linux/fs/xfs/xfs_buf.c

1891 lines
42 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include <linux/stddef.h>
#include <linux/errno.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/gfp.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/bio.h>
#include <linux/sysctl.h>
#include <linux/proc_fs.h>
#include <linux/workqueue.h>
#include <linux/percpu.h>
#include <linux/blkdev.h>
#include <linux/hash.h>
#include <linux/kthread.h>
#include <linux/migrate.h>
#include <linux/backing-dev.h>
#include <linux/freezer.h>
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
#include "xfs_trace.h"
#include "xfs_log.h"
static kmem_zone_t *xfs_buf_zone;
static struct workqueue_struct *xfslogd_workqueue;
#ifdef XFS_BUF_LOCK_TRACKING
# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
#else
# define XB_SET_OWNER(bp) do { } while (0)
# define XB_CLEAR_OWNER(bp) do { } while (0)
# define XB_GET_OWNER(bp) do { } while (0)
#endif
#define xb_to_gfp(flags) \
((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
static inline int
xfs_buf_is_vmapped(
struct xfs_buf *bp)
{
/*
* Return true if the buffer is vmapped.
*
* b_addr is null if the buffer is not mapped, but the code is clever
* enough to know it doesn't have to map a single page, so the check has
* to be both for b_addr and bp->b_page_count > 1.
*/
return bp->b_addr && bp->b_page_count > 1;
}
static inline int
xfs_buf_vmap_len(
struct xfs_buf *bp)
{
return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
}
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
/*
* When we mark a buffer stale, we remove the buffer from the LRU and clear the
* b_lru_ref count so that the buffer is freed immediately when the buffer
* reference count falls to zero. If the buffer is already on the LRU, we need
* to remove the reference that LRU holds on the buffer.
*
* This prevents build-up of stale buffers on the LRU.
*/
void
xfs_buf_stale(
struct xfs_buf *bp)
{
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
ASSERT(xfs_buf_islocked(bp));
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
bp->b_flags |= XBF_STALE;
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
/*
* Clear the delwri status so that a delwri queue walker will not
* flush this buffer to disk now that it is stale. The delwri queue has
* a reference to the buffer, so this is safe to do.
*/
bp->b_flags &= ~_XBF_DELWRI_Q;
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
spin_lock(&bp->b_lock);
atomic_set(&bp->b_lru_ref, 0);
if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
(list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
atomic_dec(&bp->b_hold);
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
ASSERT(atomic_read(&bp->b_hold) >= 1);
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
spin_unlock(&bp->b_lock);
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
}
static int
xfs_buf_get_maps(
struct xfs_buf *bp,
int map_count)
{
ASSERT(bp->b_maps == NULL);
bp->b_map_count = map_count;
if (map_count == 1) {
bp->b_maps = &bp->__b_map;
return 0;
}
bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
KM_NOFS);
if (!bp->b_maps)
return -ENOMEM;
return 0;
}
/*
* Frees b_pages if it was allocated.
*/
static void
xfs_buf_free_maps(
struct xfs_buf *bp)
{
if (bp->b_maps != &bp->__b_map) {
kmem_free(bp->b_maps);
bp->b_maps = NULL;
}
}
struct xfs_buf *
_xfs_buf_alloc(
struct xfs_buftarg *target,
struct xfs_buf_map *map,
int nmaps,
xfs_buf_flags_t flags)
{
struct xfs_buf *bp;
int error;
int i;
bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
if (unlikely(!bp))
return NULL;
/*
* We don't want certain flags to appear in b_flags unless they are
* specifically set by later operations on the buffer.
*/
flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
atomic_set(&bp->b_hold, 1);
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
atomic_set(&bp->b_lru_ref, 1);
init_completion(&bp->b_iowait);
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
INIT_LIST_HEAD(&bp->b_lru);
INIT_LIST_HEAD(&bp->b_list);
RB_CLEAR_NODE(&bp->b_rbnode);
sema_init(&bp->b_sema, 0); /* held, no waiters */
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
spin_lock_init(&bp->b_lock);
XB_SET_OWNER(bp);
bp->b_target = target;
bp->b_flags = flags;
/*
* Set length and io_length to the same value initially.
* I/O routines should use io_length, which will be the same in
* most cases but may be reset (e.g. XFS recovery).
*/
error = xfs_buf_get_maps(bp, nmaps);
if (error) {
kmem_zone_free(xfs_buf_zone, bp);
return NULL;
}
bp->b_bn = map[0].bm_bn;
bp->b_length = 0;
for (i = 0; i < nmaps; i++) {
bp->b_maps[i].bm_bn = map[i].bm_bn;
bp->b_maps[i].bm_len = map[i].bm_len;
bp->b_length += map[i].bm_len;
}
bp->b_io_length = bp->b_length;
atomic_set(&bp->b_pin_count, 0);
init_waitqueue_head(&bp->b_waiters);
XFS_STATS_INC(xb_create);
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_init(bp, _RET_IP_);
return bp;
}
/*
* Allocate a page array capable of holding a specified number
* of pages, and point the page buf at it.
*/
STATIC int
_xfs_buf_get_pages(
xfs_buf_t *bp,
int page_count)
{
/* Make sure that we have a page list */
if (bp->b_pages == NULL) {
bp->b_page_count = page_count;
if (page_count <= XB_PAGES) {
bp->b_pages = bp->b_page_array;
} else {
bp->b_pages = kmem_alloc(sizeof(struct page *) *
page_count, KM_NOFS);
if (bp->b_pages == NULL)
return -ENOMEM;
}
memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
}
return 0;
}
/*
* Frees b_pages if it was allocated.
*/
STATIC void
_xfs_buf_free_pages(
xfs_buf_t *bp)
{
if (bp->b_pages != bp->b_page_array) {
kmem_free(bp->b_pages);
bp->b_pages = NULL;
}
}
/*
* Releases the specified buffer.
*
* The modification state of any associated pages is left unchanged.
* The buffer must not be on any hash - use xfs_buf_rele instead for
* hashed and refcounted buffers
*/
void
xfs_buf_free(
xfs_buf_t *bp)
{
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_free(bp, _RET_IP_);
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
ASSERT(list_empty(&bp->b_lru));
2011-03-25 22:16:45 +00:00
if (bp->b_flags & _XBF_PAGES) {
uint i;
if (xfs_buf_is_vmapped(bp))
vm_unmap_ram(bp->b_addr - bp->b_offset,
bp->b_page_count);
for (i = 0; i < bp->b_page_count; i++) {
struct page *page = bp->b_pages[i];
2011-03-25 22:16:45 +00:00
__free_page(page);
}
2011-03-25 22:16:45 +00:00
} else if (bp->b_flags & _XBF_KMEM)
kmem_free(bp->b_addr);
_xfs_buf_free_pages(bp);
xfs_buf_free_maps(bp);
kmem_zone_free(xfs_buf_zone, bp);
}
/*
2011-03-25 22:16:45 +00:00
* Allocates all the pages for buffer in question and builds it's page list.
*/
STATIC int
2011-03-25 22:16:45 +00:00
xfs_buf_allocate_memory(
xfs_buf_t *bp,
uint flags)
{
size_t size;
size_t nbytes, offset;
gfp_t gfp_mask = xb_to_gfp(flags);
unsigned short page_count, i;
xfs_off_t start, end;
int error;
2011-03-25 22:16:45 +00:00
/*
* for buffers that are contained within a single page, just allocate
* the memory from the heap - there's no need for the complexity of
* page arrays to keep allocation down to order 0.
*/
size = BBTOB(bp->b_length);
if (size < PAGE_SIZE) {
bp->b_addr = kmem_alloc(size, KM_NOFS);
2011-03-25 22:16:45 +00:00
if (!bp->b_addr) {
/* low memory - use alloc_page loop instead */
goto use_alloc_page;
}
if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
2011-03-25 22:16:45 +00:00
((unsigned long)bp->b_addr & PAGE_MASK)) {
/* b_addr spans two pages - use alloc_page instead */
kmem_free(bp->b_addr);
bp->b_addr = NULL;
goto use_alloc_page;
}
bp->b_offset = offset_in_page(bp->b_addr);
bp->b_pages = bp->b_page_array;
bp->b_pages[0] = virt_to_page(bp->b_addr);
bp->b_page_count = 1;
bp->b_flags |= _XBF_KMEM;
2011-03-25 22:16:45 +00:00
return 0;
}
use_alloc_page:
start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
>> PAGE_SHIFT;
page_count = end - start;
error = _xfs_buf_get_pages(bp, page_count);
if (unlikely(error))
return error;
offset = bp->b_offset;
2011-03-25 22:16:45 +00:00
bp->b_flags |= _XBF_PAGES;
for (i = 0; i < bp->b_page_count; i++) {
struct page *page;
uint retries = 0;
2011-03-25 22:16:45 +00:00
retry:
page = alloc_page(gfp_mask);
if (unlikely(page == NULL)) {
if (flags & XBF_READ_AHEAD) {
bp->b_page_count = i;
error = -ENOMEM;
2011-03-25 22:16:45 +00:00
goto out_free_pages;
}
/*
* This could deadlock.
*
* But until all the XFS lowlevel code is revamped to
* handle buffer allocation failures we can't do much.
*/
if (!(++retries % 100))
xfs_err(NULL,
"possible memory allocation deadlock in %s (mode:0x%x)",
__func__, gfp_mask);
XFS_STATS_INC(xb_page_retries);
congestion_wait(BLK_RW_ASYNC, HZ/50);
goto retry;
}
XFS_STATS_INC(xb_page_found);
2011-03-25 22:16:45 +00:00
nbytes = min_t(size_t, size, PAGE_SIZE - offset);
size -= nbytes;
bp->b_pages[i] = page;
offset = 0;
}
2011-03-25 22:16:45 +00:00
return 0;
2011-03-25 22:16:45 +00:00
out_free_pages:
for (i = 0; i < bp->b_page_count; i++)
__free_page(bp->b_pages[i]);
return error;
}
/*
* Map buffer into kernel address-space if necessary.
