/*
* Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
*
* Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Interactivity improvements by Mike Galbraith
* (C) 2007 Mike Galbraith <efault@gmx.de>
* Various enhancements by Dmitry Adamushko.
* (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
* Group scheduling enhancements by Srivatsa Vaddagiri
* Copyright IBM Corporation, 2007
* Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
* Scaled math optimizations by Thomas Gleixner
* Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
* Adaptive scheduling granularity, math enhancements by Peter Zijlstra
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
*/
#include <linux/latencytop.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
#include <linux/mempolicy.h>
#include <linux/migrate.h>
#include <linux/task_work.h>
#include <trace/events/sched.h>
#include "sched.h"
* Targeted preemption latency for CPU-bound tasks:
* (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
* NOTE: this latency value is not the same as the concept of
* 'timeslice length' - timeslices in CFS are of variable length
* and have no persistent notion like in traditional, time-slice
* based scheduling concepts.
* (to see the precise effective timeslice length of your workload,
* run vmstat and monitor the context-switches (cs) field)
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
* The initial- and re-scaling of tunables is configurable
* (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
* Options are:
* SCHED_TUNABLESCALING_NONE - unscaled, always *1
* SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
* SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
enum sched_tunable_scaling sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG;
* Minimal preemption granularity for CPU-bound tasks:
* (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
* is kept at sysctl_sched_latency / sysctl_sched_min_granularity
static unsigned int sched_nr_latency = 8;
* After fork, child runs first. If set to 0 (default) then
* parent will (try to) run first.
unsigned int sysctl_sched_child_runs_first __read_mostly;
* SCHED_OTHER wake-up granularity.
* (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
* This option delays the preemption effects of decoupled workloads
* and reduces their over-scheduling. Synchronous workloads will still
* have immediate wakeup/sleep latencies.
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
* The exponential sliding window over which load is averaged for shares
* distribution.
* (default: 10msec)
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
#ifdef CONFIG_CFS_BANDWIDTH
* Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
* each time a cfs_rq requests quota.
* Note: in the case that the slice exceeds the runtime remaining (either due
* to consumption or the quota being specified to be smaller than the slice)
* we will always only issue the remaining available time.
* default: 5 msec, units: microseconds
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif
* Increase the granularity value when there are more CPUs,
* because with more CPUs the 'effective latency' as visible
* to users decreases. But the relationship is not linear,
* so pick a second-best guess by going with the log2 of the
* number of CPUs.
* This idea comes from the SD scheduler of Con Kolivas:
static int get_update_sysctl_factor(void)
{
unsigned int cpus = min_t(int, num_online_cpus(), 8);
unsigned int factor;
switch (sysctl_sched_tunable_scaling) {
case SCHED_TUNABLESCALING_NONE:
factor = 1;
break;
case SCHED_TUNABLESCALING_LINEAR:
factor = cpus;
case SCHED_TUNABLESCALING_LOG:
default:
factor = 1 + ilog2(cpus);
}
return factor;
static void update_sysctl(void)
unsigned int factor = get_update_sysctl_factor();
#define SET_SYSCTL(name) \
(sysctl_##name = (factor) * normalized_sysctl_##name)
SET_SYSCTL(sched_min_granularity);
SET_SYSCTL(sched_latency);
SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
void sched_init_granularity(void)
update_sysctl();
#if BITS_PER_LONG == 32
# define WMULT_CONST (~0UL)
#else
# define WMULT_CONST (1UL << 32)
#define WMULT_SHIFT 32
* Shift right and round:
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
* delta *= weight / lw
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
struct load_weight *lw)
u64 tmp;
* weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
* entities since MIN_SHARES = 2. Treat weight as 1 if less than
* 2^SCHED_LOAD_RESOLUTION.
if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
tmp = (u64)delta_exec * scale_load_down(weight);
else
tmp = (u64)delta_exec;
if (!lw->inv_weight) {
unsigned long w = scale_load_down(lw->weight);
if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
lw->inv_weight = 1;
else if (unlikely(!w))
lw->inv_weight = WMULT_CONST;
lw->inv_weight = WMULT_CONST / w;
* Check whether we'd overflow the 64-bit multiplication:
if (unlikely(tmp > WMULT_CONST))
tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
WMULT_SHIFT/2);
tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
const struct sched_class fair_sched_class;
/**************************************************************
* CFS operations on generic schedulable entities:
#ifdef CONFIG_FAIR_GROUP_SCHED
/* cpu runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
return cfs_rq->rq;
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se) (!se->my_q)
static inline struct task_struct *task_of(struct sched_entity *se)
#ifdef CONFIG_SCHED_DEBUG
WARN_ON_ONCE(!entity_is_task(se));
return container_of(se, struct task_struct, se);
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
for (; se; se = se->parent)
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
return p->se.cfs_rq;
/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
return se->cfs_rq;
/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
return grp->my_q;
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
int force_update);
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
if (!cfs_rq->on_list) {
* Ensure we either appear before our parent (if already
* enqueued) or force our parent to appear after us when it is
* enqueued. The fact that we always enqueue bottom-up
* reduces this to two cases.
if (cfs_rq->tg->parent &&
cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
&rq_of(cfs_rq)->leaf_cfs_rq_list);
} else {
list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
cfs_rq->on_list = 1;
/* We should have no load, but we need to update last_decay. */
update_cfs_rq_blocked_load(cfs_rq, 0);
static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
if (cfs_rq->on_list) {
list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
cfs_rq->on_list = 0;
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
if (se->cfs_rq == pse->cfs_rq)
return 1;
return 0;
static inline struct sched_entity *parent_entity(struct sched_entity *se)
return se->parent;
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
int depth = 0;
for_each_sched_entity(se)
depth++;
return depth;
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
int se_depth, pse_depth;
* preemption test can be made between sibling entities who are in the
* same cfs_rq i.e who have a common parent. Walk up the hierarchy of
* both tasks until we find their ancestors who are siblings of common
* parent.
/* First walk up until both entities are at same depth */
se_depth = depth_se(*se);
pse_depth = depth_se(*pse);
while (se_depth > pse_depth) {
se_depth--;
*se = parent_entity(*se);
while (pse_depth > se_depth) {
pse_depth--;
*pse = parent_entity(*pse);
while (!is_same_group(*se, *pse)) {
#else /* !CONFIG_FAIR_GROUP_SCHED */
return container_of(cfs_rq, struct rq, cfs);
#define entity_is_task(se) 1
for (; se; se = NULL)
return &task_rq(p)->cfs;
struct task_struct *p = task_of(se);
struct rq *rq = task_rq(p);
return &rq->cfs;
return NULL;
for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
static inline void
#endif /* CONFIG_FAIR_GROUP_SCHED */
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
* Scheduling class tree data structure manipulation methods:
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
s64 delta = (s64)(vruntime - min_vruntime);
if (delta > 0)
min_vruntime = vruntime;
return min_vruntime;
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
if (delta < 0)
static inline int entity_before(struct sched_entity *a,
struct sched_entity *b)
return (s64)(a->vruntime - b->vruntime) < 0;
static void update_min_vruntime(struct cfs_rq *cfs_rq)
u64 vruntime = cfs_rq->min_vruntime;
if (cfs_rq->curr)
vruntime = cfs_rq->curr->vruntime;
if (cfs_rq->rb_leftmost) {
struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
struct sched_entity,
run_node);
if (!cfs_rq->curr)
vruntime = se->vruntime;
vruntime = min_vruntime(vruntime, se->vruntime);
cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
#ifndef CONFIG_64BIT
smp_wmb();
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
* Enqueue an entity into the rb-tree:
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
struct rb_node *parent = NULL;
struct sched_entity *entry;
int leftmost = 1;
* Find the right place in the rbtree:
while (*link) {
parent = *link;
entry = rb_entry(parent, struct sched_entity, run_node);
* We dont care about collisions. Nodes with
* the same key stay together.
if (entity_before(se, entry)) {
link = &parent->rb_left;
link = &parent->rb_right;
leftmost = 0;
* Maintain a cache of leftmost tree entries (it is frequently
* used):
if (leftmost)
cfs_rq->rb_leftmost = &se->run_node;
rb_link_node(&se->run_node, parent, link);
rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
if (cfs_rq->rb_leftmost == &se->run_node) {
struct rb_node *next_node;
next_node = rb_next(&se->run_node);
cfs_rq->rb_leftmost = next_node;
rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
struct rb_node *left = cfs_rq->rb_leftmost;
if (!left)
return rb_entry(left, struct sched_entity, run_node);
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
struct rb_node *next = rb_next(&se->run_node);
if (!next)
return rb_entry(next, struct sched_entity, run_node);
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
if (!last)
return rb_entry(last, struct sched_entity, run_node);
* Scheduling class statistics methods:
int sched_proc_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
int factor = get_update_sysctl_factor();
if (ret || !write)
return ret;
sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
sysctl_sched_min_granularity);
#define WRT_SYSCTL(name) \
(normalized_sysctl_##name = sysctl_##name / (factor))
WRT_SYSCTL(sched_min_granularity);
WRT_SYSCTL(sched_latency);
WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL
* delta /= w
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
if (unlikely(se->load.weight != NICE_0_LOAD))
delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
return delta;
* The idea is to set a period in which each task runs once.
* When there are too many tasks (sched_nr_latency) we have to stretch
* this period because otherwise the slices get too small.
* p = (nr <= nl) ? l : l*nr/nl
static u64 __sched_period(unsigned long nr_running)
u64 period = sysctl_sched_latency;
unsigned long nr_latency = sched_nr_latency;
if (unlikely(nr_running > nr_latency)) {
period = sysctl_sched_min_granularity;
period *= nr_running;
return period;
* We calculate the wall-time slice from the period by taking a part
* proportional to the weight.
* s = p*P[w/rw]
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
for_each_sched_entity(se) {
struct load_weight *load;
struct load_weight lw;
cfs_rq = cfs_rq_of(se);
load = &cfs_rq->load;
if (unlikely(!se->on_rq)) {
lw = cfs_rq->load;
update_load_add(&lw, se->load.weight);
load = &lw;
slice = calc_delta_mine(slice, se->load.weight, load);
return slice;
* We calculate the vruntime slice of a to be inserted task
* vs = s/w
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
return calc_delta_fair(sched_slice(cfs_rq, se), se);
* Update the current task's runtime statistics. Skip current tasks that
* are not in our scheduling class.
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
unsigned long delta_exec)
unsigned long delta_exec_weighted;
schedstat_set(curr->statistics.exec_max,
max((u64)delta_exec, curr->statistics.exec_max));
curr->sum_exec_runtime += delta_exec;
schedstat_add(cfs_rq, exec_clock, delta_exec);
delta_exec_weighted = calc_delta_fair(delta_exec, curr);
curr->vruntime += delta_exec_weighted;
update_min_vruntime(cfs_rq);
static void update_curr(struct cfs_rq *cfs_rq)
struct sched_entity *curr = cfs_rq->curr;
u64 now = rq_of(cfs_rq)->clock_task;
unsigned long delta_exec;
if (unlikely(!curr))
return;
* Get the amount of time the current task was running
* since the last time we changed load (this cannot
* overflow on 32 bits):
delta_exec = (unsigned long)(now - curr->exec_start);
if (!delta_exec)
__update_curr(cfs_rq, curr, delta_exec);
curr->exec_start = now;
if (entity_is_task(curr)) {
struct task_struct *curtask = task_of(curr);
trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
cpuacct_charge(curtask, delta_exec);
account_group_exec_runtime(curtask, delta_exec);
account_cfs_rq_runtime(cfs_rq, delta_exec);
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
* Task is being enqueued - update stats:
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
* Are we enqueueing a waiting task? (for current tasks
* a dequeue/enqueue event is a NOP)
if (se != cfs_rq->curr)
update_stats_wait_start(cfs_rq, se);
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
rq_of(cfs_rq)->clock - se->statistics.wait_start));
schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
rq_of(cfs_rq)->clock - se->statistics.wait_start);
#ifdef CONFIG_SCHEDSTATS
if (entity_is_task(se)) {
trace_sched_stat_wait(task_of(se),
schedstat_set(se->statistics.wait_start, 0);
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
* Mark the end of the wait period if dequeueing a
* waiting task:
update_stats_wait_end(cfs_rq, se);
* We are picking a new current task - update its stats:
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
* We are starting a new run period:
se->exec_start = rq_of(cfs_rq)->clock_task;
/**************************************************
* Scheduling class queueing methods:
#ifdef CONFIG_NUMA_BALANCING
* numa task sample period in ms
unsigned int sysctl_numa_balancing_scan_period_min = 100;
unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;
static void task_numa_placement(struct task_struct *p)
int seq;
if (!p->mm) /* for example, ksmd faulting in a user's mm */
seq = ACCESS_ONCE(p->mm->numa_scan_seq);
if (p->numa_scan_seq == seq)
p->numa_scan_seq = seq;
/* FIXME: Scheduling placement policy hints go here */
* Got a PROT_NONE fault for a page on @node.
void task_numa_fault(int node, int pages, bool migrated)
struct task_struct *p = current;
if (!sched_feat_numa(NUMA))
/* FIXME: Allocate task-specific structure for placement policy here */
* If pages are properly placed (did not migrate) then scan slower.
* This is reset periodically in case of phase changes
if (!migrated)
p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
p->numa_scan_period + jiffies_to_msecs(10));
task_numa_placement(p);
static void reset_ptenuma_scan(struct task_struct *p)
ACCESS_ONCE(p->mm->numa_scan_seq)++;
p->mm->numa_scan_offset = 0;
* The expensive part of numa migration is done from task_work context.
* Triggered from task_tick_numa().
void task_numa_work(struct callback_head *work)
unsigned long migrate, next_scan, now = jiffies;
struct mm_struct *mm = p->mm;
struct vm_area_struct *vma;
unsigned long start, end;
long pages;
WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
work->next = work; /* protect against double add */
* Who cares about NUMA placement when they're dying.
* NOTE: make sure not to dereference p->mm before this check,
* exit_task_work() happens _after_ exit_mm() so we could be called
* without p->mm even though we still had it when we enqueued this
* work.
if (p->flags & PF_EXITING)
* We do not care about task placement until a task runs on a node
* other than the first one used by the address space. This is
* largely because migrations are driven by what CPU the task
* is running on. If it's never scheduled on another node, it'll
* not migrate so why bother trapping the fault.
if (mm->first_nid == NUMA_PTE_SCAN_INIT)
mm->first_nid = numa_node_id();
if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
/* Are we running on a new node yet? */
if (numa_node_id() == mm->first_nid &&
!sched_feat_numa(NUMA_FORCE))
mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
* Reset the scan period if enough time has gone by. Objective is that
* scanning will be reduced if pages are properly placed. As tasks
* can enter different phases this needs to be re-examined. Lacking
* proper tracking of reference behaviour, this blunt hammer is used.
migrate = mm->numa_next_reset;
if (time_after(now, migrate)) {
p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
xchg(&mm->numa_next_reset, next_scan);
* Enforce maximal scan/migration frequency..
migrate = mm->numa_next_scan;
if (time_before(now, migrate))
if (p->numa_scan_period == 0)
next_scan = now + msecs_to_jiffies(p->numa_scan_period);
if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
* Do not set pte_numa if the current running node is rate-limited.
