{
struct sgx_encl_mm *encl_mm = NULL;
struct sgx_encl_mm *tmp;
int idx;
idx = srcu_read_lock(&encl->srcu);
list_for_each_entry_rcu(tmp, &encl->mm_list, list) {
if (tmp->mm == mm) {
encl_mm = tmp;
break;
}
}
srcu_read_unlock(&encl->srcu, idx);
return encl_mm;
}
int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm)
{
struct sgx_encl_mm *encl_mm;
int ret;
/*
* Even though a single enclave may be mapped into an mm more than once,
* each 'mm' only appears once on encl->mm_list. This is guaranteed by
* holding the mm's mmap lock for write before an mm can be added or
* remove to an encl->mm_list.
*/
mmap_assert_write_locked(mm);
/*
* It's possible that an entry already exists in the mm_list, because it
* is removed only on VFS release or process exit.
*/
if (sgx_encl_find_mm(encl, mm))
return 0;
encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL);
if (!encl_mm)
return -ENOMEM;
x86/sgx: Maintain encl->refcount for each encl->mm_list entry This has been shown in tests: [ +0.000008] WARNING: CPU: 3 PID: 7620 at kernel/rcu/srcutree.c:374 cleanup_srcu_struct+0xed/0x100 This is essentially a use-after free, although SRCU notices it as an SRCU cleanup in an invalid context. == Background == SGX has a data structure (struct sgx_encl_mm) which keeps per-mm SGX metadata. This is separate from struct sgx_encl because, in theory, an enclave can be mapped from more than one mm. sgx_encl_mm includes a pointer back to the sgx_encl. This means that sgx_encl must have a longer lifetime than all of the sgx_encl_mm's that point to it. That's usually the case: sgx_encl_mm is freed only after the mmu_notifier is unregistered in sgx_release(). However, there's a race. If the process is exiting, sgx_mmu_notifier_release() can be called in parallel with sgx_release() instead of being called *by* it. The mmu_notifier path keeps encl_mm alive past when sgx_encl can be freed. This inverts the lifetime rules and means that sgx_mmu_notifier_release() can access a freed sgx_encl. == Fix == Increase encl->refcount when encl_mm->encl is established. Release this reference when encl_mm is freed. This ensures that encl outlives encl_mm. [ bp: Massage commit message. ] Fixes: 1728ab54b4be ("x86/sgx: Add a page reclaimer") Reported-by: Haitao Huang <haitao.huang@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20210207221401.29933-1-jarkko@kernel.org
2021-02-07 22:14:01 +00:00
/* Grab a refcount for the encl_mm->encl reference: */
kref_get(&encl->refcount);
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
encl_mm->encl = encl;
encl_mm->mm = mm;
encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops;
ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm);
if (ret) {
kfree(encl_mm);
return ret;
}
spin_lock(&encl->mm_lock);
list_add_rcu(&encl_mm->list, &encl->mm_list);
/* Pairs with smp_rmb() in sgx_reclaimer_block(). */
smp_wmb();
encl->mm_list_version++;
spin_unlock(&encl->mm_lock);
return 0;
}
static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl,
pgoff_t index)
{
struct inode *inode = encl->backing->f_path.dentry->d_inode;
struct address_space *mapping = inode->i_mapping;
gfp_t gfpmask = mapping_gfp_mask(mapping);
return shmem_read_mapping_page_gfp(mapping, index, gfpmask);
}
/**
* sgx_encl_get_backing() - Pin the backing storage
* @encl: an enclave pointer
* @page_index: enclave page index
* @backing: data for accessing backing storage for the page
*
* Pin the backing storage pages for storing the encrypted contents and Paging
* Crypto MetaData (PCMD) of an enclave page.
*
* Return:
* 0 on success,
* -errno otherwise.
*/
int sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index,
struct sgx_backing *backing)
{
pgoff_t pcmd_index = PFN_DOWN(encl->size) + 1 + (page_index >> 5);
struct page *contents;
struct page *pcmd;
contents = sgx_encl_get_backing_page(encl, page_index);
if (IS_ERR(contents))
return PTR_ERR(contents);
pcmd = sgx_encl_get_backing_page(encl, pcmd_index);
if (IS_ERR(pcmd)) {
put_page(contents);
return PTR_ERR(pcmd);
}
backing->page_index = page_index;
backing->contents = contents;
backing->pcmd = pcmd;
backing->pcmd_offset =
(page_index & (PAGE_SIZE / sizeof(struct sgx_pcmd) - 1)) *
sizeof(struct sgx_pcmd);
return 0;
}
/**
* sgx_encl_put_backing() - Unpin the backing storage
* @backing: data for accessing backing storage for the page
* @do_write: mark pages dirty
*/
void sgx_encl_put_backing(struct sgx_backing *backing, bool do_write)
{
if (do_write) {
set_page_dirty(backing->pcmd);
set_page_dirty(backing->contents);
}
put_page(backing->pcmd);
put_page(backing->contents);
}
static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr,
void *data)
{
pte_t pte;
int ret;
ret = pte_young(*ptep);
if (ret) {
pte = pte_mkold(*ptep);
set_pte_at((struct mm_struct *)data, addr, ptep, pte);
}
return ret;
}
/**
* sgx_encl_test_and_clear_young() - Test and reset the accessed bit
* @mm: mm_struct that is checked
* @page: enclave page to be tested for recent access
*
* Checks the Access (A) bit from the PTE corresponding to the enclave page and
* clears it.
*
* Return: 1 if the page has been recently accessed and 0 if not.