*/
STATIC int
_xfs_buf_map_pages(
xfs_buf_t *bp,
uint flags)
{
2011-03-25 22:16:45 +00:00
ASSERT(bp->b_flags & _XBF_PAGES);
if (bp->b_page_count == 1) {
2011-03-25 22:16:45 +00:00
/* A single page buffer is always mappable */
bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
} else if (flags & XBF_UNMAPPED) {
bp->b_addr = NULL;
} else {
int retried = 0;
xfs: use NOIO contexts for vm_map_ram When we map pages in the buffer cache, we can do so in GFP_NOFS contexts. However, the vmap interfaces do not provide any method of communicating this information to memory reclaim, and hence we get lockdep complaining about it regularly and occassionally see hangs that may be vmap related reclaim deadlocks. We can also see these same problems from anywhere where we use vmalloc for a large buffer (e.g. attribute code) inside a transaction context. A typical lockdep report shows up as a reclaim state warning like so: [14046.101458] ================================= [14046.102850] [ INFO: inconsistent lock state ] [14046.102850] 3.14.0-rc4+ #2 Not tainted [14046.102850] --------------------------------- [14046.102850] inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage. [14046.102850] kswapd0/14 [HC0[0]:SC0[0]:HE1:SE1] takes: [14046.102850] (&xfs_dir_ilock_class){++++?+}, at: [<791a04bb>] xfs_ilock+0xff/0x16a [14046.102850] {RECLAIM_FS-ON-W} state was registered at: [14046.102850] [<7904cdb1>] mark_held_locks+0x81/0xe7 [14046.102850] [<7904d390>] lockdep_trace_alloc+0x5c/0xb4 [14046.102850] [<790c2c28>] kmem_cache_alloc_trace+0x2b/0x11e [14046.102850] [<790ba7f4>] vm_map_ram+0x119/0x3e6 [14046.102850] [<7914e124>] _xfs_buf_map_pages+0x5b/0xcf [14046.102850] [<7914ed74>] xfs_buf_get_map+0x67/0x13f [14046.102850] [<7917506f>] xfs_attr_rmtval_set+0x396/0x4d5 [14046.102850] [<7916e8bb>] xfs_attr_leaf_addname+0x18f/0x37d [14046.102850] [<7916ed9e>] xfs_attr_set_int+0x2f5/0x3e8 [14046.102850] [<7916eefc>] xfs_attr_set+0x6b/0x74 [14046.102850] [<79168355>] xfs_xattr_set+0x61/0x81 [14046.102850] [<790e5b10>] generic_setxattr+0x59/0x68 [14046.102850] [<790e4c06>] __vfs_setxattr_noperm+0x58/0xce [14046.102850] [<790e4d0a>] vfs_setxattr+0x8e/0x92 [14046.102850] [<790e4ddd>] setxattr+0xcf/0x159 [14046.102850] [<790e5423>] SyS_lsetxattr+0x88/0xbb [14046.102850] [<79268438>] sysenter_do_call+0x12/0x36 Now, we can't completely remove these traces - mainly because vm_map_ram() will do GFP_KERNEL allocation and that generates the above warning before we get into the reclaim code, but we can turn them all into false positive warnings. To do that, use the method that DM and other IO context code uses to avoid this problem: there is a process flag to tell memory reclaim not to do IO that we can set appropriately. That prevents GFP_KERNEL context reclaim being done from deep inside the vmalloc code in places we can't directly pass a GFP_NOFS context to. That interface has a pair of wrapper functions: memalloc_noio_save() and memalloc_noio_restore(). Adding them around vm_map_ram and the vzalloc call in kmem_alloc_large() will prevent deadlocks and most lockdep reports for this issue. Also, convert the vzalloc() call in kmem_alloc_large() to use __vmalloc() so that we can pass the correct gfp context to the data page allocation routine inside __vmalloc() so that it is clear that GFP_NOFS context is important to this vmalloc call. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 05:19:14 +00:00
unsigned noio_flag;
/*
* vm_map_ram() will allocate auxillary structures (e.g.
* pagetables) with GFP_KERNEL, yet we are likely to be under
* GFP_NOFS context here. Hence we need to tell memory reclaim
* that we are in such a context via PF_MEMALLOC_NOIO to prevent
* memory reclaim re-entering the filesystem here and
* potentially deadlocking.
*/
noio_flag = memalloc_noio_save();
do {
bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
-1, PAGE_KERNEL);
if (bp->b_addr)
break;
vm_unmap_aliases();
} while (retried++ <= 1);
xfs: use NOIO contexts for vm_map_ram When we map pages in the buffer cache, we can do so in GFP_NOFS contexts. However, the vmap interfaces do not provide any method of communicating this information to memory reclaim, and hence we get lockdep complaining about it regularly and occassionally see hangs that may be vmap related reclaim deadlocks. We can also see these same problems from anywhere where we use vmalloc for a large buffer (e.g. attribute code) inside a transaction context. A typical lockdep report shows up as a reclaim state warning like so: [14046.101458] ================================= [14046.102850] [ INFO: inconsistent lock state ] [14046.102850] 3.14.0-rc4+ #2 Not tainted [14046.102850] --------------------------------- [14046.102850] inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage. [14046.102850] kswapd0/14 [HC0[0]:SC0[0]:HE1:SE1] takes: [14046.102850] (&xfs_dir_ilock_class){++++?+}, at: [<791a04bb>] xfs_ilock+0xff/0x16a [14046.102850] {RECLAIM_FS-ON-W} state was registered at: [14046.102850] [<7904cdb1>] mark_held_locks+0x81/0xe7 [14046.102850] [<7904d390>] lockdep_trace_alloc+0x5c/0xb4 [14046.102850] [<790c2c28>] kmem_cache_alloc_trace+0x2b/0x11e [14046.102850] [<790ba7f4>] vm_map_ram+0x119/0x3e6 [14046.102850] [<7914e124>] _xfs_buf_map_pages+0x5b/0xcf [14046.102850] [<7914ed74>] xfs_buf_get_map+0x67/0x13f [14046.102850] [<7917506f>] xfs_attr_rmtval_set+0x396/0x4d5 [14046.102850] [<7916e8bb>] xfs_attr_leaf_addname+0x18f/0x37d [14046.102850] [<7916ed9e>] xfs_attr_set_int+0x2f5/0x3e8 [14046.102850] [<7916eefc>] xfs_attr_set+0x6b/0x74 [14046.102850] [<79168355>] xfs_xattr_set+0x61/0x81 [14046.102850] [<790e5b10>] generic_setxattr+0x59/0x68 [14046.102850] [<790e4c06>] __vfs_setxattr_noperm+0x58/0xce [14046.102850] [<790e4d0a>] vfs_setxattr+0x8e/0x92 [14046.102850] [<790e4ddd>] setxattr+0xcf/0x159 [14046.102850] [<790e5423>] SyS_lsetxattr+0x88/0xbb [14046.102850] [<79268438>] sysenter_do_call+0x12/0x36 Now, we can't completely remove these traces - mainly because vm_map_ram() will do GFP_KERNEL allocation and that generates the above warning before we get into the reclaim code, but we can turn them all into false positive warnings. To do that, use the method that DM and other IO context code uses to avoid this problem: there is a process flag to tell memory reclaim not to do IO that we can set appropriately. That prevents GFP_KERNEL context reclaim being done from deep inside the vmalloc code in places we can't directly pass a GFP_NOFS context to. That interface has a pair of wrapper functions: memalloc_noio_save() and memalloc_noio_restore(). Adding them around vm_map_ram and the vzalloc call in kmem_alloc_large() will prevent deadlocks and most lockdep reports for this issue. Also, convert the vzalloc() call in kmem_alloc_large() to use __vmalloc() so that we can pass the correct gfp context to the data page allocation routine inside __vmalloc() so that it is clear that GFP_NOFS context is important to this vmalloc call. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 05:19:14 +00:00
memalloc_noio_restore(noio_flag);
if (!bp->b_addr)
return -ENOMEM;
bp->b_addr += bp->b_offset;
}
return 0;
}
/*
* Finding and Reading Buffers
*/
/*
* Look up, and creates if absent, a lockable buffer for
* a given range of an inode. The buffer is returned
* locked. No I/O is implied by this call.
*/
xfs_buf_t *
_xfs_buf_find(
struct xfs_buftarg *btp,
struct xfs_buf_map *map,
int nmaps,
xfs_buf_flags_t flags,
xfs_buf_t *new_bp)
{
size_t numbytes;
struct xfs_perag *pag;
struct rb_node **rbp;
struct rb_node *parent;
xfs_buf_t *bp;
xfs_daddr_t blkno = map[0].bm_bn;
xfs_daddr_t eofs;
int numblks = 0;
int i;
for (i = 0; i < nmaps; i++)
numblks += map[i].bm_len;
numbytes = BBTOB(numblks);
/* Check for IOs smaller than the sector size / not sector aligned */
ASSERT(!(numbytes < btp->bt_meta_sectorsize));
ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
/*
* Corrupted block numbers can get through to here, unfortunately, so we
* have to check that the buffer falls within the filesystem bounds.
*/
eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
if (blkno >= eofs) {
/*
* XXX (dgc): we should really be returning -EFSCORRUPTED here,
* but none of the higher level infrastructure supports
* returning a specific error on buffer lookup failures.