* This loses statistics on the fault but if we are unwilling to
* migrate to this node, it is less likely we can do useful work
if (migrate_ratelimited(numa_node_id()))
start = mm->numa_scan_offset;
pages = sysctl_numa_balancing_scan_size;
pages <<= 20 - PAGE_SHIFT; /* MB in pages */
if (!pages)
down_read(&mm->mmap_sem);
vma = find_vma(mm, start);
if (!vma) {
reset_ptenuma_scan(p);
start = 0;
vma = mm->mmap;
for (; vma; vma = vma->vm_next) {
if (!vma_migratable(vma))
continue;
/* Skip small VMAs. They are not likely to be of relevance */
if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
do {
start = max(start, vma->vm_start);
end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
end = min(end, vma->vm_end);
pages -= change_prot_numa(vma, start, end);
start = end;
if (pages <= 0)
goto out;
} while (end != vma->vm_end);
out:
* It is possible to reach the end of the VMA list but the last few VMAs are
* not guaranteed to the vma_migratable. If they are not, we would find the
* !migratable VMA on the next scan but not reset the scanner to the start
* so check it now.
if (vma)
mm->numa_scan_offset = start;
up_read(&mm->mmap_sem);
* Drive the periodic memory faults..
void task_tick_numa(struct rq *rq, struct task_struct *curr)
struct callback_head *work = &curr->numa_work;
u64 period, now;
* We don't care about NUMA placement if we don't have memory.
if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
* Using runtime rather than walltime has the dual advantage that
* we (mostly) drive the selection from busy threads and that the
* task needs to have done some actual work before we bother with
* NUMA placement.
now = curr->se.sum_exec_runtime;
period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
if (now - curr->node_stamp > period) {
if (!curr->node_stamp)
curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
curr->node_stamp = now;
if (!time_before(jiffies, curr->mm->numa_next_scan)) {
init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
task_work_add(curr, work, true);
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
#endif /* CONFIG_NUMA_BALANCING */
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
update_load_add(&cfs_rq->load, se->load.weight);
if (!parent_entity(se))
update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
#ifdef CONFIG_SMP
if (entity_is_task(se))
list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
cfs_rq->nr_running++;
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
update_load_sub(&cfs_rq->load, se->load.weight);
update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
list_del_init(&se->group_node);
cfs_rq->nr_running--;
# ifdef CONFIG_SMP
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
long tg_weight;
* Use this CPU's actual weight instead of the last load_contribution
* to gain a more accurate current total weight. See
* update_cfs_rq_load_contribution().
tg_weight = atomic64_read(&tg->load_avg);
tg_weight -= cfs_rq->tg_load_contrib;
tg_weight += cfs_rq->load.weight;
return tg_weight;
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
long tg_weight, load, shares;
tg_weight = calc_tg_weight(tg, cfs_rq);
load = cfs_rq->load.weight;
shares = (tg->shares * load);
if (tg_weight)
shares /= tg_weight;
if (shares < MIN_SHARES)
shares = MIN_SHARES;
if (shares > tg->shares)
shares = tg->shares;
return shares;
# else /* CONFIG_SMP */
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
return tg->shares;
# endif /* CONFIG_SMP */
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
unsigned long weight)
if (se->on_rq) {
/* commit outstanding execution time */
if (cfs_rq->curr == se)
update_curr(cfs_rq);
account_entity_dequeue(cfs_rq, se);
update_load_set(&se->load, weight);
if (se->on_rq)
account_entity_enqueue(cfs_rq, se);
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
static void update_cfs_shares(struct cfs_rq *cfs_rq)
struct task_group *tg;
struct sched_entity *se;
long shares;
tg = cfs_rq->tg;
se = tg->se[cpu_of(rq_of(cfs_rq))];
if (!se || throttled_hierarchy(cfs_rq))
#ifndef CONFIG_SMP
if (likely(se->load.weight == tg->shares))
shares = calc_cfs_shares(cfs_rq, tg);
reweight_entity(cfs_rq_of(se), se, shares);
#else /* CONFIG_FAIR_GROUP_SCHED */
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
* We choose a half-life close to 1 scheduling period.
* Note: The tables below are dependent on this value.
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
0x85aac367, 0x82cd8698,
};
* Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
* over-estimates when re-combining.
static const u32 runnable_avg_yN_sum[] = {
0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
* Approximate:
* val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
static __always_inline u64 decay_load(u64 val, u64 n)
unsigned int local_n;
if (!n)
return val;
else if (unlikely(n > LOAD_AVG_PERIOD * 63))
/* after bounds checking we can collapse to 32-bit */
local_n = n;
* As y^PERIOD = 1/2, we can combine
* y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
* With a look-up table which covers k^n (n<PERIOD)
* To achieve constant time decay_load.
if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
val >>= local_n / LOAD_AVG_PERIOD;
local_n %= LOAD_AVG_PERIOD;
val *= runnable_avg_yN_inv[local_n];
/* We don't use SRR here since we always want to round down. */
return val >> 32;
* For updates fully spanning n periods, the contribution to runnable
* average will be: \Sum 1024*y^n
* We can compute this reasonably efficiently by combining:
* y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
static u32 __compute_runnable_contrib(u64 n)
u32 contrib = 0;
if (likely(n <= LOAD_AVG_PERIOD))
return runnable_avg_yN_sum[n];
else if (unlikely(n >= LOAD_AVG_MAX_N))
return LOAD_AVG_MAX;
/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
n -= LOAD_AVG_PERIOD;
} while (n > LOAD_AVG_PERIOD);
contrib = decay_load(contrib, n);
return contrib + runnable_avg_yN_sum[n];
* We can represent the historical contribution to runnable average as the
* coefficients of a geometric series. To do this we sub-divide our runnable
* history into segments of approximately 1ms (1024us); label the segment that
* occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
* [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
* p0 p1 p2
* (now) (~1ms ago) (~2ms ago)
* Let u_i denote the fraction of p_i that the entity was runnable.
* We then designate the fractions u_i as our co-efficients, yielding the
* following representation of historical load:
* u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
* We choose y based on the with of a reasonably scheduling period, fixing:
* y^32 = 0.5
* This means that the contribution to load ~32ms ago (u_32) will be weighted
* approximately half as much as the contribution to load within the last ms
* (u_0).
* When a period "rolls over" and we have new u_0`, multiplying the previous
* sum again by y is sufficient to update:
* load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
* = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
static __always_inline int __update_entity_runnable_avg(u64 now,
struct sched_avg *sa,
int runnable)
u64 delta, periods;
u32 runnable_contrib;
int delta_w, decayed = 0;
delta = now - sa->last_runnable_update;
* This should only happen when time goes backwards, which it
* unfortunately does during sched clock init when we swap over to TSC.
if ((s64)delta < 0) {
sa->last_runnable_update = now;
* Use 1024ns as the unit of measurement since it's a reasonable
* approximation of 1us and fast to compute.
delta >>= 10;
if (!delta)
/* delta_w is the amount already accumulated against our next period */
delta_w = sa->runnable_avg_period % 1024;
if (delta + delta_w >= 1024) {
/* period roll-over */
decayed = 1;
* Now that we know we're crossing a period boundary, figure
* out how much from delta we need to complete the current
* period and accrue it.
delta_w = 1024 - delta_w;
if (runnable)
sa->runnable_avg_sum += delta_w;
sa->runnable_avg_period += delta_w;
delta -= delta_w;
/* Figure out how many additional periods this update spans */
periods = delta / 1024;
delta %= 1024;
sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
periods + 1);
sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
/* Efficiently calculate \sum (1..n_period) 1024*y^i */
runnable_contrib = __compute_runnable_contrib(periods);
sa->runnable_avg_sum += runnable_contrib;
sa->runnable_avg_period += runnable_contrib;
/* Remainder of delta accrued against u_0` */
sa->runnable_avg_sum += delta;
sa->runnable_avg_period += delta;
return decayed;
/* Synchronize an entity's decay with its parenting cfs_rq.*/
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 decays = atomic64_read(&cfs_rq->decay_counter);
decays -= se->avg.decay_count;
if (!decays)
se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
se->avg.decay_count = 0;
return decays;
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
int force_update)
struct task_group *tg = cfs_rq->tg;
s64 tg_contrib;
tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
tg_contrib -= cfs_rq->tg_load_contrib;
if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
atomic64_add(tg_contrib, &tg->load_avg);
cfs_rq->tg_load_contrib += tg_contrib;
* Aggregate cfs_rq runnable averages into an equivalent task_group
* representation for computing load contributions.
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
struct cfs_rq *cfs_rq)
long contrib;
/* The fraction of a cpu used by this cfs_rq */
contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
sa->runnable_avg_period + 1);
contrib -= cfs_rq->tg_runnable_contrib;
if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
atomic_add(contrib, &tg->runnable_avg);
cfs_rq->tg_runnable_contrib += contrib;
static inline void __update_group_entity_contrib(struct sched_entity *se)
struct cfs_rq *cfs_rq = group_cfs_rq(se);
int runnable_avg;
u64 contrib;
contrib = cfs_rq->tg_load_contrib * tg->shares;
se->avg.load_avg_contrib = div64_u64(contrib,
atomic64_read(&tg->load_avg) + 1);
* For group entities we need to compute a correction term in the case
* that they are consuming <1 cpu so that we would contribute the same
* load as a task of equal weight.
* Explicitly co-ordinating this measurement would be expensive, but
* fortunately the sum of each cpus contribution forms a usable
* lower-bound on the true value.
* Consider the aggregate of 2 contributions. Either they are disjoint
* (and the sum represents true value) or they are disjoint and we are
* understating by the aggregate of their overlap.
* Extending this to N cpus, for a given overlap, the maximum amount we
* understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
* cpus that overlap for this interval and w_i is the interval width.
* On a small machine; the first term is well-bounded which bounds the
* total error since w_i is a subset of the period. Whereas on a
* larger machine, while this first term can be larger, if w_i is the
* of consequential size guaranteed to see n_i*w_i quickly converge to
* our upper bound of 1-cpu.
runnable_avg = atomic_read(&tg->runnable_avg);
if (runnable_avg < NICE_0_LOAD) {
se->avg.load_avg_contrib *= runnable_avg;
se->avg.load_avg_contrib >>= NICE_0_SHIFT;
int force_update) {}
struct cfs_rq *cfs_rq) {}
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
static inline void __update_task_entity_contrib(struct sched_entity *se)
u32 contrib;
/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
contrib /= (se->avg.runnable_avg_period + 1);
se->avg.load_avg_contrib = scale_load(contrib);
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
long old_contrib = se->avg.load_avg_contrib;
__update_task_entity_contrib(se);
__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
__update_group_entity_contrib(se);
return se->avg.load_avg_contrib - old_contrib;
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
long load_contrib)
if (likely(load_contrib < cfs_rq->blocked_load_avg))
cfs_rq->blocked_load_avg -= load_contrib;
cfs_rq->blocked_load_avg = 0;
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
/* Update a sched_entity's runnable average */
static inline void update_entity_load_avg(struct sched_entity *se,
int update_cfs_rq)
long contrib_delta;
u64 now;
* For a group entity we need to use their owned cfs_rq_clock_task() in
* case they are the parent of a throttled hierarchy.
now = cfs_rq_clock_task(cfs_rq);
now = cfs_rq_clock_task(group_cfs_rq(se));
if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
contrib_delta = __update_entity_load_avg_contrib(se);
if (!update_cfs_rq)
cfs_rq->runnable_load_avg += contrib_delta;
subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
* Decay the load contributed by all blocked children and account this so that
* their contribution may appropriately discounted when they wake up.
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
u64 decays;
decays = now - cfs_rq->last_decay;
if (!decays && !force_update)
if (atomic64_read(&cfs_rq->removed_load)) {
u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
subtract_blocked_load_contrib(cfs_rq, removed_load);
if (decays) {
cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
decays);
atomic64_add(decays, &cfs_rq->decay_counter);
cfs_rq->last_decay = now;
__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
__update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
__update_tg_runnable_avg(&rq->avg, &rq->cfs);
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
struct sched_entity *se,
int wakeup)
* We track migrations using entity decay_count <= 0, on a wake-up
* migration we use a negative decay count to track the remote decays
* accumulated while sleeping.
if (unlikely(se->avg.decay_count <= 0)) {
se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
if (se->avg.decay_count) {
* In a wake-up migration we have to approximate the
* time sleeping. This is because we can't synchronize
* clock_task between the two cpus, and it is not
* guaranteed to be read-safe. Instead, we can
* approximate this using our carried decays, which are
* explicitly atomically readable.
se->avg.last_runnable_update -= (-se->avg.decay_count)
<< 20;
update_entity_load_avg(se, 0);
/* Indicate that we're now synchronized and on-rq */
wakeup = 0;
__synchronize_entity_decay(se);
/* migrated tasks did not contribute to our blocked load */
if (wakeup) {
subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
/* we force update consideration on load-balancer moves */
update_cfs_rq_blocked_load(cfs_rq, !wakeup);
* Remove se's load from this cfs_rq child load-average, if the entity is
* transitioning to a blocked state we track its projected decay using
* blocked_load_avg.