*/
int sgx_encl_test_and_clear_young(struct mm_struct *mm,
struct sgx_encl_page *page)
{
unsigned long addr = page->desc & PAGE_MASK;
struct sgx_encl *encl = page->encl;
struct vm_area_struct *vma;
int ret;
ret = sgx_encl_find(mm, addr, &vma);
if (ret)
return 0;
if (encl != vma->vm_private_data)
return 0;
ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE,
sgx_encl_test_and_clear_young_cb, vma->vm_mm);
if (ret < 0)
return 0;
return ret;
}
/**
* sgx_alloc_va_page() - Allocate a Version Array (VA) page
*
* Allocate a free EPC page and convert it to a Version Array (VA) page.
*
* Return:
* a VA page,
* -errno otherwise
*/
struct sgx_epc_page *sgx_alloc_va_page(void)
{
struct sgx_epc_page *epc_page;
int ret;
epc_page = sgx_alloc_epc_page(NULL, true);
if (IS_ERR(epc_page))
return ERR_CAST(epc_page);
ret = __epa(sgx_get_epc_virt_addr(epc_page));
if (ret) {
WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret);
x86/sgx: Wipe out EREMOVE from sgx_free_epc_page() EREMOVE takes a page and removes any association between that page and an enclave. It must be run on a page before it can be added into another enclave. Currently, EREMOVE is run as part of pages being freed into the SGX page allocator. It is not expected to fail, as it would indicate a use-after-free of EPC pages. Rather than add the page back to the pool of available EPC pages, the kernel intentionally leaks the page to avoid additional errors in the future. However, KVM does not track how guest pages are used, which means that SGX virtualization use of EREMOVE might fail. Specifically, it is legitimate that EREMOVE returns SGX_CHILD_PRESENT for EPC assigned to KVM guest, because KVM/kernel doesn't track SECS pages. To allow SGX/KVM to introduce a more permissive EREMOVE helper and to let the SGX virtualization code use the allocator directly, break out the EREMOVE call from the SGX page allocator. Rename the original sgx_free_epc_page() to sgx_encl_free_epc_page(), indicating that it is used to free an EPC page assigned to a host enclave. Replace sgx_free_epc_page() with sgx_encl_free_epc_page() in all call sites so there's no functional change. At the same time, improve the error message when EREMOVE fails, and add documentation to explain to the user what that failure means and to suggest to the user what to do when this bug happens in the case it happens. [ bp: Massage commit message, fix typos and sanitize text, simplify. ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Link: https://lkml.kernel.org/r/20210325093057.122834-1-kai.huang@intel.com
2021-03-25 09:30:57 +00:00
sgx_encl_free_epc_page(epc_page);
x86/sgx: Add a page reclaimer Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-12 22:01:32 +00:00
return ERR_PTR(-EFAULT);
}
return epc_page;
}
/**
* sgx_alloc_va_slot - allocate a VA slot
* @va_page: a &struct sgx_va_page instance
*
* Allocates a slot from a &struct sgx_va_page instance.
*
* Return: offset of the slot inside the VA page
*/
unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page)
{
int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
if (slot < SGX_VA_SLOT_COUNT)
set_bit(slot, va_page->slots);
return slot << 3;
}
/**
* sgx_free_va_slot - free a VA slot
* @va_page: a &struct sgx_va_page instance
* @offset: offset of the slot inside the VA page
*
* Frees a slot from a &struct sgx_va_page instance.
*/
void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset)
{
clear_bit(offset >> 3, va_page->slots);
}
/**
* sgx_va_page_full - is the VA page full?
* @va_page: a &struct sgx_va_page instance
*
* Return: true if all slots have been taken
*/
bool sgx_va_page_full(struct sgx_va_page *va_page)
{
int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
return slot == SGX_VA_SLOT_COUNT;
}
x86/sgx: Wipe out EREMOVE from sgx_free_epc_page() EREMOVE takes a page and removes any association between that page and an enclave. It must be run on a page before it can be added into another enclave. Currently, EREMOVE is run as part of pages being freed into the SGX page allocator. It is not expected to fail, as it would indicate a use-after-free of EPC pages. Rather than add the page back to the pool of available EPC pages, the kernel intentionally leaks the page to avoid additional errors in the future. However, KVM does not track how guest pages are used, which means that SGX virtualization use of EREMOVE might fail. Specifically, it is legitimate that EREMOVE returns SGX_CHILD_PRESENT for EPC assigned to KVM guest, because KVM/kernel doesn't track SECS pages. To allow SGX/KVM to introduce a more permissive EREMOVE helper and to let the SGX virtualization code use the allocator directly, break out the EREMOVE call from the SGX page allocator. Rename the original sgx_free_epc_page() to sgx_encl_free_epc_page(), indicating that it is used to free an EPC page assigned to a host enclave. Replace sgx_free_epc_page() with sgx_encl_free_epc_page() in all call sites so there's no functional change. At the same time, improve the error message when EREMOVE fails, and add documentation to explain to the user what that failure means and to suggest to the user what to do when this bug happens in the case it happens. [ bp: Massage commit message, fix typos and sanitize text, simplify. ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Link: https://lkml.kernel.org/r/20210325093057.122834-1-kai.huang@intel.com
2021-03-25 09:30:57 +00:00
/**
* sgx_encl_free_epc_page - free an EPC page assigned to an enclave
* @page: EPC page to be freed
*
* Free an EPC page assigned to an enclave. It does EREMOVE for the page, and
* only upon success, it puts the page back to free page list. Otherwise, it
* gives a WARNING to indicate page is leaked.
*/
void sgx_encl_free_epc_page(struct sgx_epc_page *page)
{
int ret;
WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
ret = __eremove(sgx_get_epc_virt_addr(page));
if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret))
return;
sgx_free_epc_page(page);
}