*/
xfs_alert(btp->bt_mount,
"%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
__func__, blkno, eofs);
xfs: rework remote attr CRCs Note: this changes the on-disk remote attribute format. I assert that this is OK to do as CRCs are marked experimental and the first kernel it is included in has not yet reached release yet. Further, the userspace utilities are still evolving and so anyone using this stuff right now is a developer or tester using volatile filesystems for testing this feature. Hence changing the format right now to save longer term pain is the right thing to do. The fundamental change is to move from a header per extent in the attribute to a header per filesytem block in the attribute. This means there are more header blocks and the parsing of the attribute data is slightly more complex, but it has the advantage that we always know the size of the attribute on disk based on the length of the data it contains. This is where the header-per-extent method has problems. We don't know the size of the attribute on disk without first knowing how many extents are used to hold it. And we can't tell from a mapping lookup, either, because remote attributes can be allocated contiguously with other attribute blocks and so there is no obvious way of determining the actual size of the atribute on disk short of walking and mapping buffers. The problem with this approach is that if we map a buffer incorrectly (e.g. we make the last buffer for the attribute data too long), we then get buffer cache lookup failure when we map it correctly. i.e. we get a size mismatch on lookup. This is not necessarily fatal, but it's a cache coherency problem that can lead to returning the wrong data to userspace or writing the wrong data to disk. And debug kernels will assert fail if this occurs. I found lots of niggly little problems trying to fix this issue on a 4k block size filesystem, finally getting it to pass with lots of fixes. The thing is, 1024 byte filesystems still failed, and it was getting really complex handling all the corner cases that were showing up. And there were clearly more that I hadn't found yet. It is complex, fragile code, and if we don't fix it now, it will be complex, fragile code forever more. Hence the simple fix is to add a header to each filesystem block. This gives us the same relationship between the attribute data length and the number of blocks on disk as we have without CRCs - it's a linear mapping and doesn't require us to guess anything. It is simple to implement, too - the remote block count calculated at lookup time can be used by the remote attribute set/get/remove code without modification for both CRC and non-CRC filesystems. The world becomes sane again. Because the copy-in and copy-out now need to iterate over each filesystem block, I moved them into helper functions so we separate the block mapping and buffer manupulations from the attribute data and CRC header manipulations. The code becomes much clearer as a result, and it is a lot easier to understand and debug. It also appears to be much more robust - once it worked on 4k block size filesystems, it has worked without failure on 1k block size filesystems, too. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com> (cherry picked from commit ad1858d77771172e08016890f0eb2faedec3ecee)
2013-05-21 08:02:08 +00:00
WARN_ON(1);
return NULL;
}
/* get tree root */
pag = xfs_perag_get(btp->bt_mount,
xfs_daddr_to_agno(btp->bt_mount, blkno));
/* walk tree */
spin_lock(&pag->pag_buf_lock);
rbp = &pag->pag_buf_tree.rb_node;
parent = NULL;
bp = NULL;
while (*rbp) {
parent = *rbp;
bp = rb_entry(parent, struct xfs_buf, b_rbnode);
if (blkno < bp->b_bn)
rbp = &(*rbp)->rb_left;
else if (blkno > bp->b_bn)
rbp = &(*rbp)->rb_right;
else {
/*
* found a block number match. If the range doesn't
* match, the only way this is allowed is if the buffer
* in the cache is stale and the transaction that made
* it stale has not yet committed. i.e. we are
* reallocating a busy extent. Skip this buffer and
* continue searching to the right for an exact match.
*/
if (bp->b_length != numblks) {
ASSERT(bp->b_flags & XBF_STALE);
rbp = &(*rbp)->rb_right;
continue;
}
atomic_inc(&bp->b_hold);
goto found;
}
}
/* No match found */
if (new_bp) {
rb_link_node(&new_bp->b_rbnode, parent, rbp);
rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
/* the buffer keeps the perag reference until it is freed */
new_bp->b_pag = pag;
spin_unlock(&pag->pag_buf_lock);
} else {
XFS_STATS_INC(xb_miss_locked);
spin_unlock(&pag->pag_buf_lock);
xfs_perag_put(pag);
}
return new_bp;
found:
spin_unlock(&pag->pag_buf_lock);
xfs_perag_put(pag);
if (!xfs_buf_trylock(bp)) {
if (flags & XBF_TRYLOCK) {
xfs_buf_rele(bp);
XFS_STATS_INC(xb_busy_locked);
return NULL;
}
xfs_buf_lock(bp);
XFS_STATS_INC(xb_get_locked_waited);
}
2011-03-25 22:16:45 +00:00
/*
* if the buffer is stale, clear all the external state associated with
* it. We need to keep flags such as how we allocated the buffer memory
* intact here.
*/
if (bp->b_flags & XBF_STALE) {
ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
ASSERT(bp->b_iodone == NULL);
bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
bp->b_ops = NULL;
}
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_find(bp, flags, _RET_IP_);
XFS_STATS_INC(xb_get_locked);
return bp;
}
/*
xfs: Don't allocate new buffers on every call to _xfs_buf_find Stats show that for an 8-way unlink @ ~80,000 unlinks/s we are doing ~1 million cache hit lookups to ~3000 buffer creates. That's almost 3 orders of magnitude more cahce hits than misses, so optimising for cache hits is quite important. In the cache hit case, we do not need to allocate a new buffer in case of a cache miss, so we are effectively hitting the allocator for no good reason for vast the majority of calls to _xfs_buf_find. 8-way create workloads are showing similar cache hit/miss ratios. The result is profiles that look like this: samples pcnt function DSO _______ _____ _______________________________ _________________ 1036.00 10.0% _xfs_buf_find [kernel.kallsyms] 582.00 5.6% kmem_cache_alloc [kernel.kallsyms] 519.00 5.0% __memcpy [kernel.kallsyms] 468.00 4.5% __ticket_spin_lock [kernel.kallsyms] 388.00 3.7% kmem_cache_free [kernel.kallsyms] 331.00 3.2% xfs_log_commit_cil [kernel.kallsyms] Further, there is a fair bit of work involved in initialising a new buffer once a cache miss has occurred and we currently do that under the rbtree spinlock. That increases spinlock hold time on what are heavily used trees. To fix this, remove the initialisation of the buffer from _xfs_buf_find() and only allocate the new buffer once we've had a cache miss. Initialise the buffer immediately after allocating it in xfs_buf_get, too, so that is it ready for insert if we get another cache miss after allocation. This minimises lock hold time and avoids unnecessary allocator churn. The resulting profiles look like: samples pcnt function DSO _______ _____ ___________________________ _________________ 8111.00 9.1% _xfs_buf_find [kernel.kallsyms] 4380.00 4.9% __memcpy [kernel.kallsyms] 4341.00 4.8% __ticket_spin_lock [kernel.kallsyms] 3401.00 3.8% kmem_cache_alloc [kernel.kallsyms] 2856.00 3.2% xfs_log_commit_cil [kernel.kallsyms] 2625.00 2.9% __kmalloc [kernel.kallsyms] 2380.00 2.7% kfree [kernel.kallsyms] 2016.00 2.3% kmem_cache_free [kernel.kallsyms] Showing a significant reduction in time spent doing allocation and freeing from slabs (kmem_cache_alloc and kmem_cache_free). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-09-30 04:45:02 +00:00
* Assembles a buffer covering the specified range. The code is optimised for
* cache hits, as metadata intensive workloads will see 3 orders of magnitude
* more hits than misses.
*/
xfs: Don't allocate new buffers on every call to _xfs_buf_find Stats show that for an 8-way unlink @ ~80,000 unlinks/s we are doing ~1 million cache hit lookups to ~3000 buffer creates. That's almost 3 orders of magnitude more cahce hits than misses, so optimising for cache hits is quite important. In the cache hit case, we do not need to allocate a new buffer in case of a cache miss, so we are effectively hitting the allocator for no good reason for vast the majority of calls to _xfs_buf_find. 8-way create workloads are showing similar cache hit/miss ratios. The result is profiles that look like this: samples pcnt function DSO _______ _____ _______________________________ _________________ 1036.00 10.0% _xfs_buf_find [kernel.kallsyms] 582.00 5.6% kmem_cache_alloc [kernel.kallsyms] 519.00 5.0% __memcpy [kernel.kallsyms] 468.00 4.5% __ticket_spin_lock [kernel.kallsyms] 388.00 3.7% kmem_cache_free [kernel.kallsyms] 331.00 3.2% xfs_log_commit_cil [kernel.kallsyms] Further, there is a fair bit of work involved in initialising a new buffer once a cache miss has occurred and we currently do that under the rbtree spinlock. That increases spinlock hold time on what are heavily used trees. To fix this, remove the initialisation of the buffer from _xfs_buf_find() and only allocate the new buffer once we've had a cache miss. Initialise the buffer immediately after allocating it in xfs_buf_get, too, so that is it ready for insert if we get another cache miss after allocation. This minimises lock hold time and avoids unnecessary allocator churn. The resulting profiles look like: samples pcnt function DSO _______ _____ ___________________________ _________________ 8111.00 9.1% _xfs_buf_find [kernel.kallsyms] 4380.00 4.9% __memcpy [kernel.kallsyms] 4341.00 4.8% __ticket_spin_lock [kernel.kallsyms] 3401.00 3.8% kmem_cache_alloc [kernel.kallsyms] 2856.00 3.2% xfs_log_commit_cil [kernel.kallsyms] 2625.00 2.9% __kmalloc [kernel.kallsyms] 2380.00 2.7% kfree [kernel.kallsyms] 2016.00 2.3% kmem_cache_free [kernel.kallsyms] Showing a significant reduction in time spent doing allocation and freeing from slabs (kmem_cache_alloc and kmem_cache_free). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-09-30 04:45:02 +00:00
struct xfs_buf *
xfs_buf_get_map(
struct xfs_buftarg *target,
struct xfs_buf_map *map,
int nmaps,
xfs_buf_flags_t flags)
{
xfs: Don't allocate new buffers on every call to _xfs_buf_find Stats show that for an 8-way unlink @ ~80,000 unlinks/s we are doing ~1 million cache hit lookups to ~3000 buffer creates. That's almost 3 orders of magnitude more cahce hits than misses, so optimising for cache hits is quite important. In the cache hit case, we do not need to allocate a new buffer in case of a cache miss, so we are effectively hitting the allocator for no good reason for vast the majority of calls to _xfs_buf_find. 8-way create workloads are showing similar cache hit/miss ratios. The result is profiles that look like this: samples pcnt function DSO _______ _____ _______________________________ _________________ 1036.00 10.0% _xfs_buf_find [kernel.kallsyms] 582.00 5.6% kmem_cache_alloc [kernel.kallsyms] 519.00 5.0% __memcpy [kernel.kallsyms] 468.00 4.5% __ticket_spin_lock [kernel.kallsyms] 388.00 3.7% kmem_cache_free [kernel.kallsyms] 331.00 3.2% xfs_log_commit_cil [kernel.kallsyms] Further, there is a fair bit of work involved in initialising a new buffer once a cache miss has occurred and we currently do that under the rbtree spinlock. That increases spinlock hold time on what are heavily used trees. To fix this, remove the initialisation of the buffer from _xfs_buf_find() and only allocate the new buffer once we've had a cache miss. Initialise the buffer immediately after allocating it in xfs_buf_get, too, so that is it ready for insert if we get another cache miss after allocation. This minimises lock hold time and avoids unnecessary allocator churn. The resulting profiles look like: samples pcnt function DSO _______ _____ ___________________________ _________________ 8111.00 9.1% _xfs_buf_find [kernel.kallsyms] 4380.00 4.9% __memcpy [kernel.kallsyms] 4341.00 4.8% __ticket_spin_lock [kernel.kallsyms] 3401.00 3.8% kmem_cache_alloc [kernel.kallsyms] 2856.00 3.2% xfs_log_commit_cil [kernel.kallsyms] 2625.00 2.9% __kmalloc [kernel.kallsyms] 2380.00 2.7% kfree [kernel.kallsyms] 2016.00 2.3% kmem_cache_free [kernel.kallsyms] Showing a significant reduction in time spent doing allocation and freeing from slabs (kmem_cache_alloc and kmem_cache_free). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-09-30 04:45:02 +00:00