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
int sleep)
update_entity_load_avg(se, 1);
update_cfs_rq_blocked_load(cfs_rq, !sleep);
cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
if (sleep) {
cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
} /* migrations, e.g. sleep=0 leave decay_count == 0 */
int update_cfs_rq) {}
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
int wakeup) {}
int sleep) {}
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
struct task_struct *tsk = NULL;
tsk = task_of(se);
if (se->statistics.sleep_start) {
u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
if ((s64)delta < 0)
delta = 0;
if (unlikely(delta > se->statistics.sleep_max))
se->statistics.sleep_max = delta;
se->statistics.sleep_start = 0;
se->statistics.sum_sleep_runtime += delta;
if (tsk) {
account_scheduler_latency(tsk, delta >> 10, 1);
trace_sched_stat_sleep(tsk, delta);
if (se->statistics.block_start) {
u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
if (unlikely(delta > se->statistics.block_max))
se->statistics.block_max = delta;
se->statistics.block_start = 0;
if (tsk->in_iowait) {
se->statistics.iowait_sum += delta;
se->statistics.iowait_count++;
trace_sched_stat_iowait(tsk, delta);
trace_sched_stat_blocked(tsk, delta);
* Blocking time is in units of nanosecs, so shift by
* 20 to get a milliseconds-range estimation of the
* amount of time that the task spent sleeping:
if (unlikely(prof_on == SLEEP_PROFILING)) {
profile_hits(SLEEP_PROFILING,
(void *)get_wchan(tsk),
delta >> 20);
account_scheduler_latency(tsk, delta >> 10, 0);
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
s64 d = se->vruntime - cfs_rq->min_vruntime;
if (d < 0)
d = -d;
if (d > 3*sysctl_sched_latency)
schedstat_inc(cfs_rq, nr_spread_over);
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
* The 'current' period is already promised to the current tasks,
* however the extra weight of the new task will slow them down a
* little, place the new task so that it fits in the slot that
* stays open at the end.
if (initial && sched_feat(START_DEBIT))
vruntime += sched_vslice(cfs_rq, se);
/* sleeps up to a single latency don't count. */
if (!initial) {
unsigned long thresh = sysctl_sched_latency;
* Halve their sleep time's effect, to allow
* for a gentler effect of sleepers:
if (sched_feat(GENTLE_FAIR_SLEEPERS))
thresh >>= 1;
vruntime -= thresh;
/* ensure we never gain time by being placed backwards. */
vruntime = max_vruntime(se->vruntime, vruntime);
se->vruntime = vruntime;
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* Update the normalized vruntime before updating min_vruntime
* through callig update_curr().
if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
se->vruntime += cfs_rq->min_vruntime;
* Update run-time statistics of the 'current'.
enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
update_cfs_shares(cfs_rq);
if (flags & ENQUEUE_WAKEUP) {
place_entity(cfs_rq, se, 0);
enqueue_sleeper(cfs_rq, se);
update_stats_enqueue(cfs_rq, se);
check_spread(cfs_rq, se);
__enqueue_entity(cfs_rq, se);
se->on_rq = 1;
if (cfs_rq->nr_running == 1) {
list_add_leaf_cfs_rq(cfs_rq);
check_enqueue_throttle(cfs_rq);
static void __clear_buddies_last(struct sched_entity *se)
if (cfs_rq->last == se)
cfs_rq->last = NULL;
static void __clear_buddies_next(struct sched_entity *se)
if (cfs_rq->next == se)
cfs_rq->next = NULL;
static void __clear_buddies_skip(struct sched_entity *se)
if (cfs_rq->skip == se)
cfs_rq->skip = NULL;
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
__clear_buddies_last(se);
__clear_buddies_next(se);
__clear_buddies_skip(se);
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
update_stats_dequeue(cfs_rq, se);
if (flags & DEQUEUE_SLEEP) {
struct task_struct *tsk = task_of(se);
if (tsk->state & TASK_INTERRUPTIBLE)
se->statistics.sleep_start = rq_of(cfs_rq)->clock;
if (tsk->state & TASK_UNINTERRUPTIBLE)
se->statistics.block_start = rq_of(cfs_rq)->clock;
clear_buddies(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
se->on_rq = 0;
* Normalize the entity after updating the min_vruntime because the
* update can refer to the ->curr item and we need to reflect this
* movement in our normalized position.
if (!(flags & DEQUEUE_SLEEP))
se->vruntime -= cfs_rq->min_vruntime;
/* return excess runtime on last dequeue */
return_cfs_rq_runtime(cfs_rq);
* Preempt the current task with a newly woken task if needed:
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
unsigned long ideal_runtime, delta_exec;
s64 delta;
ideal_runtime = sched_slice(cfs_rq, curr);
delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
if (delta_exec > ideal_runtime) {
resched_task(rq_of(cfs_rq)->curr);
* The current task ran long enough, ensure it doesn't get
* re-elected due to buddy favours.
clear_buddies(cfs_rq, curr);
* Ensure that a task that missed wakeup preemption by a
* narrow margin doesn't have to wait for a full slice.
* This also mitigates buddy induced latencies under load.
if (delta_exec < sysctl_sched_min_granularity)
se = __pick_first_entity(cfs_rq);
delta = curr->vruntime - se->vruntime;
if (delta > ideal_runtime)
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
/* 'current' is not kept within the tree. */
* Any task has to be enqueued before it get to execute on
* a CPU. So account for the time it spent waiting on the
* runqueue.
update_stats_curr_start(cfs_rq, se);
cfs_rq->curr = se;
* Track our maximum slice length, if the CPU's load is at
* least twice that of our own weight (i.e. dont track it
* when there are only lesser-weight tasks around):
if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
se->statistics.slice_max = max(se->statistics.slice_max,
se->sum_exec_runtime - se->prev_sum_exec_runtime);
se->prev_sum_exec_runtime = se->sum_exec_runtime;
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
* Pick the next process, keeping these things in mind, in this order:
* 1) keep things fair between processes/task groups
* 2) pick the "next" process, since someone really wants that to run
* 3) pick the "last" process, for cache locality
* 4) do not run the "skip" process, if something else is available
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
struct sched_entity *se = __pick_first_entity(cfs_rq);
struct sched_entity *left = se;
* Avoid running the skip buddy, if running something else can
* be done without getting too unfair.
if (cfs_rq->skip == se) {
struct sched_entity *second = __pick_next_entity(se);
if (second && wakeup_preempt_entity(second, left) < 1)
se = second;
* Prefer last buddy, try to return the CPU to a preempted task.
if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
se = cfs_rq->last;
* Someone really wants this to run. If it's not unfair, run it.
if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
se = cfs_rq->next;
return se;
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
* If still on the runqueue then deactivate_task()
* was not called and update_curr() has to be done:
if (prev->on_rq)
/* throttle cfs_rqs exceeding runtime */
check_cfs_rq_runtime(cfs_rq);
check_spread(cfs_rq, prev);
if (prev->on_rq) {
update_stats_wait_start(cfs_rq, prev);
/* Put 'current' back into the tree. */
__enqueue_entity(cfs_rq, prev);
/* in !on_rq case, update occurred at dequeue */
update_entity_load_avg(prev, 1);
cfs_rq->curr = NULL;
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
* Ensure that runnable average is periodically updated.
update_entity_load_avg(curr, 1);
update_cfs_rq_blocked_load(cfs_rq, 1);
#ifdef CONFIG_SCHED_HRTICK
* queued ticks are scheduled to match the slice, so don't bother
* validating it and just reschedule.
if (queued) {
* don't let the period tick interfere with the hrtick preemption
if (!sched_feat(DOUBLE_TICK) &&
hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
if (cfs_rq->nr_running > 1)
check_preempt_tick(cfs_rq, curr);
* CFS bandwidth control machinery
#ifdef HAVE_JUMP_LABEL
static struct static_key __cfs_bandwidth_used;
static inline bool cfs_bandwidth_used(void)
return static_key_false(&__cfs_bandwidth_used);
void account_cfs_bandwidth_used(int enabled, int was_enabled)
/* only need to count groups transitioning between enabled/!enabled */
if (enabled && !was_enabled)
static_key_slow_inc(&__cfs_bandwidth_used);
else if (!enabled && was_enabled)
static_key_slow_dec(&__cfs_bandwidth_used);
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
return true;
void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
#endif /* HAVE_JUMP_LABEL */
* default period for cfs group bandwidth.
* default: 0.1s, units: nanoseconds
static inline u64 default_cfs_period(void)
return 100000000ULL;
static inline u64 sched_cfs_bandwidth_slice(void)
return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
* Replenish runtime according to assigned quota and update expiration time.
* We use sched_clock_cpu directly instead of rq->clock to avoid adding
* additional synchronization around rq->lock.
* requires cfs_b->lock
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
if (cfs_b->quota == RUNTIME_INF)
now = sched_clock_cpu(smp_processor_id());
cfs_b->runtime = cfs_b->quota;
cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
return &tg->cfs_bandwidth;
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
if (unlikely(cfs_rq->throttle_count))
return cfs_rq->throttled_clock_task;
return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
u64 amount = 0, min_amount, expires;
/* note: this is a positive sum as runtime_remaining <= 0 */
min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
raw_spin_lock(&cfs_b->lock);
amount = min_amount;
else {
* If the bandwidth pool has become inactive, then at least one
* period must have elapsed since the last consumption.
* Refresh the global state and ensure bandwidth timer becomes
* active.
if (!cfs_b->timer_active) {
__refill_cfs_bandwidth_runtime(cfs_b);
__start_cfs_bandwidth(cfs_b);
if (cfs_b->runtime > 0) {
amount = min(cfs_b->runtime, min_amount);
cfs_b->runtime -= amount;
cfs_b->idle = 0;
expires = cfs_b->runtime_expires;
raw_spin_unlock(&cfs_b->lock);
cfs_rq->runtime_remaining += amount;
* we may have advanced our local expiration to account for allowed
* spread between our sched_clock and the one on which runtime was
* issued.
if ((s64)(expires - cfs_rq->runtime_expires) > 0)
cfs_rq->runtime_expires = expires;
return cfs_rq->runtime_remaining > 0;
* Note: This depends on the synchronization provided by sched_clock and the
* fact that rq->clock snapshots this value.
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
struct rq *rq = rq_of(cfs_rq);
/* if the deadline is ahead of our clock, nothing to do */
if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
if (cfs_rq->runtime_remaining < 0)
* If the local deadline has passed we have to consider the
* possibility that our sched_clock is 'fast' and the global deadline
* has not truly expired.
* Fortunately we can check determine whether this the case by checking
* whether the global deadline has advanced.
if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
/* extend local deadline, drift is bounded above by 2 ticks */
cfs_rq->runtime_expires += TICK_NSEC;
/* global deadline is ahead, expiration has passed */
cfs_rq->runtime_remaining = 0;
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
/* dock delta_exec before expiring quota (as it could span periods) */
cfs_rq->runtime_remaining -= delta_exec;
expire_cfs_rq_runtime(cfs_rq);
if (likely(cfs_rq->runtime_remaining > 0))
* if we're unable to extend our runtime we resched so that the active
* hierarchy can be throttled
if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
__account_cfs_rq_runtime(cfs_rq, delta_exec);
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
return cfs_bandwidth_used() && cfs_rq->throttled;
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
return cfs_bandwidth_used() && cfs_rq->throttle_count;
* Ensure that neither of the group entities corresponding to src_cpu or
* dest_cpu are members of a throttled hierarchy when performing group
* load-balance operations.
static inline int throttled_lb_pair(struct task_group *tg,
int src_cpu, int dest_cpu)
struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
src_cfs_rq = tg->cfs_rq[src_cpu];
dest_cfs_rq = tg->cfs_rq[dest_cpu];
return throttled_hierarchy(src_cfs_rq) ||
throttled_hierarchy(dest_cfs_rq);
/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
cfs_rq->throttle_count--;
if (!cfs_rq->throttle_count) {
/* adjust cfs_rq_clock_task() */
cfs_rq->throttled_clock_task_time += rq->clock_task -
cfs_rq->throttled_clock_task;
static int tg_throttle_down(struct task_group *tg, void *data)
/* group is entering throttled state, stop time */
if (!cfs_rq->throttle_count)
cfs_rq->throttled_clock_task = rq->clock_task;
cfs_rq->throttle_count++;
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
long task_delta, dequeue = 1;
se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
/* freeze hierarchy runnable averages while throttled */
rcu_read_lock();
walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
rcu_read_unlock();
task_delta = cfs_rq->h_nr_running;
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
/* throttled entity or throttle-on-deactivate */
if (!se->on_rq)
if (dequeue)
dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
qcfs_rq->h_nr_running -= task_delta;
if (qcfs_rq->load.weight)
dequeue = 0;
if (!se)
rq->nr_running -= task_delta;
cfs_rq->throttled = 1;
cfs_rq->throttled_clock = rq->clock;
list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
int enqueue = 1;
long task_delta;
cfs_rq->throttled = 0;
cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
list_del_rcu(&cfs_rq->throttled_list);
update_rq_clock(rq);
/* update hierarchical throttle state */
walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
if (!cfs_rq->load.weight)
enqueue = 0;
if (enqueue)
enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
cfs_rq->h_nr_running += task_delta;
if (cfs_rq_throttled(cfs_rq))
rq->nr_running += task_delta;
/* determine whether we need to wake up potentially idle cpu */
if (rq->curr == rq->idle && rq->cfs.nr_running)
resched_task(rq->curr);
static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
u64 remaining, u64 expires)
struct cfs_rq *cfs_rq;
u64 runtime = remaining;
list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
throttled_list) {
raw_spin_lock(&rq->lock);
if (!cfs_rq_throttled(cfs_rq))
goto next;
runtime = -cfs_rq->runtime_remaining + 1;
if (runtime > remaining)
runtime = remaining;
remaining -= runtime;
cfs_rq->runtime_remaining += runtime;
/* we check whether we're throttled above */
if (cfs_rq->runtime_remaining > 0)
unthrottle_cfs_rq(cfs_rq);
next:
raw_spin_unlock(&rq->lock);
if (!remaining)
return remaining;
* Responsible for refilling a task_group's bandwidth and unthrottling its
* cfs_rqs as appropriate. If there has been no activity within the last
* period the timer is deactivated until scheduling resumes; cfs_b->idle is
* used to track this state.
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
u64 runtime, runtime_expires;
int idle = 1, throttled;
/* no need to continue the timer with no bandwidth constraint */
goto out_unlock;
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
/* idle depends on !throttled (for the case of a large deficit) */
idle = cfs_b->idle && !throttled;
cfs_b->nr_periods += overrun;
/* if we're going inactive then everything else can be deferred */
if (idle)
if (!throttled) {
/* mark as potentially idle for the upcoming period */
cfs_b->idle = 1;
/* account preceding periods in which throttling occurred */
cfs_b->nr_throttled += overrun;
* There are throttled entities so we must first use the new bandwidth
* to unthrottle them before making it generally available. This
* ensures that all existing debts will be paid before a new cfs_rq is
* allowed to run.
runtime = cfs_b->runtime;
runtime_expires = cfs_b->runtime_expires;
cfs_b->runtime = 0;
* This check is repeated as we are holding onto the new bandwidth
* while we unthrottle. This can potentially race with an unthrottled
* group trying to acquire new bandwidth from the global pool.
while (throttled && runtime > 0) {
/* we can't nest cfs_b->lock while distributing bandwidth */
runtime = distribute_cfs_runtime(cfs_b, runtime,
runtime_expires);
/* return (any) remaining runtime */
cfs_b->runtime = runtime;
* While we are ensured activity in the period following an
* unthrottle, this also covers the case in which the new bandwidth is
* insufficient to cover the existing bandwidth deficit. (Forcing the
* timer to remain active while there are any throttled entities.)
out_unlock:
cfs_b->timer_active = 0;
return idle;
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
/* are we near the end of the current quota period? */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
struct hrtimer *refresh_timer = &cfs_b->period_timer;
u64 remaining;
/* if the call-back is running a quota refresh is already occurring */
if (hrtimer_callback_running(refresh_timer))
/* is a quota refresh about to occur? */
remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
if (remaining < min_expire)
static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
/* if there's a quota refresh soon don't bother with slack */
if (runtime_refresh_within(cfs_b, min_left))
start_bandwidth_timer(&cfs_b->slack_timer,
ns_to_ktime(cfs_bandwidth_slack_period));
/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
if (slack_runtime <= 0)
if (cfs_b->quota != RUNTIME_INF &&
cfs_rq->runtime_expires == cfs_b->runtime_expires) {
cfs_b->runtime += slack_runtime;
/* we are under rq->lock, defer unthrottling using a timer */
if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
!list_empty(&cfs_b->throttled_cfs_rq))
start_cfs_slack_bandwidth(cfs_b);
/* even if it's not valid for return we don't want to try again */
cfs_rq->runtime_remaining -= slack_runtime;
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
if (!cfs_bandwidth_used())
if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
__return_cfs_rq_runtime(cfs_rq);
* This is done with a timer (instead of inline with bandwidth return) since
* it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
u64 expires;
/* confirm we're still not at a refresh boundary */
if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
if (!runtime)
runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
if (expires == cfs_b->runtime_expires)
* When a group wakes up we want to make sure that its quota is not already
* expired/exceeded, otherwise it may be allowed to steal additional ticks of
* runtime as update_curr() throttling can not not trigger until it's on-rq.
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
/* an active group must be handled by the update_curr()->put() path */
if (!cfs_rq->runtime_enabled || cfs_rq->curr)
/* ensure the group is not already throttled */
/* update runtime allocation */
account_cfs_rq_runtime(cfs_rq, 0);
if (cfs_rq->runtime_remaining <= 0)
throttle_cfs_rq(cfs_rq);
/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
* it's possible for a throttled entity to be forced into a running
* state (e.g. set_curr_task), in this case we're finished.
static inline u64 default_cfs_period(void);
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
struct cfs_bandwidth *cfs_b =
container_of(timer, struct cfs_bandwidth, slack_timer);
do_sched_cfs_slack_timer(cfs_b);
return HRTIMER_NORESTART;
static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
container_of(timer, struct cfs_bandwidth, period_timer);
ktime_t now;
int overrun;
int idle = 0;
for (;;) {
now = hrtimer_cb_get_time(timer);
overrun = hrtimer_forward(timer, now, cfs_b->period);
if (!overrun)
idle = do_sched_cfs_period_timer(cfs_b, overrun);
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
raw_spin_lock_init(&cfs_b->lock);
cfs_b->quota = RUNTIME_INF;
cfs_b->period = ns_to_ktime(default_cfs_period());
INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cfs_b->period_timer.function = sched_cfs_period_timer;
hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cfs_b->slack_timer.function = sched_cfs_slack_timer;
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
cfs_rq->runtime_enabled = 0;
INIT_LIST_HEAD(&cfs_rq->throttled_list);
/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
* The timer may be active because we're trying to set a new bandwidth
* period or because we're racing with the tear-down path
* (timer_active==0 becomes visible before the hrtimer call-back
* terminates). In either case we ensure that it's re-programmed
while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
/* ensure cfs_b->lock is available while we wait */
hrtimer_cancel(&cfs_b->period_timer);
/* if someone else restarted the timer then we're done */
if (cfs_b->timer_active)
cfs_b->timer_active = 1;
start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
hrtimer_cancel(&cfs_b->slack_timer);
static void unthrottle_offline_cfs_rqs(struct rq *rq)
for_each_leaf_cfs_rq(rq, cfs_rq) {
if (!cfs_rq->runtime_enabled)
* clock_task is not advancing so we just need to make sure
* there's some valid quota amount
cfs_rq->runtime_remaining = cfs_b->quota;
#else /* CONFIG_CFS_BANDWIDTH */
return rq_of(cfs_rq)->clock_task;
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
unsigned long delta_exec) {}
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
#endif /* CONFIG_CFS_BANDWIDTH */
* CFS operations on tasks:
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
struct sched_entity *se = &p->se;
WARN_ON(task_rq(p) != rq);
if (cfs_rq->nr_running > 1) {
u64 slice = sched_slice(cfs_rq, se);
u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
s64 delta = slice - ran;
if (delta < 0) {
if (rq->curr == p)
resched_task(p);
* Don't schedule slices shorter than 10000ns, that just
* doesn't make sense. Rely on vruntime for fairness.
if (rq->curr != p)
delta = max_t(s64, 10000LL, delta);
hrtick_start(rq, delta);
* called from enqueue/dequeue and updates the hrtick when the
* current task is from our class and nr_running is low enough
* to matter.
static void hrtick_update(struct rq *rq)
struct task_struct *curr = rq->curr;
if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
hrtick_start_fair(rq, curr);
#else /* !CONFIG_SCHED_HRTICK */
hrtick_start_fair(struct rq *rq, struct task_struct *p)
static inline void hrtick_update(struct rq *rq)
* The enqueue_task method is called before nr_running is
* increased. Here we update the fair scheduling stats and
* then put the task into the rbtree:
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
enqueue_entity(cfs_rq, se, flags);
* end evaluation on encountering a throttled cfs_rq
* note: in the case of encountering a throttled cfs_rq we will
* post the final h_nr_running increment below.
cfs_rq->h_nr_running++;
flags = ENQUEUE_WAKEUP;
if (!se) {
update_rq_runnable_avg(rq, rq->nr_running);
inc_nr_running(rq);
hrtick_update(rq);
static void set_next_buddy(struct sched_entity *se);
* The dequeue_task method is called before nr_running is
* decreased. We remove the task from the rbtree and
* update the fair scheduling stats:
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
int task_sleep = flags & DEQUEUE_SLEEP;
dequeue_entity(cfs_rq, se, flags);
* post the final h_nr_running decrement below.
cfs_rq->h_nr_running--;
/* Don't dequeue parent if it has other entities besides us */
if (cfs_rq->load.weight) {
* Bias pick_next to pick a task from this cfs_rq, as
* p is sleeping when it is within its sched_slice.
if (task_sleep && parent_entity(se))
set_next_buddy(parent_entity(se));
/* avoid re-evaluating load for this entity */
se = parent_entity(se);
flags |= DEQUEUE_SLEEP;
dec_nr_running(rq);
update_rq_runnable_avg(rq, 1);
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
return cpu_rq(cpu)->load.weight;
* Return a low guess at the load of a migration-source cpu weighted
* according to the scheduling class and "nice" value.
* We want to under-estimate the load of migration sources, to
* balance conservatively.
static unsigned long source_load(int cpu, int type)
struct rq *rq = cpu_rq(cpu);
unsigned long total = weighted_cpuload(cpu);
if (type == 0 || !sched_feat(LB_BIAS))
return total;
return min(rq->cpu_load[type-1], total);
* Return a high guess at the load of a migration-target cpu weighted
static unsigned long target_load(int cpu, int type)
return max(rq->cpu_load[type-1], total);
static unsigned long power_of(int cpu)
return cpu_rq(cpu)->cpu_power;
static unsigned long cpu_avg_load_per_task(int cpu)
unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
if (nr_running)
return rq->load.weight / nr_running;
static void task_waking_fair(struct task_struct *p)
u64 min_vruntime;
u64 min_vruntime_copy;
min_vruntime_copy = cfs_rq->min_vruntime_copy;
smp_rmb();
min_vruntime = cfs_rq->min_vruntime;
} while (min_vruntime != min_vruntime_copy);
se->vruntime -= min_vruntime;
* effective_load() calculates the load change as seen from the root_task_group
* Adding load to a group doesn't make a group heavier, but can cause movement
* of group shares between cpus. Assuming the shares were perfectly aligned one
* can calculate the shift in shares.
* Calculate the effective load difference if @wl is added (subtracted) to @tg
* on this @cpu and results in a total addition (subtraction) of @wg to the
* total group weight.
* Given a runqueue weight distribution (rw_i) we can compute a shares
* distribution (s_i) using:
* s_i = rw_i / \Sum rw_j (1)
* Suppose we have 4 CPUs and our @tg is a direct child of the root group and
* has 7 equal weight tasks, distributed as below (rw_i), with the resulting
* shares distribution (s_i):
* rw_i = { 2, 4, 1, 0 }
* s_i = { 2/7, 4/7, 1/7, 0 }
* As per wake_affine() we're interested in the load of two CPUs (the CPU the
* task used to run on and the CPU the waker is running on), we need to
* compute the effect of waking a task on either CPU and, in case of a sync
* wakeup, compute the effect of the current task going to sleep.
* So for a change of @wl to the local @cpu with an overall group weight change
* of @wl we can compute the new shares distribution (s'_i) using:
* s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
* Suppose we're interested in CPUs 0 and 1, and want to compute the load
* differences in waking a task to CPU 0. The additional task changes the
* weight and shares distributions like:
* rw'_i = { 3, 4, 1, 0 }
* s'_i = { 3/8, 4/8, 1/8, 0 }
* We can then compute the difference in effective weight by using:
* dw_i = S * (s'_i - s_i) (3)
* Where 'S' is the group weight as seen by its parent.
* Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
* times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
* 4/7) times the weight of the group.
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
struct sched_entity *se = tg->se[cpu];
if (!tg->parent) /* the trivial, non-cgroup case */
return wl;
long w, W;
tg = se->my_q->tg;
* W = @wg + \Sum rw_j
W = wg + calc_tg_weight(tg, se->my_q);
* w = rw_i + @wl
w = se->my_q->load.weight + wl;
* wl = S * s'_i; see (2)
if (W > 0 && w < W)
wl = (w * tg->shares) / W;
wl = tg->shares;
* Per the above, wl is the new se->load.weight value; since
* those are clipped to [MIN_SHARES, ...) do so now. See
* calc_cfs_shares().
if (wl < MIN_SHARES)
wl = MIN_SHARES;
* wl = dw_i = S * (s'_i - s_i); see (3)
wl -= se->load.weight;
* Recursively apply this logic to all parent groups to compute
* the final effective load change on the root group. Since
* only the @tg group gets extra weight, all parent groups can
* only redistribute existing shares. @wl is the shift in shares
* resulting from this level per the above.
wg = 0;
static inline unsigned long effective_load(struct task_group *tg, int cpu,
unsigned long wl, unsigned long wg)
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
s64 this_load, load;
int idx, this_cpu, prev_cpu;
unsigned long tl_per_task;
unsigned long weight;
int balanced;
idx = sd->wake_idx;
this_cpu = smp_processor_id();
prev_cpu = task_cpu(p);
load = source_load(prev_cpu, idx);
this_load = target_load(this_cpu, idx);
* If sync wakeup then subtract the (maximum possible)
* effect of the currently running task from the load
* of the current CPU:
if (sync) {
tg = task_group(current);
weight = current->se.load.weight;
this_load += effective_load(tg, this_cpu, -weight, -weight);
load += effective_load(tg, prev_cpu, 0, -weight);
tg = task_group(p);
weight = p->se.load.weight;
* In low-load situations, where prev_cpu is idle and this_cpu is idle
* due to the sync cause above having dropped this_load to 0, we'll
* always have an imbalance, but there's really nothing you can do
* about that, so that's good too.
* Otherwise check if either cpus are near enough in load to allow this
* task to be woken on this_cpu.
if (this_load > 0) {
s64 this_eff_load, prev_eff_load;
this_eff_load = 100;
this_eff_load *= power_of(prev_cpu);
this_eff_load *= this_load +
effective_load(tg, this_cpu, weight, weight);
prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
prev_eff_load *= power_of(this_cpu);
prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
balanced = this_eff_load <= prev_eff_load;
} else
balanced = true;
* If the currently running task will sleep within
* a reasonable amount of time then attract this newly
* woken task:
if (sync && balanced)
schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
tl_per_task = cpu_avg_load_per_task(this_cpu);
if (balanced ||
(this_load <= load &&
this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
* This domain has SD_WAKE_AFFINE and
* p is cache cold in this domain, and
* there is no bad imbalance.
schedstat_inc(sd, ttwu_move_affine);
schedstat_inc(p, se.statistics.nr_wakeups_affine);
* find_idlest_group finds and returns the least busy CPU group within the
* domain.
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
int this_cpu, int load_idx)
struct sched_group *idlest = NULL, *group = sd->groups;
unsigned long min_load = ULONG_MAX, this_load = 0;
int imbalance = 100 + (sd->imbalance_pct-100)/2;
unsigned long load, avg_load;
int local_group;
int i;
/* Skip over this group if it has no CPUs allowed */
if (!cpumask_intersects(sched_group_cpus(group),
tsk_cpus_allowed(p)))
local_group = cpumask_test_cpu(this_cpu,
sched_group_cpus(group));
/* Tally up the load of all CPUs in the group */
avg_load = 0;
for_each_cpu(i, sched_group_cpus(group)) {
/* Bias balancing toward cpus of our domain */
if (local_group)
load = source_load(i, load_idx);
load = target_load(i, load_idx);
avg_load += load;
/* Adjust by relative CPU power of the group */
avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
if (local_group) {
this_load = avg_load;
} else if (avg_load < min_load) {
min_load = avg_load;
idlest = group;
} while (group = group->next, group != sd->groups);
if (!idlest || 100*this_load < imbalance*min_load)
return idlest;
* find_idlest_cpu - find the idlest cpu among the cpus in group.
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
unsigned long load, min_load = ULONG_MAX;
int idlest = -1;
/* Traverse only the allowed CPUs */
for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
load = weighted_cpuload(i);
if (load < min_load || (load == min_load && i == this_cpu)) {
min_load = load;
idlest = i;
* Try and locate an idle CPU in the sched_domain.
static int select_idle_sibling(struct task_struct *p, int target)
int cpu = smp_processor_id();
int prev_cpu = task_cpu(p);
struct sched_domain *sd;
struct sched_group *sg;
* If the task is going to be woken-up on this cpu and if it is
* already idle, then it is the right target.
if (target == cpu && idle_cpu(cpu))
return cpu;
* If the task is going to be woken-up on the cpu where it previously
* ran and if it is currently idle, then it the right target.
if (target == prev_cpu && idle_cpu(prev_cpu))
return prev_cpu;
* Otherwise, iterate the domains and find an elegible idle cpu.
sd = rcu_dereference(per_cpu(sd_llc, target));
for_each_lower_domain(sd) {
sg = sd->groups;
if (!cpumask_intersects(sched_group_cpus(sg),
for_each_cpu(i, sched_group_cpus(sg)) {
if (!idle_cpu(i))
target = cpumask_first_and(sched_group_cpus(sg),
tsk_cpus_allowed(p));
goto done;
sg = sg->next;
} while (sg != sd->groups);
done:
return target;
* sched_balance_self: balance the current task (running on cpu) in domains
* that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
* SD_BALANCE_EXEC.