struct xfs_buf *bp;
struct xfs_buf *new_bp;
2011-03-25 22:16:45 +00:00
int error = 0;
bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
xfs: Don't allocate new buffers on every call to _xfs_buf_find Stats show that for an 8-way unlink @ ~80,000 unlinks/s we are doing ~1 million cache hit lookups to ~3000 buffer creates. That's almost 3 orders of magnitude more cahce hits than misses, so optimising for cache hits is quite important. In the cache hit case, we do not need to allocate a new buffer in case of a cache miss, so we are effectively hitting the allocator for no good reason for vast the majority of calls to _xfs_buf_find. 8-way create workloads are showing similar cache hit/miss ratios. The result is profiles that look like this: samples pcnt function DSO _______ _____ _______________________________ _________________ 1036.00 10.0% _xfs_buf_find [kernel.kallsyms] 582.00 5.6% kmem_cache_alloc [kernel.kallsyms] 519.00 5.0% __memcpy [kernel.kallsyms] 468.00 4.5% __ticket_spin_lock [kernel.kallsyms] 388.00 3.7% kmem_cache_free [kernel.kallsyms] 331.00 3.2% xfs_log_commit_cil [kernel.kallsyms] Further, there is a fair bit of work involved in initialising a new buffer once a cache miss has occurred and we currently do that under the rbtree spinlock. That increases spinlock hold time on what are heavily used trees. To fix this, remove the initialisation of the buffer from _xfs_buf_find() and only allocate the new buffer once we've had a cache miss. Initialise the buffer immediately after allocating it in xfs_buf_get, too, so that is it ready for insert if we get another cache miss after allocation. This minimises lock hold time and avoids unnecessary allocator churn. The resulting profiles look like: samples pcnt function DSO _______ _____ ___________________________ _________________ 8111.00 9.1% _xfs_buf_find [kernel.kallsyms] 4380.00 4.9% __memcpy [kernel.kallsyms] 4341.00 4.8% __ticket_spin_lock [kernel.kallsyms] 3401.00 3.8% kmem_cache_alloc [kernel.kallsyms] 2856.00 3.2% xfs_log_commit_cil [kernel.kallsyms] 2625.00 2.9% __kmalloc [kernel.kallsyms] 2380.00 2.7% kfree [kernel.kallsyms] 2016.00 2.3% kmem_cache_free [kernel.kallsyms] Showing a significant reduction in time spent doing allocation and freeing from slabs (kmem_cache_alloc and kmem_cache_free). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-09-30 04:45:02 +00:00
if (likely(bp))
goto found;
new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
if (unlikely(!new_bp))
return NULL;
error = xfs_buf_allocate_memory(new_bp, flags);
if (error) {
xfs_buf_free(new_bp);
return NULL;
}
bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
xfs: Don't allocate new buffers on every call to _xfs_buf_find Stats show that for an 8-way unlink @ ~80,000 unlinks/s we are doing ~1 million cache hit lookups to ~3000 buffer creates. That's almost 3 orders of magnitude more cahce hits than misses, so optimising for cache hits is quite important. In the cache hit case, we do not need to allocate a new buffer in case of a cache miss, so we are effectively hitting the allocator for no good reason for vast the majority of calls to _xfs_buf_find. 8-way create workloads are showing similar cache hit/miss ratios. The result is profiles that look like this: samples pcnt function DSO _______ _____ _______________________________ _________________ 1036.00 10.0% _xfs_buf_find [kernel.kallsyms] 582.00 5.6% kmem_cache_alloc [kernel.kallsyms] 519.00 5.0% __memcpy [kernel.kallsyms] 468.00 4.5% __ticket_spin_lock [kernel.kallsyms] 388.00 3.7% kmem_cache_free [kernel.kallsyms] 331.00 3.2% xfs_log_commit_cil [kernel.kallsyms] Further, there is a fair bit of work involved in initialising a new buffer once a cache miss has occurred and we currently do that under the rbtree spinlock. That increases spinlock hold time on what are heavily used trees. To fix this, remove the initialisation of the buffer from _xfs_buf_find() and only allocate the new buffer once we've had a cache miss. Initialise the buffer immediately after allocating it in xfs_buf_get, too, so that is it ready for insert if we get another cache miss after allocation. This minimises lock hold time and avoids unnecessary allocator churn. The resulting profiles look like: samples pcnt function DSO _______ _____ ___________________________ _________________ 8111.00 9.1% _xfs_buf_find [kernel.kallsyms] 4380.00 4.9% __memcpy [kernel.kallsyms] 4341.00 4.8% __ticket_spin_lock [kernel.kallsyms] 3401.00 3.8% kmem_cache_alloc [kernel.kallsyms] 2856.00 3.2% xfs_log_commit_cil [kernel.kallsyms] 2625.00 2.9% __kmalloc [kernel.kallsyms] 2380.00 2.7% kfree [kernel.kallsyms] 2016.00 2.3% kmem_cache_free [kernel.kallsyms] Showing a significant reduction in time spent doing allocation and freeing from slabs (kmem_cache_alloc and kmem_cache_free). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-09-30 04:45:02 +00:00
if (!bp) {
xfs_buf_free(new_bp);
xfs: Don't allocate new buffers on every call to _xfs_buf_find Stats show that for an 8-way unlink @ ~80,000 unlinks/s we are doing ~1 million cache hit lookups to ~3000 buffer creates. That's almost 3 orders of magnitude more cahce hits than misses, so optimising for cache hits is quite important. In the cache hit case, we do not need to allocate a new buffer in case of a cache miss, so we are effectively hitting the allocator for no good reason for vast the majority of calls to _xfs_buf_find. 8-way create workloads are showing similar cache hit/miss ratios. The result is profiles that look like this: samples pcnt function DSO _______ _____ _______________________________ _________________ 1036.00 10.0% _xfs_buf_find [kernel.kallsyms] 582.00 5.6% kmem_cache_alloc [kernel.kallsyms] 519.00 5.0% __memcpy [kernel.kallsyms] 468.00 4.5% __ticket_spin_lock [kernel.kallsyms] 388.00 3.7% kmem_cache_free [kernel.kallsyms] 331.00 3.2% xfs_log_commit_cil [kernel.kallsyms] Further, there is a fair bit of work involved in initialising a new buffer once a cache miss has occurred and we currently do that under the rbtree spinlock. That increases spinlock hold time on what are heavily used trees. To fix this, remove the initialisation of the buffer from _xfs_buf_find() and only allocate the new buffer once we've had a cache miss. Initialise the buffer immediately after allocating it in xfs_buf_get, too, so that is it ready for insert if we get another cache miss after allocation. This minimises lock hold time and avoids unnecessary allocator churn. The resulting profiles look like: samples pcnt function DSO _______ _____ ___________________________ _________________ 8111.00 9.1% _xfs_buf_find [kernel.kallsyms] 4380.00 4.9% __memcpy [kernel.kallsyms] 4341.00 4.8% __ticket_spin_lock [kernel.kallsyms] 3401.00 3.8% kmem_cache_alloc [kernel.kallsyms] 2856.00 3.2% xfs_log_commit_cil [kernel.kallsyms] 2625.00 2.9% __kmalloc [kernel.kallsyms] 2380.00 2.7% kfree [kernel.kallsyms] 2016.00 2.3% kmem_cache_free [kernel.kallsyms] Showing a significant reduction in time spent doing allocation and freeing from slabs (kmem_cache_alloc and kmem_cache_free). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-09-30 04:45:02 +00:00
return NULL;
}
if (bp != new_bp)
xfs_buf_free(new_bp);
xfs: Don't allocate new buffers on every call to _xfs_buf_find Stats show that for an 8-way unlink @ ~80,000 unlinks/s we are doing ~1 million cache hit lookups to ~3000 buffer creates. That's almost 3 orders of magnitude more cahce hits than misses, so optimising for cache hits is quite important. In the cache hit case, we do not need to allocate a new buffer in case of a cache miss, so we are effectively hitting the allocator for no good reason for vast the majority of calls to _xfs_buf_find. 8-way create workloads are showing similar cache hit/miss ratios. The result is profiles that look like this: samples pcnt function DSO _______ _____ _______________________________ _________________ 1036.00 10.0% _xfs_buf_find [kernel.kallsyms] 582.00 5.6% kmem_cache_alloc [kernel.kallsyms] 519.00 5.0% __memcpy [kernel.kallsyms] 468.00 4.5% __ticket_spin_lock [kernel.kallsyms] 388.00 3.7% kmem_cache_free [kernel.kallsyms] 331.00 3.2% xfs_log_commit_cil [kernel.kallsyms] Further, there is a fair bit of work involved in initialising a new buffer once a cache miss has occurred and we currently do that under the rbtree spinlock. That increases spinlock hold time on what are heavily used trees. To fix this, remove the initialisation of the buffer from _xfs_buf_find() and only allocate the new buffer once we've had a cache miss. Initialise the buffer immediately after allocating it in xfs_buf_get, too, so that is it ready for insert if we get another cache miss after allocation. This minimises lock hold time and avoids unnecessary allocator churn. The resulting profiles look like: samples pcnt function DSO _______ _____ ___________________________ _________________ 8111.00 9.1% _xfs_buf_find [kernel.kallsyms] 4380.00 4.9% __memcpy [kernel.kallsyms] 4341.00 4.8% __ticket_spin_lock [kernel.kallsyms] 3401.00 3.8% kmem_cache_alloc [kernel.kallsyms] 2856.00 3.2% xfs_log_commit_cil [kernel.kallsyms] 2625.00 2.9% __kmalloc [kernel.kallsyms] 2380.00 2.7% kfree [kernel.kallsyms] 2016.00 2.3% kmem_cache_free [kernel.kallsyms] Showing a significant reduction in time spent doing allocation and freeing from slabs (kmem_cache_alloc and kmem_cache_free). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-09-30 04:45:02 +00:00
found:
if (!bp->b_addr) {
error = _xfs_buf_map_pages(bp, flags);
if (unlikely(error)) {
xfs_warn(target->bt_mount,
"%s: failed to map pagesn", __func__);
xfs_buf_relse(bp);
return NULL;
}
}
XFS_STATS_INC(xb_get);
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_get(bp, flags, _RET_IP_);
return bp;
}
STATIC int
_xfs_buf_read(
xfs_buf_t *bp,
xfs_buf_flags_t flags)
{
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
ASSERT(!(flags & XBF_WRITE));
ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
xfs_buf_iorequest(bp);
if (flags & XBF_ASYNC)
return 0;
return xfs_buf_iowait(bp);
}
xfs_buf_t *
xfs_buf_read_map(
struct xfs_buftarg *target,
struct xfs_buf_map *map,
int nmaps,
xfs_buf_flags_t flags,
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp;
flags |= XBF_READ;
bp = xfs_buf_get_map(target, map, nmaps, flags);
if (bp) {
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_read(bp, flags, _RET_IP_);
if (!XFS_BUF_ISDONE(bp)) {
XFS_STATS_INC(xb_get_read);
bp->b_ops = ops;
_xfs_buf_read(bp, flags);
} else if (flags & XBF_ASYNC) {
/*
* Read ahead call which is already satisfied,
* drop the buffer
*/
xfs_buf_relse(bp);
return NULL;
} else {
/* We do not want read in the flags */
bp->b_flags &= ~XBF_READ;
}
}
return bp;
}
/*
* If we are not low on memory then do the readahead in a deadlock
* safe manner.