* Balance, ie. select the least loaded group.
* Returns the target CPU number, or the same CPU if no balancing is needed.
* preempt must be disabled.
select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
int new_cpu = cpu;
int want_affine = 0;
int sync = wake_flags & WF_SYNC;
if (p->nr_cpus_allowed == 1)
if (sd_flag & SD_BALANCE_WAKE) {
if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
want_affine = 1;
new_cpu = prev_cpu;
for_each_domain(cpu, tmp) {
if (!(tmp->flags & SD_LOAD_BALANCE))
* If both cpu and prev_cpu are part of this domain,
* cpu is a valid SD_WAKE_AFFINE target.
if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
affine_sd = tmp;
if (tmp->flags & sd_flag)
sd = tmp;
if (affine_sd) {
if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
prev_cpu = cpu;
new_cpu = select_idle_sibling(p, prev_cpu);
goto unlock;
while (sd) {
int load_idx = sd->forkexec_idx;
struct sched_group *group;
int weight;
if (!(sd->flags & sd_flag)) {
sd = sd->child;
if (sd_flag & SD_BALANCE_WAKE)
load_idx = sd->wake_idx;
group = find_idlest_group(sd, p, cpu, load_idx);
if (!group) {
new_cpu = find_idlest_cpu(group, p, cpu);
if (new_cpu == -1 || new_cpu == cpu) {
/* Now try balancing at a lower domain level of cpu */
/* Now try balancing at a lower domain level of new_cpu */
cpu = new_cpu;
weight = sd->span_weight;
sd = NULL;
if (weight <= tmp->span_weight)
/* while loop will break here if sd == NULL */
unlock:
return new_cpu;
* Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
* removed when useful for applications beyond shares distribution (e.g.
* load-balance).
* Called immediately before a task is migrated to a new cpu; task_cpu(p) and
* cfs_rq_of(p) references at time of call are still valid and identify the
* previous cpu. However, the caller only guarantees p->pi_lock is held; no
* other assumptions, including the state of rq->lock, should be made.
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
* Load tracking: accumulate removed load so that it can be processed
* when we next update owning cfs_rq under rq->lock. Tasks contribute
* to blocked load iff they have a positive decay-count. It can never
* be negative here since on-rq tasks have decay-count == 0.
se->avg.decay_count = -__synchronize_entity_decay(se);
atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
#endif /* CONFIG_SMP */
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
unsigned long gran = sysctl_sched_wakeup_granularity;
* Since its curr running now, convert the gran from real-time
* to virtual-time in his units.
* By using 'se' instead of 'curr' we penalize light tasks, so
* they get preempted easier. That is, if 'se' < 'curr' then
* the resulting gran will be larger, therefore penalizing the
* lighter, if otoh 'se' > 'curr' then the resulting gran will
* be smaller, again penalizing the lighter task.
* This is especially important for buddies when the leftmost
* task is higher priority than the buddy.
return calc_delta_fair(gran, se);
* Should 'se' preempt 'curr'.
* |s1
* |s2
* |s3
* g
* |<--->|c
* w(c, s1) = -1
* w(c, s2) = 0
* w(c, s3) = 1
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
s64 gran, vdiff = curr->vruntime - se->vruntime;
if (vdiff <= 0)
return -1;
gran = wakeup_gran(curr, se);
if (vdiff > gran)
static void set_last_buddy(struct sched_entity *se)
if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
cfs_rq_of(se)->last = se;
static void set_next_buddy(struct sched_entity *se)
cfs_rq_of(se)->next = se;
static void set_skip_buddy(struct sched_entity *se)
cfs_rq_of(se)->skip = se;
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
struct sched_entity *se = &curr->se, *pse = &p->se;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
int scale = cfs_rq->nr_running >= sched_nr_latency;
int next_buddy_marked = 0;
if (unlikely(se == pse))
* This is possible from callers such as move_task(), in which we
* unconditionally check_prempt_curr() after an enqueue (which may have
* lead to a throttle). This both saves work and prevents false
* next-buddy nomination below.
if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
set_next_buddy(pse);
next_buddy_marked = 1;
* We can come here with TIF_NEED_RESCHED already set from new task
* wake up path.
* Note: this also catches the edge-case of curr being in a throttled
* group (e.g. via set_curr_task), since update_curr() (in the
* enqueue of curr) will have resulted in resched being set. This
* prevents us from potentially nominating it as a false LAST_BUDDY
* below.
if (test_tsk_need_resched(curr))
/* Idle tasks are by definition preempted by non-idle tasks. */
if (unlikely(curr->policy == SCHED_IDLE) &&
likely(p->policy != SCHED_IDLE))
goto preempt;
* Batch and idle tasks do not preempt non-idle tasks (their preemption
* is driven by the tick):
if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
find_matching_se(&se, &pse);
update_curr(cfs_rq_of(se));
BUG_ON(!pse);
if (wakeup_preempt_entity(se, pse) == 1) {
* Bias pick_next to pick the sched entity that is
* triggering this preemption.
if (!next_buddy_marked)
preempt:
resched_task(curr);
* Only set the backward buddy when the current task is still
* on the rq. This can happen when a wakeup gets interleaved
* with schedule on the ->pre_schedule() or idle_balance()
* point, either of which can * drop the rq lock.
* Also, during early boot the idle thread is in the fair class,
* for obvious reasons its a bad idea to schedule back to it.
if (unlikely(!se->on_rq || curr == rq->idle))
if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
set_last_buddy(se);
static struct task_struct *pick_next_task_fair(struct rq *rq)
struct task_struct *p;
struct cfs_rq *cfs_rq = &rq->cfs;
if (!cfs_rq->nr_running)
se = pick_next_entity(cfs_rq);
set_next_entity(cfs_rq, se);
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
p = task_of(se);
if (hrtick_enabled(rq))
hrtick_start_fair(rq, p);
return p;
* Account for a descheduled task:
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
struct sched_entity *se = &prev->se;
put_prev_entity(cfs_rq, se);
* sched_yield() is very simple
* The magic of dealing with the ->skip buddy is in pick_next_entity.
static void yield_task_fair(struct rq *rq)
struct sched_entity *se = &curr->se;
* Are we the only task in the tree?
if (unlikely(rq->nr_running == 1))
if (curr->policy != SCHED_BATCH) {
* Tell update_rq_clock() that we've just updated,
* so we don't do microscopic update in schedule()
* and double the fastpath cost.
rq->skip_clock_update = 1;
set_skip_buddy(se);
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
/* throttled hierarchies are not runnable */
if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
return false;
/* Tell the scheduler that we'd really like pse to run next. */
set_next_buddy(se);
yield_task_fair(rq);
* Fair scheduling class load-balancing methods.
* BASICS
* The purpose of load-balancing is to achieve the same basic fairness the
* per-cpu scheduler provides, namely provide a proportional amount of compute
* time to each task. This is expressed in the following equation:
* W_i,n/P_i == W_j,n/P_j for all i,j (1)
* Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
* W_i,0 is defined as:
* W_i,0 = \Sum_j w_i,j (2)
* Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
* is derived from the nice value as per prio_to_weight[].
* The weight average is an exponential decay average of the instantaneous
* weight:
* W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
* P_i is the cpu power (or compute capacity) of cpu i, typically it is the
* fraction of 'recent' time available for SCHED_OTHER task execution. But it
* can also include other factors [XXX].
* To achieve this balance we define a measure of imbalance which follows
* directly from (1):
* imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
* We them move tasks around to minimize the imbalance. In the continuous
* function space it is obvious this converges, in the discrete case we get
* a few fun cases generally called infeasible weight scenarios.
* [XXX expand on:
* - infeasible weights;
* - local vs global optima in the discrete case. ]
* SCHED DOMAINS
* In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
* for all i,j solution, we create a tree of cpus that follows the hardware
* topology where each level pairs two lower groups (or better). This results
* in O(log n) layers. Furthermore we reduce the number of cpus going up the
* tree to only the first of the previous level and we decrease the frequency
* of load-balance at each level inv. proportional to the number of cpus in
* the groups.
* This yields:
* log_2 n 1 n
* \Sum { --- * --- * 2^i } = O(n) (5)
* i = 0 2^i 2^i
* `- size of each group
* | | `- number of cpus doing load-balance
* | `- freq
* `- sum over all levels
* Coupled with a limit on how many tasks we can migrate every balance pass,
* this makes (5) the runtime complexity of the balancer.
* An important property here is that each CPU is still (indirectly) connected
* to every other cpu in at most O(log n) steps:
* The adjacency matrix of the resulting graph is given by:
* log_2 n
* A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
* k = 0
* And you'll find that:
* A^(log_2 n)_i,j != 0 for all i,j (7)
* Showing there's indeed a path between every cpu in at most O(log n) steps.
* The task movement gives a factor of O(m), giving a convergence complexity
* of:
* O(nm log n), n := nr_cpus, m := nr_tasks (8)
* WORK CONSERVING
* In order to avoid CPUs going idle while there's still work to do, new idle
* balancing is more aggressive and has the newly idle cpu iterate up the domain
* tree itself instead of relying on other CPUs to bring it work.
* This adds some complexity to both (5) and (8) but it reduces the total idle
* time.
* [XXX more?]
* CGROUPS
* Cgroups make a horror show out of (2), instead of a simple sum we get:
* s_k,i
* W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
* S_k
* Where
* s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
* w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
* The big problem is S_k, its a global sum needed to compute a local (W_i)
* property.
* [XXX write more on how we solve this.. _after_ merging pjt's patches that
* rewrite all of this once again.]
static unsigned long __read_mostly max_load_balance_interval = HZ/10;
#define LBF_ALL_PINNED 0x01
#define LBF_NEED_BREAK 0x02
#define LBF_SOME_PINNED 0x04
struct lb_env {
struct rq *src_rq;
int src_cpu;
int dst_cpu;
struct rq *dst_rq;
struct cpumask *dst_grpmask;
int new_dst_cpu;
enum cpu_idle_type idle;
long imbalance;
/* The set of CPUs under consideration for load-balancing */
struct cpumask *cpus;
unsigned int flags;
unsigned int loop;
unsigned int loop_break;
unsigned int loop_max;
* move_task - move a task from one runqueue to another runqueue.
* Both runqueues must be locked.
static void move_task(struct task_struct *p, struct lb_env *env)
deactivate_task(env->src_rq, p, 0);
set_task_cpu(p, env->dst_cpu);
activate_task(env->dst_rq, p, 0);
check_preempt_curr(env->dst_rq, p, 0);
* Is this task likely cache-hot:
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
if (p->sched_class != &fair_sched_class)
if (unlikely(p->policy == SCHED_IDLE))
* Buddy candidates are cache hot:
if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
(&p->se == cfs_rq_of(&p->se)->next ||
&p->se == cfs_rq_of(&p->se)->last))
if (sysctl_sched_migration_cost == -1)
if (sysctl_sched_migration_cost == 0)
delta = now - p->se.exec_start;
return delta < (s64)sysctl_sched_migration_cost;
* can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
static
int can_migrate_task(struct task_struct *p, struct lb_env *env)
int tsk_cache_hot = 0;
* We do not migrate tasks that are:
* 1) running (obviously), or
* 2) cannot be migrated to this CPU due to cpus_allowed, or
* 3) are cache-hot on their current CPU.
if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
* Remember if this task can be migrated to any other cpu in
* our sched_group. We may want to revisit it if we couldn't
* meet load balance goals by pulling other tasks on src_cpu.
* Also avoid computing new_dst_cpu if we have already computed
* one in current iteration.
if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
new_dst_cpu = cpumask_first_and(env->dst_grpmask,
if (new_dst_cpu < nr_cpu_ids) {
env->flags |= LBF_SOME_PINNED;
env->new_dst_cpu = new_dst_cpu;
/* Record that we found atleast one task that could run on dst_cpu */
env->flags &= ~LBF_ALL_PINNED;
if (task_running(env->src_rq, p)) {
schedstat_inc(p, se.statistics.nr_failed_migrations_running);
* Aggressive migration if:
* 1) task is cache cold, or
* 2) too many balance attempts have failed.
tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
if (!tsk_cache_hot ||
env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
if (tsk_cache_hot) {
schedstat_inc(env->sd, lb_hot_gained[env->idle]);
schedstat_inc(p, se.statistics.nr_forced_migrations);
schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
* move_one_task tries to move exactly one task from busiest to this_rq, as
* part of active balancing operations within "domain".
* Returns 1 if successful and 0 otherwise.
* Called with both runqueues locked.
static int move_one_task(struct lb_env *env)
struct task_struct *p, *n;
list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
if (!can_migrate_task(p, env))
move_task(p, env);
* Right now, this is only the second place move_task()
* is called, so we can safely collect move_task()
* stats here rather than inside move_task().
schedstat_inc(env->sd, lb_gained[env->idle]);
static unsigned long task_h_load(struct task_struct *p);
static const unsigned int sched_nr_migrate_break = 32;
* move_tasks tries to move up to imbalance weighted load from busiest to
* this_rq, as part of a balancing operation within domain "sd".
static int move_tasks(struct lb_env *env)
struct list_head *tasks = &env->src_rq->cfs_tasks;
unsigned long load;
int pulled = 0;
if (env->imbalance <= 0)
while (!list_empty(tasks)) {
p = list_first_entry(tasks, struct task_struct, se.group_node);
env->loop++;
/* We've more or less seen every task there is, call it quits */
if (env->loop > env->loop_max)
/* take a breather every nr_migrate tasks */
if (env->loop > env->loop_break) {
env->loop_break += sched_nr_migrate_break;
env->flags |= LBF_NEED_BREAK;
if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
load = task_h_load(p);
if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
if ((load / 2) > env->imbalance)
pulled++;
env->imbalance -= load;
#ifdef CONFIG_PREEMPT
* NEWIDLE balancing is a source of latency, so preemptible
* kernels will stop after the first task is pulled to minimize
* the critical section.
if (env->idle == CPU_NEWLY_IDLE)
* We only want to steal up to the prescribed amount of
* weighted load.
list_move_tail(&p->se.group_node, tasks);
* Right now, this is one of only two places move_task() is called,
* so we can safely collect move_task() stats here rather than
* inside move_task().
schedstat_add(env->sd, lb_gained[env->idle], pulled);
return pulled;
* update tg->load_weight by folding this cpu's load_avg
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
/* throttled entities do not contribute to load */
if (throttled_hierarchy(cfs_rq))
if (se) {
* We pivot on our runnable average having decayed to zero for
* list removal. This generally implies that all our children
* have also been removed (modulo rounding error or bandwidth
* control); however, such cases are rare and we can fix these
* at enqueue.
* TODO: fix up out-of-order children on enqueue.
if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
list_del_leaf_cfs_rq(cfs_rq);
static void update_blocked_averages(int cpu)
unsigned long flags;
raw_spin_lock_irqsave(&rq->lock, flags);
* Iterates the task_group tree in a bottom up fashion, see
* list_add_leaf_cfs_rq() for details.
* Note: We may want to consider periodically releasing
* rq->lock about these updates so that creating many task
* groups does not result in continually extending hold time.
__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
raw_spin_unlock_irqrestore(&rq->lock, flags);
* Compute the cpu's hierarchical load factor for each task group.
* This needs to be done in a top-down fashion because the load of a child
* group is a fraction of its parents load.
static int tg_load_down(struct task_group *tg, void *data)
long cpu = (long)data;
if (!tg->parent) {
load = cpu_rq(cpu)->load.weight;
load = tg->parent->cfs_rq[cpu]->h_load;
load *= tg->se[cpu]->load.weight;
load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
tg->cfs_rq[cpu]->h_load = load;
static void update_h_load(long cpu)
unsigned long now = jiffies;
if (rq->h_load_throttle == now)
rq->h_load_throttle = now;
walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
static unsigned long task_h_load(struct task_struct *p)
struct cfs_rq *cfs_rq = task_cfs_rq(p);
load = p->se.load.weight;
load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
return load;
static inline void update_blocked_averages(int cpu)
static inline void update_h_load(long cpu)
return p->se.load.weight;
/********** Helpers for find_busiest_group ************************/
* sd_lb_stats - Structure to store the statistics of a sched_domain
* during load balancing.
struct sd_lb_stats {
struct sched_group *busiest; /* Busiest group in this sd */
struct sched_group *this; /* Local group in this sd */
unsigned long total_load; /* Total load of all groups in sd */
unsigned long total_pwr; /* Total power of all groups in sd */
unsigned long avg_load; /* Average load across all groups in sd */
/** Statistics of this group */
unsigned long this_load;
unsigned long this_load_per_task;
unsigned long this_nr_running;
unsigned long this_has_capacity;
unsigned int this_idle_cpus;
/* Statistics of the busiest group */
unsigned int busiest_idle_cpus;
unsigned long max_load;
unsigned long busiest_load_per_task;
unsigned long busiest_nr_running;
unsigned long busiest_group_capacity;
unsigned long busiest_has_capacity;
unsigned int busiest_group_weight;
int group_imb; /* Is there imbalance in this sd */
* sg_lb_stats - stats of a sched_group required for load_balancing
struct sg_lb_stats {
unsigned long avg_load; /*Avg load across the CPUs of the group */
unsigned long group_load; /* Total load over the CPUs of the group */
unsigned long sum_nr_running; /* Nr tasks running in the group */
unsigned long sum_weighted_load; /* Weighted load of group's tasks */
unsigned long group_capacity;
unsigned long idle_cpus;
unsigned long group_weight;
int group_imb; /* Is there an imbalance in the group ? */
int group_has_capacity; /* Is there extra capacity in the group? */
/**
* get_sd_load_idx - Obtain the load index for a given sched domain.
* @sd: The sched_domain whose load_idx is to be obtained.
* @idle: The Idle status of the CPU for whose sd load_icx is obtained.
static inline int get_sd_load_idx(struct sched_domain *sd,
enum cpu_idle_type idle)
int load_idx;
switch (idle) {
case CPU_NOT_IDLE:
load_idx = sd->busy_idx;
case CPU_NEWLY_IDLE:
load_idx = sd->newidle_idx;
load_idx = sd->idle_idx;
return load_idx;
unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
return SCHED_POWER_SCALE;
unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
return default_scale_freq_power(sd, cpu);
unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
unsigned long weight = sd->span_weight;
unsigned long smt_gain = sd->smt_gain;
smt_gain /= weight;
return smt_gain;
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
return default_scale_smt_power(sd, cpu);
unsigned long scale_rt_power(int cpu)
u64 total, available, age_stamp, avg;
* Since we're reading these variables without serialization make sure
* we read them once before doing sanity checks on them.
age_stamp = ACCESS_ONCE(rq->age_stamp);
avg = ACCESS_ONCE(rq->rt_avg);
total = sched_avg_period() + (rq->clock - age_stamp);
if (unlikely(total < avg)) {
/* Ensures that power won't end up being negative */
available = 0;
available = total - avg;
if (unlikely((s64)total < SCHED_POWER_SCALE))
total = SCHED_POWER_SCALE;
total >>= SCHED_POWER_SHIFT;
return div_u64(available, total);
static void update_cpu_power(struct sched_domain *sd, int cpu)
unsigned long power = SCHED_POWER_SCALE;
struct sched_group *sdg = sd->groups;
if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
if (sched_feat(ARCH_POWER))
power *= arch_scale_smt_power(sd, cpu);
power *= default_scale_smt_power(sd, cpu);
power >>= SCHED_POWER_SHIFT;
sdg->sgp->power_orig = power;
power *= arch_scale_freq_power(sd, cpu);
power *= default_scale_freq_power(sd, cpu);
power *= scale_rt_power(cpu);
if (!power)
power = 1;
cpu_rq(cpu)->cpu_power = power;
sdg->sgp->power = power;
void update_group_power(struct sched_domain *sd, int cpu)
struct sched_domain *child = sd->child;
struct sched_group *group, *sdg = sd->groups;
unsigned long power;
unsigned long interval;
interval = msecs_to_jiffies(sd->balance_interval);
interval = clamp(interval, 1UL, max_load_balance_interval);
sdg->sgp->next_update = jiffies + interval;
if (!child) {
update_cpu_power(sd, cpu);
power = 0;
if (child->flags & SD_OVERLAP) {
* SD_OVERLAP domains cannot assume that child groups
* span the current group.
for_each_cpu(cpu, sched_group_cpus(sdg))
power += power_of(cpu);
* !SD_OVERLAP domains can assume that child groups
group = child->groups;
power += group->sgp->power;
group = group->next;
} while (group != child->groups);
sdg->sgp->power_orig = sdg->sgp->power = power;
* Try and fix up capacity for tiny siblings, this is needed when
* things like SD_ASYM_PACKING need f_b_g to select another sibling
* which on its own isn't powerful enough.
* See update_sd_pick_busiest() and check_asym_packing().
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
* Only siblings can have significantly less than SCHED_POWER_SCALE
if (!(sd->flags & SD_SHARE_CPUPOWER))
* If ~90% of the cpu_power is still there, we're good.
if (group->sgp->power * 32 > group->sgp->power_orig * 29)
* update_sg_lb_stats - Update sched_group's statistics for load balancing.
* @env: The load balancing environment.
* @group: sched_group whose statistics are to be updated.
* @load_idx: Load index of sched_domain of this_cpu for load calc.
* @local_group: Does group contain this_cpu.
* @balance: Should we balance.
* @sgs: variable to hold the statistics for this group.
static inline void update_sg_lb_stats(struct lb_env *env,
struct sched_group *group, int load_idx,
int local_group, int *balance, struct sg_lb_stats *sgs)
unsigned long nr_running, max_nr_running, min_nr_running;
unsigned long load, max_cpu_load, min_cpu_load;
unsigned int balance_cpu = -1, first_idle_cpu = 0;
unsigned long avg_load_per_task = 0;
balance_cpu = group_balance_cpu(group);
max_cpu_load = 0;
min_cpu_load = ~0UL;
max_nr_running = 0;
min_nr_running = ~0UL;
for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
struct rq *rq = cpu_rq(i);
nr_running = rq->nr_running;
if (idle_cpu(i) && !first_idle_cpu &&
cpumask_test_cpu(i, sched_group_mask(group))) {
first_idle_cpu = 1;
balance_cpu = i;
if (load > max_cpu_load)
max_cpu_load = load;
if (min_cpu_load > load)
min_cpu_load = load;
if (nr_running > max_nr_running)
max_nr_running = nr_running;
if (min_nr_running > nr_running)
min_nr_running = nr_running;
sgs->group_load += load;
sgs->sum_nr_running += nr_running;
sgs->sum_weighted_load += weighted_cpuload(i);
if (idle_cpu(i))
sgs->idle_cpus++;
* First idle cpu or the first cpu(busiest) in this sched group
* is eligible for doing load balancing at this and above
* domains. In the newly idle case, we will allow all the cpu's
* to do the newly idle load balance.
if (env->idle != CPU_NEWLY_IDLE) {
if (balance_cpu != env->dst_cpu) {
*balance = 0;
update_group_power(env->sd, env->dst_cpu);
} else if (time_after_eq(jiffies, group->sgp->next_update))
sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
* Consider the group unbalanced when the imbalance is larger
* than the average weight of a task.
* APZ: with cgroup the avg task weight can vary wildly and
* might not be a suitable number - should we keep a
* normalized nr_running number somewhere that negates
* the hierarchy?
if (sgs->sum_nr_running)
avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
(max_nr_running - min_nr_running) > 1)
sgs->group_imb = 1;
sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
SCHED_POWER_SCALE);
if (!sgs->group_capacity)
sgs->group_capacity = fix_small_capacity(env->sd, group);
sgs->group_weight = group->group_weight;
if (sgs->group_capacity > sgs->sum_nr_running)
sgs->group_has_capacity = 1;
* update_sd_pick_busiest - return 1 on busiest group
* @sds: sched_domain statistics
* @sg: sched_group candidate to be checked for being the busiest
* @sgs: sched_group statistics
* Determine if @sg is a busier group than the previously selected
* busiest group.
static bool update_sd_pick_busiest(struct lb_env *env,
struct sd_lb_stats *sds,
struct sched_group *sg,
struct sg_lb_stats *sgs)
if (sgs->avg_load <= sds->max_load)
if (sgs->sum_nr_running > sgs->group_capacity)
if (sgs->group_imb)
* ASYM_PACKING needs to move all the work to the lowest
* numbered CPUs in the group, therefore mark all groups
* higher than ourself as busy.
if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
env->dst_cpu < group_first_cpu(sg)) {
if (!sds->busiest)
if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
* update_sd_lb_stats - Update sched_domain's statistics for load balancing.
* @sds: variable to hold the statistics for this sched_domain.
static inline void update_sd_lb_stats(struct lb_env *env,
int *balance, struct sd_lb_stats *sds)
struct sched_domain *child = env->sd->child;
struct sched_group *sg = env->sd->groups;
struct sg_lb_stats sgs;
int load_idx, prefer_sibling = 0;
if (child && child->flags & SD_PREFER_SIBLING)
prefer_sibling = 1;
load_idx = get_sd_load_idx(env->sd, env->idle);
local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
memset(&sgs, 0, sizeof(sgs));
update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
if (local_group && !(*balance))
sds->total_load += sgs.group_load;
sds->total_pwr += sg->sgp->power;
* In case the child domain prefers tasks go to siblings
* first, lower the sg capacity to one so that we'll try
* and move all the excess tasks away. We lower the capacity
* of a group only if the local group has the capacity to fit
* these excess tasks, i.e. nr_running < group_capacity. The
* extra check prevents the case where you always pull from the
* heaviest group when it is already under-utilized (possible
* with a large weight task outweighs the tasks on the system).
if (prefer_sibling && !local_group && sds->this_has_capacity)
sgs.group_capacity = min(sgs.group_capacity, 1UL);
sds->this_load = sgs.avg_load;
sds->this = sg;
sds->this_nr_running = sgs.sum_nr_running;
sds->this_load_per_task = sgs.sum_weighted_load;
sds->this_has_capacity = sgs.group_has_capacity;
sds->this_idle_cpus = sgs.idle_cpus;
} else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
sds->max_load = sgs.avg_load;
sds->busiest = sg;
sds->busiest_nr_running = sgs.sum_nr_running;
sds->busiest_idle_cpus = sgs.idle_cpus;
sds->busiest_group_capacity = sgs.group_capacity;
sds->busiest_load_per_task = sgs.sum_weighted_load;
sds->busiest_has_capacity = sgs.group_has_capacity;
sds->busiest_group_weight = sgs.group_weight;
sds->group_imb = sgs.group_imb;
} while (sg != env->sd->groups);
* check_asym_packing - Check to see if the group is packed into the
* sched doman.
* This is primarily intended to used at the sibling level. Some
* cores like POWER7 prefer to use lower numbered SMT threads. In the
* case of POWER7, it can move to lower SMT modes only when higher
* threads are idle. When in lower SMT modes, the threads will
* perform better since they share less core resources. Hence when we
* have idle threads, we want them to be the higher ones.
* This packing function is run on idle threads. It checks to see if
* the busiest CPU in this domain (core in the P7 case) has a higher
* CPU number than the packing function is being run on. Here we are
* assuming lower CPU number will be equivalent to lower a SMT thread
* number.
* Returns 1 when packing is required and a task should be moved to
* this CPU. The amount of the imbalance is returned in *imbalance.
* @sds: Statistics of the sched_domain which is to be packed
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
int busiest_cpu;
if (!(env->sd->flags & SD_ASYM_PACKING))
busiest_cpu = group_first_cpu(sds->busiest);
if (env->dst_cpu > busiest_cpu)
env->imbalance = DIV_ROUND_CLOSEST(
sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
* fix_small_imbalance - Calculate the minor imbalance that exists
* amongst the groups of a sched_domain, during
* load balancing.
* @sds: Statistics of the sched_domain whose imbalance is to be calculated.
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
unsigned long tmp, pwr_now = 0, pwr_move = 0;
unsigned int imbn = 2;
unsigned long scaled_busy_load_per_task;
if (sds->this_nr_running) {
sds->this_load_per_task /= sds->this_nr_running;
if (sds->busiest_load_per_task >
sds->this_load_per_task)
imbn = 1;
sds->this_load_per_task =
cpu_avg_load_per_task(env->dst_cpu);
scaled_busy_load_per_task = sds->busiest_load_per_task
* SCHED_POWER_SCALE;
scaled_busy_load_per_task /= sds->busiest->sgp->power;
if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
(scaled_busy_load_per_task * imbn)) {
env->imbalance = sds->busiest_load_per_task;
* OK, we don't have enough imbalance to justify moving tasks,
* however we may be able to increase total CPU power used by
* moving them.
pwr_now += sds->busiest->sgp->power *
min(sds->busiest_load_per_task, sds->max_load);
pwr_now += sds->this->sgp->power *
min(sds->this_load_per_task, sds->this_load);
pwr_now /= SCHED_POWER_SCALE;
/* Amount of load we'd subtract */
tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
sds->busiest->sgp->power;
if (sds->max_load > tmp)
pwr_move += sds->busiest->sgp->power *
min(sds->busiest_load_per_task, sds->max_load - tmp);
/* Amount of load we'd add */
if (sds->max_load * sds->busiest->sgp->power <
sds->busiest_load_per_task * SCHED_POWER_SCALE)
tmp = (sds->max_load * sds->busiest->sgp->power) /
sds->this->sgp->power;
pwr_move += sds->this->sgp->power *
min(sds->this_load_per_task, sds->this_load + tmp);
pwr_move /= SCHED_POWER_SCALE;
/* Move if we gain throughput */
if (pwr_move > pwr_now)
* calculate_imbalance - Calculate the amount of imbalance present within the
* groups of a given sched_domain during load balance.