*/
void
xfs_buf_readahead_map(
struct xfs_buftarg *target,
struct xfs_buf_map *map,
int nmaps,
const struct xfs_buf_ops *ops)
{
2011-03-25 22:16:45 +00:00
if (bdi_read_congested(target->bt_bdi))
return;
xfs_buf_read_map(target, map, nmaps,
XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
}
/*
* Read an uncached buffer from disk. Allocates and returns a locked
* buffer containing the disk contents or nothing.
*/
struct xfs_buf *
xfs_buf_read_uncached(
struct xfs_buftarg *target,
xfs_daddr_t daddr,
size_t numblks,
int flags,
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp;
bp = xfs_buf_get_uncached(target, numblks, flags);
if (!bp)
return NULL;
/* set up the buffer for a read IO */
ASSERT(bp->b_map_count == 1);
bp->b_bn = daddr;
bp->b_maps[0].bm_bn = daddr;
bp->b_flags |= XBF_READ;
bp->b_ops = ops;
if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
xfs_buf_relse(bp);
return NULL;
}
xfs_buf_iorequest(bp);
xfs_buf_iowait(bp);
return bp;
}
/*
* Return a buffer allocated as an empty buffer and associated to external
* memory via xfs_buf_associate_memory() back to it's empty state.
*/
void
xfs_buf_set_empty(
struct xfs_buf *bp,
size_t numblks)
{
if (bp->b_pages)
_xfs_buf_free_pages(bp);
bp->b_pages = NULL;
bp->b_page_count = 0;
bp->b_addr = NULL;
bp->b_length = numblks;
bp->b_io_length = numblks;
ASSERT(bp->b_map_count == 1);
bp->b_bn = XFS_BUF_DADDR_NULL;
bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
bp->b_maps[0].bm_len = bp->b_length;
}
static inline struct page *
mem_to_page(
void *addr)
{
if ((!is_vmalloc_addr(addr))) {
return virt_to_page(addr);
} else {
return vmalloc_to_page(addr);
}
}
int
xfs_buf_associate_memory(
xfs_buf_t *bp,
void *mem,
size_t len)
{
int rval;
int i = 0;
unsigned long pageaddr;
unsigned long offset;
size_t buflen;
int page_count;
2011-03-25 22:16:45 +00:00
pageaddr = (unsigned long)mem & PAGE_MASK;
offset = (unsigned long)mem - pageaddr;
2011-03-25 22:16:45 +00:00
buflen = PAGE_ALIGN(len + offset);
page_count = buflen >> PAGE_SHIFT;
/* Free any previous set of page pointers */
if (bp->b_pages)
_xfs_buf_free_pages(bp);
bp->b_pages = NULL;
bp->b_addr = mem;
rval = _xfs_buf_get_pages(bp, page_count);
if (rval)
return rval;
bp->b_offset = offset;
for (i = 0; i < bp->b_page_count; i++) {
bp->b_pages[i] = mem_to_page((void *)pageaddr);
2011-03-25 22:16:45 +00:00
pageaddr += PAGE_SIZE;
}
bp->b_io_length = BTOBB(len);
bp->b_length = BTOBB(buflen);
return 0;
}
xfs_buf_t *
xfs_buf_get_uncached(
struct xfs_buftarg *target,
size_t numblks,
int flags)
{
unsigned long page_count;
int error, i;
struct xfs_buf *bp;
DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
bp = _xfs_buf_alloc(target, &map, 1, 0);
if (unlikely(bp == NULL))
goto fail;
page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
error = _xfs_buf_get_pages(bp, page_count);
if (error)
goto fail_free_buf;
for (i = 0; i < page_count; i++) {
bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
if (!bp->b_pages[i])
goto fail_free_mem;
}
bp->b_flags |= _XBF_PAGES;
error = _xfs_buf_map_pages(bp, 0);
if (unlikely(error)) {
xfs_warn(target->bt_mount,
"%s: failed to map pages", __func__);
goto fail_free_mem;
}
trace_xfs_buf_get_uncached(bp, _RET_IP_);
return bp;
fail_free_mem:
while (--i >= 0)
__free_page(bp->b_pages[i]);
_xfs_buf_free_pages(bp);
fail_free_buf:
xfs_buf_free_maps(bp);
kmem_zone_free(xfs_buf_zone, bp);
fail:
return NULL;
}
/*
* Increment reference count on buffer, to hold the buffer concurrently
* with another thread which may release (free) the buffer asynchronously.
* Must hold the buffer already to call this function.
*/
void
xfs_buf_hold(
xfs_buf_t *bp)
{
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_hold(bp, _RET_IP_);
atomic_inc(&bp->b_hold);
}
/*
* Releases a hold on the specified buffer. If the
* the hold count is 1, calls xfs_buf_free.
*/
void
xfs_buf_rele(
xfs_buf_t *bp)
{
struct xfs_perag *pag = bp->b_pag;
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_rele(bp, _RET_IP_);
if (!pag) {
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
ASSERT(list_empty(&bp->b_lru));
ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
if (atomic_dec_and_test(&bp->b_hold))
xfs_buf_free(bp);
return;
}
ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
ASSERT(atomic_read(&bp->b_hold) > 0);
if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
spin_lock(&bp->b_lock);
if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
/*
* If the buffer is added to the LRU take a new
* reference to the buffer for the LRU and clear the
* (now stale) dispose list state flag
*/
if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
bp->b_state &= ~XFS_BSTATE_DISPOSE;
atomic_inc(&bp->b_hold);
}
spin_unlock(&bp->b_lock);
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
spin_unlock(&pag->pag_buf_lock);
} else {
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
/*
* most of the time buffers will already be removed from
* the LRU, so optimise that case by checking for the
* XFS_BSTATE_DISPOSE flag indicating the last list the
* buffer was on was the disposal list
*/
if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
} else {
ASSERT(list_empty(&bp->b_lru));
}
spin_unlock(&bp->b_lock);
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
spin_unlock(&pag->pag_buf_lock);
xfs_perag_put(pag);
xfs_buf_free(bp);
}
}
}
/*
2011-03-25 22:16:45 +00:00
* Lock a buffer object, if it is not already locked.
*
* If we come across a stale, pinned, locked buffer, we know that we are
* being asked to lock a buffer that has been reallocated. Because it is
* pinned, we know that the log has not been pushed to disk and hence it
* will still be locked. Rather than continuing to have trylock attempts
* fail until someone else pushes the log, push it ourselves before
* returning. This means that the xfsaild will not get stuck trying
* to push on stale inode buffers.
*/
int
xfs_buf_trylock(
struct xfs_buf *bp)
{
int locked;
locked = down_trylock(&bp->b_sema) == 0;
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
if (locked)
XB_SET_OWNER(bp);
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_trylock(bp, _RET_IP_);
return locked;
}
/*
2011-03-25 22:16:45 +00:00
* Lock a buffer object.
xfs: Improve scalability of busy extent tracking When we free a metadata extent, we record it in the per-AG busy extent array so that it is not re-used before the freeing transaction hits the disk. This array is fixed size, so when it overflows we make further allocation transactions synchronous because we cannot track more freed extents until those transactions hit the disk and are completed. Under heavy mixed allocation and freeing workloads with large log buffers, we can overflow this array quite easily. Further, the array is sparsely populated, which means that inserts need to search for a free slot, and array searches often have to search many more slots that are actually used to check all the busy extents. Quite inefficient, really. To enable this aspect of extent freeing to scale better, we need a structure that can grow dynamically. While in other areas of XFS we have used radix trees, the extents being freed are at random locations on disk so are better suited to being indexed by an rbtree. So, use a per-AG rbtree indexed by block number to track busy extents. This incures a memory allocation when marking an extent busy, but should not occur too often in low memory situations. This should scale to an arbitrary number of extents so should not be a limitation for features such as in-memory aggregation of transactions. However, there are still situations where we can't avoid allocating busy extents (such as allocation from the AGFL). To minimise the overhead of such occurences, we need to avoid doing a synchronous log force while holding the AGF locked to ensure that the previous transactions are safely on disk before we use the extent. We can do this by marking the transaction doing the allocation as synchronous rather issuing a log force. Because of the locking involved and the ordering of transactions, the synchronous transaction provides the same guarantees as a synchronous log force because it ensures that all the prior transactions are already on disk when the synchronous transaction hits the disk. i.e. it preserves the free->allocate order of the extent correctly in recovery. By doing this, we avoid holding the AGF locked while log writes are in progress, hence reducing the length of time the lock is held and therefore we increase the rate at which we can allocate and free from the allocation group, thereby increasing overall throughput. The only problem with this approach is that when a metadata buffer is marked stale (e.g. a directory block is removed), then buffer remains pinned and locked until the log goes to disk. The issue here is that if that stale buffer is reallocated in a subsequent transaction, the attempt to lock that buffer in the transaction will hang waiting the log to go to disk to unlock and unpin the buffer. Hence if someone tries to lock a pinned, stale, locked buffer we need to push on the log to get it unlocked ASAP. Effectively we are trading off a guaranteed log force for a much less common trigger for log force to occur. Ideally we should not reallocate busy extents. That is a much more complex fix to the problem as it involves direct intervention in the allocation btree searches in many places. This is left to a future set of modifications. Finally, now that we track busy extents in allocated memory, we don't need the descriptors in the transaction structure to point to them. We can replace the complex busy chunk infrastructure with a simple linked list of busy extents. This allows us to remove a large chunk of code, making the overall change a net reduction in code size. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 02:07:08 +00:00
*
* If we come across a stale, pinned, locked buffer, we know that we
* are being asked to lock a buffer that has been reallocated. Because
* it is pinned, we know that the log has not been pushed to disk and
* hence it will still be locked. Rather than sleeping until someone
* else pushes the log, push it ourselves before trying to get the lock.