* @env: load balance environment
* @sds: statistics of the sched_domain whose imbalance is to be calculated.
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
unsigned long max_pull, load_above_capacity = ~0UL;
sds->busiest_load_per_task /= sds->busiest_nr_running;
if (sds->group_imb) {
sds->busiest_load_per_task =
min(sds->busiest_load_per_task, sds->avg_load);
* In the presence of smp nice balancing, certain scenarios can have
* max load less than avg load(as we skip the groups at or below
* its cpu_power, while calculating max_load..)
if (sds->max_load < sds->avg_load) {
env->imbalance = 0;
return fix_small_imbalance(env, sds);
if (!sds->group_imb) {
* Don't want to pull so many tasks that a group would go idle.
load_above_capacity = (sds->busiest_nr_running -
sds->busiest_group_capacity);
load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
load_above_capacity /= sds->busiest->sgp->power;
* We're trying to get all the cpus to the average_load, so we don't
* want to push ourselves above the average load, nor do we wish to
* reduce the max loaded cpu below the average load. At the same time,
* we also don't want to reduce the group load below the group capacity
* (so that we can implement power-savings policies etc). Thus we look
* for the minimum possible imbalance.
* Be careful of negative numbers as they'll appear as very large values
* with unsigned longs.
max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
/* How much load to actually move to equalise the imbalance */
env->imbalance = min(max_pull * sds->busiest->sgp->power,
(sds->avg_load - sds->this_load) * sds->this->sgp->power)
/ SCHED_POWER_SCALE;
* if *imbalance is less than the average load per runnable task
* there is no guarantee that any tasks will be moved so we'll have
* a think about bumping its value to force at least one task to be
* moved
if (env->imbalance < sds->busiest_load_per_task)
/******* find_busiest_group() helpers end here *********************/
* find_busiest_group - Returns the busiest group within the sched_domain
* if there is an imbalance. If there isn't an imbalance, and
* the user has opted for power-savings, it returns a group whose
* CPUs can be put to idle by rebalancing those tasks elsewhere, if
* such a group exists.
* Also calculates the amount of weighted load which should be moved
* to restore balance.
* @balance: Pointer to a variable indicating if this_cpu
* is the appropriate cpu to perform load balancing at this_level.
* Returns: - the busiest group if imbalance exists.
* - If no imbalance and user has opted for power-savings balance,
* return the least loaded group whose CPUs can be
* put to idle by rebalancing its tasks onto our group.
find_busiest_group(struct lb_env *env, int *balance)
struct sd_lb_stats sds;
memset(&sds, 0, sizeof(sds));
* Compute the various statistics relavent for load balancing at
* this level.
update_sd_lb_stats(env, balance, &sds);
* this_cpu is not the appropriate cpu to perform load balancing at
if (!(*balance))
goto ret;
if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
check_asym_packing(env, &sds))
return sds.busiest;
/* There is no busy sibling group to pull tasks from */
if (!sds.busiest || sds.busiest_nr_running == 0)
goto out_balanced;
sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
* If the busiest group is imbalanced the below checks don't
* work because they assumes all things are equal, which typically
* isn't true due to cpus_allowed constraints and the like.
if (sds.group_imb)
goto force_balance;
/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
!sds.busiest_has_capacity)
* If the local group is more busy than the selected busiest group
* don't try and pull any tasks.
if (sds.this_load >= sds.max_load)
* Don't pull any tasks if this group is already above the domain
* average load.
if (sds.this_load >= sds.avg_load)
if (env->idle == CPU_IDLE) {
* This cpu is idle. If the busiest group load doesn't
* have more tasks than the number of available cpu's and
* there is no imbalance between this and busiest group
* wrt to idle cpu's, it is balanced.
if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
sds.busiest_nr_running <= sds.busiest_group_weight)
* In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
* imbalance_pct to be conservative.
if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
force_balance:
/* Looks like there is an imbalance. Compute it */
calculate_imbalance(env, &sds);
out_balanced:
ret:
* find_busiest_queue - find the busiest runqueue among the cpus in group.
static struct rq *find_busiest_queue(struct lb_env *env,
struct sched_group *group)
struct rq *busiest = NULL, *rq;
unsigned long max_load = 0;
unsigned long power = power_of(i);
unsigned long capacity = DIV_ROUND_CLOSEST(power,
unsigned long wl;
if (!capacity)
capacity = fix_small_capacity(env->sd, group);
if (!cpumask_test_cpu(i, env->cpus))
rq = cpu_rq(i);
wl = weighted_cpuload(i);
* When comparing with imbalance, use weighted_cpuload()
* which is not scaled with the cpu power.
if (capacity && rq->nr_running == 1 && wl > env->imbalance)
* For the load comparisons with the other cpu's, consider
* the weighted_cpuload() scaled with the cpu power, so that
* the load can be moved away from the cpu that is potentially
* running at a lower capacity.
wl = (wl * SCHED_POWER_SCALE) / power;
if (wl > max_load) {
max_load = wl;
busiest = rq;
return busiest;
* Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
* so long as it is large enough.
#define MAX_PINNED_INTERVAL 512
/* Working cpumask for load_balance and load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
static int need_active_balance(struct lb_env *env)
struct sched_domain *sd = env->sd;
if (env->idle == CPU_NEWLY_IDLE) {
* ASYM_PACKING needs to force migrate tasks from busy but
* higher numbered CPUs in order to pack all tasks in the
* lowest numbered CPUs.
if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
static int active_load_balance_cpu_stop(void *data);
* Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance.
static int load_balance(int this_cpu, struct rq *this_rq,
struct sched_domain *sd, enum cpu_idle_type idle,
int *balance)
int ld_moved, cur_ld_moved, active_balance = 0;
int lb_iterations, max_lb_iterations;
struct rq *busiest;
struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
struct lb_env env = {
.sd = sd,
.dst_cpu = this_cpu,
.dst_rq = this_rq,
.dst_grpmask = sched_group_cpus(sd->groups),
.idle = idle,
.loop_break = sched_nr_migrate_break,
.cpus = cpus,
cpumask_copy(cpus, cpu_active_mask);
max_lb_iterations = cpumask_weight(env.dst_grpmask);
schedstat_inc(sd, lb_count[idle]);
redo:
group = find_busiest_group(&env, balance);
if (*balance == 0)
schedstat_inc(sd, lb_nobusyg[idle]);
busiest = find_busiest_queue(&env, group);
if (!busiest) {
schedstat_inc(sd, lb_nobusyq[idle]);
BUG_ON(busiest == env.dst_rq);
schedstat_add(sd, lb_imbalance[idle], env.imbalance);
ld_moved = 0;
lb_iterations = 1;
if (busiest->nr_running > 1) {
* Attempt to move tasks. If find_busiest_group has found
* an imbalance but busiest->nr_running <= 1, the group is
* still unbalanced. ld_moved simply stays zero, so it is
* correctly treated as an imbalance.
env.flags |= LBF_ALL_PINNED;
env.src_cpu = busiest->cpu;
env.src_rq = busiest;
env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
update_h_load(env.src_cpu);
more_balance:
local_irq_save(flags);
double_rq_lock(env.dst_rq, busiest);
* cur_ld_moved - load moved in current iteration
* ld_moved - cumulative load moved across iterations
cur_ld_moved = move_tasks(&env);
ld_moved += cur_ld_moved;
double_rq_unlock(env.dst_rq, busiest);
local_irq_restore(flags);
if (env.flags & LBF_NEED_BREAK) {
env.flags &= ~LBF_NEED_BREAK;
goto more_balance;
* some other cpu did the load balance for us.
if (cur_ld_moved && env.dst_cpu != smp_processor_id())
resched_cpu(env.dst_cpu);
* Revisit (affine) tasks on src_cpu that couldn't be moved to
* us and move them to an alternate dst_cpu in our sched_group
* where they can run. The upper limit on how many times we
* iterate on same src_cpu is dependent on number of cpus in our
* sched_group.
* This changes load balance semantics a bit on who can move
* load to a given_cpu. In addition to the given_cpu itself
* (or a ilb_cpu acting on its behalf where given_cpu is
* nohz-idle), we now have balance_cpu in a position to move
* load to given_cpu. In rare situations, this may cause
* conflicts (balance_cpu and given_cpu/ilb_cpu deciding
* _independently_ and at _same_ time to move some load to
* given_cpu) causing exceess load to be moved to given_cpu.
* This however should not happen so much in practice and
* moreover subsequent load balance cycles should correct the
* excess load moved.
if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
lb_iterations++ < max_lb_iterations) {
env.dst_rq = cpu_rq(env.new_dst_cpu);
env.dst_cpu = env.new_dst_cpu;
env.flags &= ~LBF_SOME_PINNED;
env.loop = 0;
env.loop_break = sched_nr_migrate_break;
* Go back to "more_balance" rather than "redo" since we
* need to continue with same src_cpu.
/* All tasks on this runqueue were pinned by CPU affinity */
if (unlikely(env.flags & LBF_ALL_PINNED)) {
cpumask_clear_cpu(cpu_of(busiest), cpus);
if (!cpumask_empty(cpus)) {
goto redo;
if (!ld_moved) {
schedstat_inc(sd, lb_failed[idle]);
* Increment the failure counter only on periodic balance.
* We do not want newidle balance, which can be very
* frequent, pollute the failure counter causing
* excessive cache_hot migrations and active balances.
if (idle != CPU_NEWLY_IDLE)
sd->nr_balance_failed++;
if (need_active_balance(&env)) {
raw_spin_lock_irqsave(&busiest->lock, flags);
/* don't kick the active_load_balance_cpu_stop,
* if the curr task on busiest cpu can't be
* moved to this_cpu
if (!cpumask_test_cpu(this_cpu,
tsk_cpus_allowed(busiest->curr))) {
raw_spin_unlock_irqrestore(&busiest->lock,
flags);
goto out_one_pinned;
* ->active_balance synchronizes accesses to
* ->active_balance_work. Once set, it's cleared
* only after active load balance is finished.
if (!busiest->active_balance) {
busiest->active_balance = 1;
busiest->push_cpu = this_cpu;
active_balance = 1;
raw_spin_unlock_irqrestore(&busiest->lock, flags);
if (active_balance) {
stop_one_cpu_nowait(cpu_of(busiest),
active_load_balance_cpu_stop, busiest,
&busiest->active_balance_work);
* We've kicked active balancing, reset the failure
* counter.
sd->nr_balance_failed = sd->cache_nice_tries+1;
sd->nr_balance_failed = 0;
if (likely(!active_balance)) {
/* We were unbalanced, so reset the balancing interval */
sd->balance_interval = sd->min_interval;
* If we've begun active balancing, start to back off. This
* case may not be covered by the all_pinned logic if there
* is only 1 task on the busy runqueue (because we don't call
* move_tasks).
if (sd->balance_interval < sd->max_interval)
sd->balance_interval *= 2;
schedstat_inc(sd, lb_balanced[idle]);
out_one_pinned:
/* tune up the balancing interval */
if (((env.flags & LBF_ALL_PINNED) &&
sd->balance_interval < MAX_PINNED_INTERVAL) ||
(sd->balance_interval < sd->max_interval))
return ld_moved;
* idle_balance is called by schedule() if this_cpu is about to become
* idle. Attempts to pull tasks from other CPUs.
void idle_balance(int this_cpu, struct rq *this_rq)
int pulled_task = 0;
unsigned long next_balance = jiffies + HZ;
this_rq->idle_stamp = this_rq->clock;
if (this_rq->avg_idle < sysctl_sched_migration_cost)
update_rq_runnable_avg(this_rq, 1);
* Drop the rq->lock, but keep IRQ/preempt disabled.
raw_spin_unlock(&this_rq->lock);
update_blocked_averages(this_cpu);
for_each_domain(this_cpu, sd) {
int balance = 1;
if (!(sd->flags & SD_LOAD_BALANCE))
if (sd->flags & SD_BALANCE_NEWIDLE) {
/* If we've pulled tasks over stop searching: */
pulled_task = load_balance(this_cpu, this_rq,
sd, CPU_NEWLY_IDLE, &balance);
if (time_after(next_balance, sd->last_balance + interval))
next_balance = sd->last_balance + interval;
if (pulled_task) {
this_rq->idle_stamp = 0;
raw_spin_lock(&this_rq->lock);
if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
* We are going idle. next_balance may be set based on
* a busy processor. So reset next_balance.
this_rq->next_balance = next_balance;
* active_load_balance_cpu_stop is run by cpu stopper. It pushes
* running tasks off the busiest CPU onto idle CPUs. It requires at
* least 1 task to be running on each physical CPU where possible, and
* avoids physical / logical imbalances.
static int active_load_balance_cpu_stop(void *data)
struct rq *busiest_rq = data;
int busiest_cpu = cpu_of(busiest_rq);
int target_cpu = busiest_rq->push_cpu;
struct rq *target_rq = cpu_rq(target_cpu);
raw_spin_lock_irq(&busiest_rq->lock);
/* make sure the requested cpu hasn't gone down in the meantime */
if (unlikely(busiest_cpu != smp_processor_id() ||
!busiest_rq->active_balance))
/* Is there any task to move? */
if (busiest_rq->nr_running <= 1)
* This condition is "impossible", if it occurs
* we need to fix it. Originally reported by
* Bjorn Helgaas on a 128-cpu setup.
BUG_ON(busiest_rq == target_rq);
/* move a task from busiest_rq to target_rq */
double_lock_balance(busiest_rq, target_rq);
/* Search for an sd spanning us and the target CPU. */
for_each_domain(target_cpu, sd) {
if ((sd->flags & SD_LOAD_BALANCE) &&
cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
if (likely(sd)) {
.dst_cpu = target_cpu,
.dst_rq = target_rq,
.src_cpu = busiest_rq->cpu,
.src_rq = busiest_rq,
.idle = CPU_IDLE,
schedstat_inc(sd, alb_count);
if (move_one_task(&env))
schedstat_inc(sd, alb_pushed);
schedstat_inc(sd, alb_failed);
double_unlock_balance(busiest_rq, target_rq);
busiest_rq->active_balance = 0;
raw_spin_unlock_irq(&busiest_rq->lock);
#ifdef CONFIG_NO_HZ
* idle load balancing details
* - When one of the busy CPUs notice that there may be an idle rebalancing
* needed, they will kick the idle load balancer, which then does idle
* load balancing for all the idle CPUs.
static struct {
cpumask_var_t idle_cpus_mask;
atomic_t nr_cpus;
unsigned long next_balance; /* in jiffy units */
} nohz ____cacheline_aligned;
static inline int find_new_ilb(int call_cpu)
int ilb = cpumask_first(nohz.idle_cpus_mask);
if (ilb < nr_cpu_ids && idle_cpu(ilb))
return ilb;
return nr_cpu_ids;
* Kick a CPU to do the nohz balancing, if it is time for it. We pick the
* nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
* CPU (if there is one).
static void nohz_balancer_kick(int cpu)
int ilb_cpu;
nohz.next_balance++;
ilb_cpu = find_new_ilb(cpu);
if (ilb_cpu >= nr_cpu_ids)
if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
* Use smp_send_reschedule() instead of resched_cpu().
* This way we generate a sched IPI on the target cpu which
* is idle. And the softirq performing nohz idle load balance
* will be run before returning from the IPI.
smp_send_reschedule(ilb_cpu);
static inline void nohz_balance_exit_idle(int cpu)
if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
atomic_dec(&nohz.nr_cpus);
clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
static inline void set_cpu_sd_state_busy(void)
if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
clear_bit(NOHZ_IDLE, nohz_flags(cpu));
for_each_domain(cpu, sd)
atomic_inc(&sd->groups->sgp->nr_busy_cpus);
void set_cpu_sd_state_idle(void)
if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
set_bit(NOHZ_IDLE, nohz_flags(cpu));
atomic_dec(&sd->groups->sgp->nr_busy_cpus);
* This routine will record that the cpu is going idle with tick stopped.
* This info will be used in performing idle load balancing in the future.
void nohz_balance_enter_idle(int cpu)
* If this cpu is going down, then nothing needs to be done.
if (!cpu_active(cpu))
if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
atomic_inc(&nohz.nr_cpus);
set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
unsigned long action, void *hcpu)
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_DYING:
nohz_balance_exit_idle(smp_processor_id());
return NOTIFY_OK;
return NOTIFY_DONE;
static DEFINE_SPINLOCK(balancing);
* Scale the max load_balance interval with the number of CPUs in the system.
* This trades load-balance latency on larger machines for less cross talk.
void update_max_interval(void)
max_load_balance_interval = HZ*num_online_cpus()/10;
* It checks each scheduling domain to see if it is due to be balanced,
* and initiates a balancing operation if so.
* Balancing parameters are set up in arch_init_sched_domains.
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
/* Earliest time when we have to do rebalance again */
unsigned long next_balance = jiffies + 60*HZ;
int update_next_balance = 0;
int need_serialize;
update_blocked_averages(cpu);
for_each_domain(cpu, sd) {
interval = sd->balance_interval;
if (idle != CPU_IDLE)
interval *= sd->busy_factor;
/* scale ms to jiffies */
interval = msecs_to_jiffies(interval);
need_serialize = sd->flags & SD_SERIALIZE;
if (need_serialize) {
if (!spin_trylock(&balancing))
if (time_after_eq(jiffies, sd->last_balance + interval)) {
if (load_balance(cpu, rq, sd, idle, &balance)) {
* We've pulled tasks over so either we're no
* longer idle.
idle = CPU_NOT_IDLE;
sd->last_balance = jiffies;
if (need_serialize)
spin_unlock(&balancing);
if (time_after(next_balance, sd->last_balance + interval)) {
update_next_balance = 1;
* Stop the load balance at this level. There is another
* CPU in our sched group which is doing load balancing more
* actively.
if (!balance)
* next_balance will be updated only when there is a need.
* When the cpu is attached to null domain for ex, it will not be
* updated.
if (likely(update_next_balance))
rq->next_balance = next_balance;
* In CONFIG_NO_HZ case, the idle balance kickee will do the
* rebalancing for all the cpus for whom scheduler ticks are stopped.
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
struct rq *this_rq = cpu_rq(this_cpu);
struct rq *rq;
int balance_cpu;
if (idle != CPU_IDLE ||
!test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
goto end;
for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
* If this cpu gets work to do, stop the load balancing
* work being done for other cpus. Next load
* balancing owner will pick it up.
if (need_resched())
rq = cpu_rq(balance_cpu);
raw_spin_lock_irq(&rq->lock);
update_idle_cpu_load(rq);
raw_spin_unlock_irq(&rq->lock);
rebalance_domains(balance_cpu, CPU_IDLE);
if (time_after(this_rq->next_balance, rq->next_balance))
this_rq->next_balance = rq->next_balance;
nohz.next_balance = this_rq->next_balance;
end:
clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
* Current heuristic for kicking the idle load balancer in the presence
* of an idle cpu is the system.
* - This rq has more than one task.
* - At any scheduler domain level, this cpu's scheduler group has multiple
* busy cpu's exceeding the group's power.
* - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
* domain span are idle.
static inline int nohz_kick_needed(struct rq *rq, int cpu)
if (unlikely(idle_cpu(cpu)))
* We may be recently in ticked or tickless idle mode. At the first
* busy tick after returning from idle, we will update the busy stats.
set_cpu_sd_state_busy();
nohz_balance_exit_idle(cpu);
* None are in tickless mode and hence no need for NOHZ idle load
* balancing.
if (likely(!atomic_read(&nohz.nr_cpus)))
if (time_before(now, nohz.next_balance))
if (rq->nr_running >= 2)
goto need_kick;
struct sched_group *sg = sd->groups;
struct sched_group_power *sgp = sg->sgp;
int nr_busy = atomic_read(&sgp->nr_busy_cpus);
if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
goto need_kick_unlock;
if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
&& (cpumask_first_and(nohz.idle_cpus_mask,
sched_domain_span(sd)) < cpu))
if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
need_kick_unlock:
need_kick:
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
* run_rebalance_domains is triggered when needed from the scheduler tick.
* Also triggered for nohz idle balancing (with nohz_balancing_kick set).
static void run_rebalance_domains(struct softirq_action *h)
int this_cpu = smp_processor_id();
enum cpu_idle_type idle = this_rq->idle_balance ?
CPU_IDLE : CPU_NOT_IDLE;
rebalance_domains(this_cpu, idle);
* If this cpu has a pending nohz_balance_kick, then do the
* balancing on behalf of the other idle cpus whose ticks are
* stopped.
nohz_idle_balance(this_cpu, idle);
static inline int on_null_domain(int cpu)
return !rcu_dereference_sched(cpu_rq(cpu)->sd);
* Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
void trigger_load_balance(struct rq *rq, int cpu)
/* Don't need to rebalance while attached to NULL domain */
if (time_after_eq(jiffies, rq->next_balance) &&
likely(!on_null_domain(cpu)))
raise_softirq(SCHED_SOFTIRQ);
if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
nohz_balancer_kick(cpu);
static void rq_online_fair(struct rq *rq)
static void rq_offline_fair(struct rq *rq)
/* Ensure any throttled groups are reachable by pick_next_task */
unthrottle_offline_cfs_rqs(rq);
* scheduler tick hitting a task of our scheduling class:
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
entity_tick(cfs_rq, se, queued);
if (sched_feat_numa(NUMA))
task_tick_numa(rq, curr);
* called on fork with the child task as argument from the parent's context
* - child not yet on the tasklist
* - preemption disabled
static void task_fork_fair(struct task_struct *p)
struct sched_entity *se = &p->se, *curr;
struct rq *rq = this_rq();
cfs_rq = task_cfs_rq(current);
curr = cfs_rq->curr;
if (unlikely(task_cpu(p) != this_cpu)) {
__set_task_cpu(p, this_cpu);
if (curr)
se->vruntime = curr->vruntime;
place_entity(cfs_rq, se, 1);
if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
* Upon rescheduling, sched_class::put_prev_task() will place
* 'current' within the tree based on its new key value.
swap(curr->vruntime, se->vruntime);
* Priority of the task has changed. Check to see if we preempt
* the current task.
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
if (!p->se.on_rq)
* Reschedule if we are currently running on this runqueue and
* our priority decreased, or if we are not currently running on
* this runqueue and our priority is higher than the current's
if (rq->curr == p) {
if (p->prio > oldprio)
check_preempt_curr(rq, p, 0);
static void switched_from_fair(struct rq *rq, struct task_struct *p)
* Ensure the task's vruntime is normalized, so that when its
* switched back to the fair class the enqueue_entity(.flags=0) will
* do the right thing.
* If it was on_rq, then the dequeue_entity(.flags=0) will already
* have normalized the vruntime, if it was !on_rq, then only when
* the task is sleeping will it still have non-normalized vruntime.
if (!se->on_rq && p->state != TASK_RUNNING) {
* Fix up our vruntime so that the current sleep doesn't
* cause 'unlimited' sleep bonus.
#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
* Remove our load from contribution when we leave sched_fair
* and ensure we don't carry in an old decay_count if we
* switch back.
if (p->se.avg.decay_count) {
struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
__synchronize_entity_decay(&p->se);
subtract_blocked_load_contrib(cfs_rq,
p->se.avg.load_avg_contrib);
* We switched to the sched_fair class.
static void switched_to_fair(struct rq *rq, struct task_struct *p)
* We were most likely switched from sched_rt, so
* kick off the schedule if running, otherwise just see
* if we can still preempt the current task.
/* Account for a task changing its policy or group.
* This routine is mostly called to set cfs_rq->curr field when a task
* migrates between groups/classes.
static void set_curr_task_fair(struct rq *rq)
struct sched_entity *se = &rq->curr->se;
/* ensure bandwidth has been allocated on our new cfs_rq */
void init_cfs_rq(struct cfs_rq *cfs_rq)
cfs_rq->tasks_timeline = RB_ROOT;
cfs_rq->min_vruntime = (u64)(-(1LL << 20));
atomic64_set(&cfs_rq->decay_counter, 1);
atomic64_set(&cfs_rq->removed_load, 0);
static void task_move_group_fair(struct task_struct *p, int on_rq)
* If the task was not on the rq at the time of this cgroup movement
* it must have been asleep, sleeping tasks keep their ->vruntime
* absolute on their old rq until wakeup (needed for the fair sleeper
* bonus in place_entity()).
* If it was on the rq, we've just 'preempted' it, which does convert
* ->vruntime to a relative base.
* Make sure both cases convert their relative position when migrating
* to another cgroup's rq. This does somewhat interfere with the
* fair sleeper stuff for the first placement, but who cares.
* When !on_rq, vruntime of the task has usually NOT been normalized.
* But there are some cases where it has already been normalized:
* - Moving a forked child which is waiting for being woken up by
* wake_up_new_task().
* - Moving a task which has been woken up by try_to_wake_up() and
* waiting for actually being woken up by sched_ttwu_pending().
* To prevent boost or penalty in the new cfs_rq caused by delta
* min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
on_rq = 1;
if (!on_rq)
p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
set_task_rq(p, task_cpu(p));
if (!on_rq) {
cfs_rq = cfs_rq_of(&p->se);
p->se.vruntime += cfs_rq->min_vruntime;
* migrate_task_rq_fair() will have removed our previous
* contribution, but we must synchronize for ongoing future
* decay.
p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
void free_fair_sched_group(struct task_group *tg)
destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
for_each_possible_cpu(i) {
if (tg->cfs_rq)
kfree(tg->cfs_rq[i]);
if (tg->se)
kfree(tg->se[i]);
kfree(tg->cfs_rq);
kfree(tg->se);
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
if (!tg->cfs_rq)
goto err;
tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
if (!tg->se)
tg->shares = NICE_0_LOAD;
init_cfs_bandwidth(tg_cfs_bandwidth(tg));
cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
GFP_KERNEL, cpu_to_node(i));
if (!cfs_rq)
se = kzalloc_node(sizeof(struct sched_entity),
goto err_free_rq;
init_cfs_rq(cfs_rq);
init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
err_free_rq:
kfree(cfs_rq);
err:
void unregister_fair_sched_group(struct task_group *tg, int cpu)
* Only empty task groups can be destroyed; so we can speculatively
* check on_list without danger of it being re-added.
if (!tg->cfs_rq[cpu]->on_list)
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
struct sched_entity *se, int cpu,
struct sched_entity *parent)
cfs_rq->tg = tg;
cfs_rq->rq = rq;
init_cfs_rq_runtime(cfs_rq);
tg->cfs_rq[cpu] = cfs_rq;
tg->se[cpu] = se;
/* se could be NULL for root_task_group */
if (!parent)
se->cfs_rq = &rq->cfs;
se->cfs_rq = parent->my_q;
se->my_q = cfs_rq;
update_load_set(&se->load, 0);
se->parent = parent;
static DEFINE_MUTEX(shares_mutex);
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
* We can't change the weight of the root cgroup.
if (!tg->se[0])
return -EINVAL;
shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
mutex_lock(&shares_mutex);
if (tg->shares == shares)
tg->shares = shares;
se = tg->se[i];
/* Propagate contribution to hierarchy */
update_cfs_shares(group_cfs_rq(se));
mutex_unlock(&shares_mutex);
void free_fair_sched_group(struct task_group *tg) { }
void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
struct sched_entity *se = &task->se;
unsigned int rr_interval = 0;
* Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
* idle runqueue:
if (rq->cfs.load.weight)
rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
return rr_interval;
* All the scheduling class methods:
const struct sched_class fair_sched_class = {
.next = &idle_sched_class,
.enqueue_task = enqueue_task_fair,
.dequeue_task = dequeue_task_fair,
.yield_task = yield_task_fair,
.yield_to_task = yield_to_task_fair,
.check_preempt_curr = check_preempt_wakeup,
.pick_next_task = pick_next_task_fair,
.put_prev_task = put_prev_task_fair,
.select_task_rq = select_task_rq_fair,
.migrate_task_rq = migrate_task_rq_fair,
.rq_online = rq_online_fair,
.rq_offline = rq_offline_fair,
.task_waking = task_waking_fair,
.set_curr_task = set_curr_task_fair,
.task_tick = task_tick_fair,
.task_fork = task_fork_fair,
.prio_changed = prio_changed_fair,
.switched_from = switched_from_fair,
.switched_to = switched_to_fair,
.get_rr_interval = get_rr_interval_fair,
.task_move_group = task_move_group_fair,
void print_cfs_stats(struct seq_file *m, int cpu)
for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
print_cfs_rq(m, cpu, cfs_rq);
__init void init_sched_fair_class(void)
open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
nohz.next_balance = jiffies;
zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
cpu_notifier(sched_ilb_notifier, 0);
#endif /* SMP */