*/
void
xfs_buf_lock(
struct xfs_buf *bp)
{
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_lock(bp, _RET_IP_);
xfs: Improve scalability of busy extent tracking When we free a metadata extent, we record it in the per-AG busy extent array so that it is not re-used before the freeing transaction hits the disk. This array is fixed size, so when it overflows we make further allocation transactions synchronous because we cannot track more freed extents until those transactions hit the disk and are completed. Under heavy mixed allocation and freeing workloads with large log buffers, we can overflow this array quite easily. Further, the array is sparsely populated, which means that inserts need to search for a free slot, and array searches often have to search many more slots that are actually used to check all the busy extents. Quite inefficient, really. To enable this aspect of extent freeing to scale better, we need a structure that can grow dynamically. While in other areas of XFS we have used radix trees, the extents being freed are at random locations on disk so are better suited to being indexed by an rbtree. So, use a per-AG rbtree indexed by block number to track busy extents. This incures a memory allocation when marking an extent busy, but should not occur too often in low memory situations. This should scale to an arbitrary number of extents so should not be a limitation for features such as in-memory aggregation of transactions. However, there are still situations where we can't avoid allocating busy extents (such as allocation from the AGFL). To minimise the overhead of such occurences, we need to avoid doing a synchronous log force while holding the AGF locked to ensure that the previous transactions are safely on disk before we use the extent. We can do this by marking the transaction doing the allocation as synchronous rather issuing a log force. Because of the locking involved and the ordering of transactions, the synchronous transaction provides the same guarantees as a synchronous log force because it ensures that all the prior transactions are already on disk when the synchronous transaction hits the disk. i.e. it preserves the free->allocate order of the extent correctly in recovery. By doing this, we avoid holding the AGF locked while log writes are in progress, hence reducing the length of time the lock is held and therefore we increase the rate at which we can allocate and free from the allocation group, thereby increasing overall throughput. The only problem with this approach is that when a metadata buffer is marked stale (e.g. a directory block is removed), then buffer remains pinned and locked until the log goes to disk. The issue here is that if that stale buffer is reallocated in a subsequent transaction, the attempt to lock that buffer in the transaction will hang waiting the log to go to disk to unlock and unpin the buffer. Hence if someone tries to lock a pinned, stale, locked buffer we need to push on the log to get it unlocked ASAP. Effectively we are trading off a guaranteed log force for a much less common trigger for log force to occur. Ideally we should not reallocate busy extents. That is a much more complex fix to the problem as it involves direct intervention in the allocation btree searches in many places. This is left to a future set of modifications. Finally, now that we track busy extents in allocated memory, we don't need the descriptors in the transaction structure to point to them. We can replace the complex busy chunk infrastructure with a simple linked list of busy extents. This allows us to remove a large chunk of code, making the overall change a net reduction in code size. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 02:07:08 +00:00
if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
xfs_log_force(bp->b_target->bt_mount, 0);
down(&bp->b_sema);
XB_SET_OWNER(bp);
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_lock_done(bp, _RET_IP_);
}
void
xfs_buf_unlock(
struct xfs_buf *bp)
{
XB_CLEAR_OWNER(bp);
up(&bp->b_sema);
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_unlock(bp, _RET_IP_);
}
STATIC void
xfs_buf_wait_unpin(
xfs_buf_t *bp)
{
DECLARE_WAITQUEUE (wait, current);
if (atomic_read(&bp->b_pin_count) == 0)
return;
add_wait_queue(&bp->b_waiters, &wait);
for (;;) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (atomic_read(&bp->b_pin_count) == 0)
break;
io_schedule();
}
remove_wait_queue(&bp->b_waiters, &wait);
set_current_state(TASK_RUNNING);
}
/*
* Buffer Utility Routines
*/
STATIC void
xfs_buf_iodone_work(
struct work_struct *work)
{
struct xfs_buf *bp =
container_of(work, xfs_buf_t, b_iodone_work);
bool read = !!(bp->b_flags & XBF_READ);
bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
/* only validate buffers that were read without errors */
if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
bp->b_ops->verify_read(bp);
if (bp->b_iodone)
(*(bp->b_iodone))(bp);
else if (bp->b_flags & XBF_ASYNC)
xfs_buf_relse(bp);
else {
ASSERT(read && bp->b_ops);
complete(&bp->b_iowait);
}
}
void
xfs_buf_ioend(
struct xfs_buf *bp,
int schedule)
{
bool read = !!(bp->b_flags & XBF_READ);
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_iodone(bp, _RET_IP_);
if (bp->b_error == 0)
bp->b_flags |= XBF_DONE;
if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
if (schedule) {
INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
queue_work(xfslogd_workqueue, &bp->b_iodone_work);
} else {
xfs_buf_iodone_work(&bp->b_iodone_work);
}
} else {
bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
complete(&bp->b_iowait);
}
}
void
xfs_buf_ioerror(
xfs_buf_t *bp,
int error)
{
ASSERT(error <= 0 && error >= -1000);
bp->b_error = error;
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_ioerror(bp, error, _RET_IP_);
}
void
xfs_buf_ioerror_alert(
struct xfs_buf *bp,
const char *func)
{
xfs_alert(bp->b_target->bt_mount,
"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
}
/*
* Called when we want to stop a buffer from getting written or read.
* We attach the EIO error, muck with its flags, and call xfs_buf_ioend
* so that the proper iodone callbacks get called.
*/
STATIC int
xfs_bioerror(
xfs_buf_t *bp)
{
#ifdef XFSERRORDEBUG
ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
#endif
/*
* No need to wait until the buffer is unpinned, we aren't flushing it.
*/
xfs_buf_ioerror(bp, -EIO);
/*
* We're calling xfs_buf_ioend, so delete XBF_DONE flag.
*/
XFS_BUF_UNREAD(bp);
XFS_BUF_UNDONE(bp);
xfs_buf_stale(bp);
xfs_buf_ioend(bp, 0);
return -EIO;
}
/*
* Same as xfs_bioerror, except that we are releasing the buffer
* here ourselves, and avoiding the xfs_buf_ioend call.
* This is meant for userdata errors; metadata bufs come with
* iodone functions attached, so that we can track down errors.
*/
int
xfs_bioerror_relse(
struct xfs_buf *bp)
{
int64_t fl = bp->b_flags;
/*
* No need to wait until the buffer is unpinned.
* We aren't flushing it.
*
* chunkhold expects B_DONE to be set, whether
* we actually finish the I/O or not. We don't want to
* change that interface.
*/
XFS_BUF_UNREAD(bp);
XFS_BUF_DONE(bp);
xfs_buf_stale(bp);
bp->b_iodone = NULL;
if (!(fl & XBF_ASYNC)) {
/*
* Mark b_error and B_ERROR _both_.
* Lot's of chunkcache code assumes that.
* There's no reason to mark error for
* ASYNC buffers.
*/
xfs_buf_ioerror(bp, -EIO);
complete(&bp->b_iowait);
} else {
xfs_buf_relse(bp);
}
return -EIO;
}
STATIC int
xfs_bdstrat_cb(
struct xfs_buf *bp)
{
if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
trace_xfs_bdstrat_shut(bp, _RET_IP_);
/*
* Metadata write that didn't get logged but
* written delayed anyway. These aren't associated
* with a transaction, and can be ignored.
*/
if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
return xfs_bioerror_relse(bp);
else
return xfs_bioerror(bp);
}
xfs_buf_iorequest(bp);
return 0;
}
int
xfs_bwrite(
struct xfs_buf *bp)
{
int error;
ASSERT(xfs_buf_islocked(bp));
bp->b_flags |= XBF_WRITE;
xfs: abort metadata writeback on permanent errors If we are doing aysnc writeback of metadata, we can get write errors but have nobody to report them to. At the moment, we simply attempt to reissue the write from io completion in the hope that it's a transient error. When it's not a transient error, the buffer is stuck forever in this loop, and we cannot break out of it. Eventually, unmount will hang because the AIL cannot be emptied and everything goes downhill from them. To solve this problem, only retry the write IO once before aborting it. We don't throw the buffer away because some transient errors can last minutes (e.g. FC path failover) or even hours (thin provisioned devices that have run out of backing space) before they go away. Hence we really want to keep trying until we can't try any more. Because the buffer was not cleaned, however, it does not get removed from the AIL and hence the next pass across the AIL will start IO on it again. As such, we still get the "retry forever" semantics that we currently have, but we allow other access to the buffer in the mean time. Meanwhile the filesystem can continue to modify the buffer and relog it, so the IO errors won't hang the log or the filesystem. Now when we are pushing the AIL, we can see all these "permanent IO error" buffers and we can issue a warning about failures before we retry the IO. We can also catch these buffers when unmounting an issue a corruption warning, too. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-12-12 05:34:38 +00:00
bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
xfs_bdstrat_cb(bp);
error = xfs_buf_iowait(bp);
if (error) {
xfs_force_shutdown(bp->b_target->bt_mount,
SHUTDOWN_META_IO_ERROR);
}
return error;
}
STATIC void
_xfs_buf_ioend(
xfs_buf_t *bp,
int schedule)
{
2011-03-25 22:16:45 +00:00
if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
xfs_buf_ioend(bp, schedule);
}
STATIC void
xfs_buf_bio_end_io(
struct bio *bio,
int error)
{
xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
/*
* don't overwrite existing errors - otherwise we can lose errors on
* buffers that require multiple bios to complete.
*/
if (!bp->b_error)
xfs_buf_ioerror(bp, error);
if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
_xfs_buf_ioend(bp, 1);
bio_put(bio);
}
static void
xfs_buf_ioapply_map(
struct xfs_buf *bp,
int map,
int *buf_offset,
int *count,
int rw)
{
int page_index;
int total_nr_pages = bp->b_page_count;
int nr_pages;
struct bio *bio;
sector_t sector = bp->b_maps[map].bm_bn;
int size;
int offset;
total_nr_pages = bp->b_page_count;
/* skip the pages in the buffer before the start offset */
page_index = 0;
offset = *buf_offset;
while (offset >= PAGE_SIZE) {
page_index++;
offset -= PAGE_SIZE;
}
/*
* Limit the IO size to the length of the current vector, and update the
* remaining IO count for the next time around.
*/
size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
*count -= size;
*buf_offset += size;
next_chunk:
atomic_inc(&bp->b_io_remaining);
nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
if (nr_pages > total_nr_pages)
nr_pages = total_nr_pages;
bio = bio_alloc(GFP_NOIO, nr_pages);
bio->bi_bdev = bp->b_target->bt_bdev;
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-11 22:44:27 +00:00
bio->bi_iter.bi_sector = sector;
bio->bi_end_io = xfs_buf_bio_end_io;
bio->bi_private = bp;
2011-03-25 22:16:45 +00:00
for (; size && nr_pages; nr_pages--, page_index++) {
2011-03-25 22:16:45 +00:00
int rbytes, nbytes = PAGE_SIZE - offset;
if (nbytes > size)
nbytes = size;
rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
offset);
if (rbytes < nbytes)
break;
offset = 0;
sector += BTOBB(nbytes);
size -= nbytes;
total_nr_pages--;
}
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-11 22:44:27 +00:00
if (likely(bio->bi_iter.bi_size)) {
if (xfs_buf_is_vmapped(bp)) {
flush_kernel_vmap_range(bp->b_addr,
xfs_buf_vmap_len(bp));
}
submit_bio(rw, bio);
if (size)
goto next_chunk;
} else {
/*
* This is guaranteed not to be the last io reference count
* because the caller (xfs_buf_iorequest) holds a count itself.
*/
atomic_dec(&bp->b_io_remaining);
xfs_buf_ioerror(bp, -EIO);
bio_put(bio);
}
}
STATIC void
_xfs_buf_ioapply(
struct xfs_buf *bp)
{
struct blk_plug plug;
int rw;
int offset;
int size;
int i;
/*
* Make sure we capture only current IO errors rather than stale errors
* left over from previous use of the buffer (e.g. failed readahead).
*/
bp->b_error = 0;
if (bp->b_flags & XBF_WRITE) {
if (bp->b_flags & XBF_SYNCIO)
rw = WRITE_SYNC;
else
rw = WRITE;
if (bp->b_flags & XBF_FUA)
rw |= REQ_FUA;
if (bp->b_flags & XBF_FLUSH)
rw |= REQ_FLUSH;
/*
* Run the write verifier callback function if it exists. If
* this function fails it will mark the buffer with an error and
* the IO should not be dispatched.
*/
if (bp->b_ops) {
bp->b_ops->verify_write(bp);
if (bp->b_error) {
xfs_force_shutdown(bp->b_target->bt_mount,
SHUTDOWN_CORRUPT_INCORE);
return;
}
}
} else if (bp->b_flags & XBF_READ_AHEAD) {
rw = READA;
} else {
rw = READ;
}
/* we only use the buffer cache for meta-data */
rw |= REQ_META;
/*
* Walk all the vectors issuing IO on them. Set up the initial offset
* into the buffer and the desired IO size before we start -
* _xfs_buf_ioapply_vec() will modify them appropriately for each
* subsequent call.
*/
offset = bp->b_offset;
size = BBTOB(bp->b_io_length);
blk_start_plug(&plug);
for (i = 0; i < bp->b_map_count; i++) {
xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
if (bp->b_error)
break;
if (size <= 0)
break; /* all done */
}
blk_finish_plug(&plug);
}
void
xfs_buf_iorequest(
xfs_buf_t *bp)
{
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_iorequest(bp, _RET_IP_);
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
if (bp->b_flags & XBF_WRITE)
xfs_buf_wait_unpin(bp);
xfs_buf_hold(bp);
/*
* Set the count to 1 initially, this will stop an I/O
* completion callout which happens before we have started
* all the I/O from calling xfs_buf_ioend too early.
*/
atomic_set(&bp->b_io_remaining, 1);
_xfs_buf_ioapply(bp);
/*
* If _xfs_buf_ioapply failed, we'll get back here with
* only the reference we took above. _xfs_buf_ioend will
* drop it to zero, so we'd better not queue it for later,
* or we'll free it before it's done.
*/
_xfs_buf_ioend(bp, bp->b_error ? 0 : 1);
xfs_buf_rele(bp);
}
/*
* Waits for I/O to complete on the buffer supplied. It returns immediately if
* no I/O is pending or there is already a pending error on the buffer, in which
* case nothing will ever complete. It returns the I/O error code, if any, or
* 0 if there was no error.
*/
int
xfs_buf_iowait(
xfs_buf_t *bp)
{
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_iowait(bp, _RET_IP_);
if (!bp->b_error)
wait_for_completion(&bp->b_iowait);
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
trace_xfs_buf_iowait_done(bp, _RET_IP_);
return bp->b_error;
}
xfs_caddr_t
xfs_buf_offset(
xfs_buf_t *bp,
size_t offset)
{
struct page *page;
if (bp->b_addr)
return bp->b_addr + offset;
offset += bp->b_offset;
2011-03-25 22:16:45 +00:00
page = bp->b_pages[offset >> PAGE_SHIFT];
return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
}
/*
* Move data into or out of a buffer.
*/
void
xfs_buf_iomove(
xfs_buf_t *bp, /* buffer to process */
size_t boff, /* starting buffer offset */
size_t bsize, /* length to copy */
void *data, /* data address */
xfs_buf_rw_t mode) /* read/write/zero flag */
{
size_t bend;
bend = boff + bsize;
while (boff < bend) {
struct page *page;
int page_index, page_offset, csize;
page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
page = bp->b_pages[page_index];
csize = min_t(size_t, PAGE_SIZE - page_offset,
BBTOB(bp->b_io_length) - boff);
ASSERT((csize + page_offset) <= PAGE_SIZE);
switch (mode) {
case XBRW_ZERO:
memset(page_address(page) + page_offset, 0, csize);
break;
case XBRW_READ:
memcpy(data, page_address(page) + page_offset, csize);
break;
case XBRW_WRITE:
memcpy(page_address(page) + page_offset, data, csize);
}
boff += csize;
data += csize;
}
}
/*
* Handling of buffer targets (buftargs).
*/
/*
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
* Wait for any bufs with callbacks that have been submitted but have not yet
* returned. These buffers will have an elevated hold count, so wait on those
* while freeing all the buffers only held by the LRU.
*/
static enum lru_status
xfs_buftarg_wait_rele(
struct list_head *item,
spinlock_t *lru_lock,
void *arg)
{
struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
struct list_head *dispose = arg;
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
if (atomic_read(&bp->b_hold) > 1) {
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
/* need to wait, so skip it this pass */
trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
return LRU_SKIP;
}
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
if (!spin_trylock(&bp->b_lock))
return LRU_SKIP;
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
/*
* clear the LRU reference count so the buffer doesn't get
* ignored in xfs_buf_rele().
*/
atomic_set(&bp->b_lru_ref, 0);
bp->b_state |= XFS_BSTATE_DISPOSE;
list_move(item, dispose);
spin_unlock(&bp->b_lock);
return LRU_REMOVED;
}
void
xfs_wait_buftarg(
struct xfs_buftarg *btp)
{
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
LIST_HEAD(dispose);
int loop = 0;
/* loop until there is nothing left on the lru list. */
while (list_lru_count(&btp->bt_lru)) {
list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
&dispose, LONG_MAX);
while (!list_empty(&dispose)) {
struct xfs_buf *bp;
bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
list_del_init(&bp->b_lru);
xfs: abort metadata writeback on permanent errors If we are doing aysnc writeback of metadata, we can get write errors but have nobody to report them to. At the moment, we simply attempt to reissue the write from io completion in the hope that it's a transient error. When it's not a transient error, the buffer is stuck forever in this loop, and we cannot break out of it. Eventually, unmount will hang because the AIL cannot be emptied and everything goes downhill from them. To solve this problem, only retry the write IO once before aborting it. We don't throw the buffer away because some transient errors can last minutes (e.g. FC path failover) or even hours (thin provisioned devices that have run out of backing space) before they go away. Hence we really want to keep trying until we can't try any more. Because the buffer was not cleaned, however, it does not get removed from the AIL and hence the next pass across the AIL will start IO on it again. As such, we still get the "retry forever" semantics that we currently have, but we allow other access to the buffer in the mean time. Meanwhile the filesystem can continue to modify the buffer and relog it, so the IO errors won't hang the log or the filesystem. Now when we are pushing the AIL, we can see all these "permanent IO error" buffers and we can issue a warning about failures before we retry the IO. We can also catch these buffers when unmounting an issue a corruption warning, too. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-12-12 05:34:38 +00:00
if (bp->b_flags & XBF_WRITE_FAIL) {
xfs_alert(btp->bt_mount,
"Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
"Please run xfs_repair to determine the extent of the problem.",
(long long)bp->b_bn);
}
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
xfs_buf_rele(bp);
}
if (loop++ != 0)
delay(100);
}
}
static enum lru_status
xfs_buftarg_isolate(
struct list_head *item,
spinlock_t *lru_lock,
void *arg)
{
struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
struct list_head *dispose = arg;
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
/*
* we are inverting the lru lock/bp->b_lock here, so use a trylock.
* If we fail to get the lock, just skip it.
*/
if (!spin_trylock(&bp->b_lock))
return LRU_SKIP;
/*
* Decrement the b_lru_ref count unless the value is already
* zero. If the value is already zero, we need to reclaim the
* buffer, otherwise it gets another trip through the LRU.
*/
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
spin_unlock(&bp->b_lock);
return LRU_ROTATE;
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
}
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
bp->b_state |= XFS_BSTATE_DISPOSE;
list_move(item, dispose);
xfs: rework buffer dispose list tracking In converting the buffer lru lists to use the generic code, the locking for marking the buffers as on the dispose list was lost. This results in confusion in LRU buffer tracking and acocunting, resulting in reference counts being mucked up and filesystem beig unmountable. To fix this, introduce an internal buffer spinlock to protect the state field that holds the dispose list information. Because there is now locking needed around xfs_buf_lru_add/del, and they are used in exactly one place each two lines apart, get rid of the wrappers and code the logic directly in place. Further, the LRU emptying code used on unmount is less than optimal. Convert it to use a dispose list as per a normal shrinker walk, and repeat the walk that fills the dispose list until the LRU is empty. Thi avoids needing to drop and regain the LRU lock for every item being freed, and allows the same logic as the shrinker isolate call to be used. Simpler, easier to understand. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:06 +00:00
spin_unlock(&bp->b_lock);
return LRU_REMOVED;
}
static unsigned long
xfs_buftarg_shrink_scan(
struct shrinker *shrink,
struct shrink_control *sc)
{
struct xfs_buftarg *btp = container_of(shrink,
struct xfs_buftarg, bt_shrinker);
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
LIST_HEAD(dispose);
unsigned long freed;
unsigned long nr_to_scan = sc->nr_to_scan;
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
&dispose, &nr_to_scan);
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
while (!list_empty(&dispose)) {
struct xfs_buf *bp;
xfs: add a lru to the XFS buffer cache Introduce a per-buftarg LRU for memory reclaim to operate on. This is the last piece we need to put in place so that we can fully control the buffer lifecycle. This allows XFS to be responsibile for maintaining the working set of buffers under memory pressure instead of relying on the VM reclaim not to take pages we need out from underneath us. The implementation introduces a b_lru_ref counter into the buffer. This is currently set to 1 whenever the buffer is referenced and so is used to determine if the buffer should be added to the LRU or not when freed. Effectively it allows lazy LRU initialisation of the buffer so we do not need to touch the LRU list and locks in xfs_buf_find(). Instead, when the buffer is being released and we drop the last reference to it, we check the b_lru_ref count and if it is none zero we re-add the buffer reference and add the inode to the LRU. The b_lru_ref counter is decremented by the shrinker, and whenever the shrinker comes across a buffer with a zero b_lru_ref counter, if released the LRU reference on the buffer. In the absence of a lookup race, this will result in the buffer being freed. This counting mechanism is used instead of a reference flag so that it is simple to re-introduce buffer-type specific reclaim reference counts to prioritise reclaim more effectively. We still have all those hooks in the XFS code, so this will provide the infrastructure to re-implement that functionality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-02 05:30:55 +00:00
bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
list_del_init(&bp->b_lru);
xfs_buf_rele(bp);
}
return freed;
}
static unsigned long
xfs_buftarg_shrink_count(
struct shrinker *shrink,
struct shrink_control *sc)
{
struct xfs_buftarg *btp = container_of(shrink,
struct xfs_buftarg, bt_shrinker);
return list_lru_count_node(&btp->bt_lru, sc->nid);
}
void
xfs_free_buftarg(
struct xfs_mount *mp,
struct xfs_buftarg *btp)
{
unregister_shrinker(&btp->bt_shrinker);
list_lru_destroy(&btp->bt_lru);
if (mp->m_flags & XFS_MOUNT_BARRIER)
xfs_blkdev_issue_flush(btp);
kmem_free(btp);
}
int
xfs_setsize_buftarg(
xfs_buftarg_t *btp,
unsigned int sectorsize)
{
xfs: allow logical-sector sized O_DIRECT Some time ago, mkfs.xfs started picking the storage physical sector size as the default filesystem "sector size" in order to avoid RMW costs incurred by doing IOs at logical sector size alignments. However, this means that for a filesystem made with i.e. a 4k sector size on an "advanced format" 4k/512 disk, 512-byte direct IOs are no longer allowed. This means that XFS has essentially turned this AF drive into a hard 4K device, from the filesystem on up. XFS's mkfs-specified "sector size" is really just controlling the minimum size & alignment of filesystem metadata. There is no real need to tightly couple XFS's minimal metadata size to the minimum allowed direct IO size; XFS can continue doing metadata in optimal sizes, but still allow smaller DIOs for apps which issue them, for whatever reason. This patch adds a new field to the xfs_buftarg, so that we now track 2 sizes: 1) The metadata sector size, which is the minimum unit and alignment of IO which will be performed by metadata operations. 2) The device logical sector size The first is used internally by the file system for metadata alignment and IOs. The second is used for the minimum allowed direct IO alignment. This has passed xfstests on filesystems made with 4k sectors, including when run under the patch I sent to ignore XFS_IOC_DIOINFO, and issue 512 DIOs anyway. I also directly tested end of block behavior on preallocated, sparse, and existing files when we do a 512 IO into a 4k file on a 4k-sector filesystem, to be sure there were no unexpected behaviors. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2014-01-21 22:46:23 +00:00
/* Set up metadata sector size info */
btp->bt_meta_sectorsize = sectorsize;
btp->bt_meta_sectormask = sectorsize - 1;
if (set_blocksize(btp->bt_bdev, sectorsize)) {
char name[BDEVNAME_SIZE];
bdevname(btp->bt_bdev, name);
xfs_warn(btp->bt_mount,
"Cannot set_blocksize to %u on device %s",
sectorsize, name);
return -EINVAL;
}
xfs: allow logical-sector sized O_DIRECT Some time ago, mkfs.xfs started picking the storage physical sector size as the default filesystem "sector size" in order to avoid RMW costs incurred by doing IOs at logical sector size alignments. However, this means that for a filesystem made with i.e. a 4k sector size on an "advanced format" 4k/512 disk, 512-byte direct IOs are no longer allowed. This means that XFS has essentially turned this AF drive into a hard 4K device, from the filesystem on up. XFS's mkfs-specified "sector size" is really just controlling the minimum size & alignment of filesystem metadata. There is no real need to tightly couple XFS's minimal metadata size to the minimum allowed direct IO size; XFS can continue doing metadata in optimal sizes, but still allow smaller DIOs for apps which issue them, for whatever reason. This patch adds a new field to the xfs_buftarg, so that we now track 2 sizes: 1) The metadata sector size, which is the minimum unit and alignment of IO which will be performed by metadata operations. 2) The device logical sector size The first is used internally by the file system for metadata alignment and IOs. The second is used for the minimum allowed direct IO alignment. This has passed xfstests on filesystems made with 4k sectors, including when run under the patch I sent to ignore XFS_IOC_DIOINFO, and issue 512 DIOs anyway. I also directly tested end of block behavior on preallocated, sparse, and existing files when we do a 512 IO into a 4k file on a 4k-sector filesystem, to be sure there were no unexpected behaviors. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2014-01-21 22:46:23 +00:00
/* Set up device logical sector size mask */
btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
return 0;
}
/*
* When allocating the initial buffer target we have not yet
* read in the superblock, so don't know what sized sectors
* are being used at this early stage. Play safe.
*/
STATIC int
xfs_setsize_buftarg_early(
xfs_buftarg_t *btp,
struct block_device *bdev)
{
return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
}
xfs_buftarg_t *
xfs_alloc_buftarg(
struct xfs_mount *mp,
struct block_device *bdev)
{
xfs_buftarg_t *btp;
btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
btp->bt_mount = mp;
btp->bt_dev = bdev->bd_dev;
btp->bt_bdev = bdev;
2011-03-25 22:16:45 +00:00
btp->bt_bdi = blk_get_backing_dev_info(bdev);
if (!btp->bt_bdi)
goto error;
if (xfs_setsize_buftarg_early(btp, bdev))
goto error;
list_lru: dynamically adjust node arrays We currently use a compile-time constant to size the node array for the list_lru structure. Due to this, we don't need to allocate any memory at initialization time. But as a consequence, the structures that contain embedded list_lru lists can become way too big (the superblock for instance contains two of them). This patch aims at ameliorating this situation by dynamically allocating the node arrays with the firmware provided nr_node_ids. Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: Dave Chinner <dchinner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:18 +00:00
if (list_lru_init(&btp->bt_lru))
goto error;
btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
btp->bt_shrinker.seeks = DEFAULT_SEEKS;
btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
register_shrinker(&btp->bt_shrinker);
return btp;
error:
kmem_free(btp);
return NULL;
}
/*
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
* Add a buffer to the delayed write list.
*
* This queues a buffer for writeout if it hasn't already been. Note that
* neither this routine nor the buffer list submission functions perform
* any internal synchronization. It is expected that the lists are thread-local
* to the callers.
*
* Returns true if we queued up the buffer, or false if it already had
* been on the buffer list.
*/
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
bool
xfs_buf_delwri_queue(
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
struct xfs_buf *bp,
struct list_head *list)
{
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
ASSERT(xfs_buf_islocked(bp));
ASSERT(!(bp->b_flags & XBF_READ));
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
/*
* If the buffer is already marked delwri it already is queued up
* by someone else for imediate writeout. Just ignore it in that
* case.
*/
if (bp->b_flags & _XBF_DELWRI_Q) {
trace_xfs_buf_delwri_queued(bp, _RET_IP_);
return false;
}
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
trace_xfs_buf_delwri_queue(bp, _RET_IP_);
/*
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
* If a buffer gets written out synchronously or marked stale while it
* is on a delwri list we lazily remove it. To do this, the other party
* clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
* It remains referenced and on the list. In a rare corner case it
* might get readded to a delwri list after the synchronous writeout, in
* which case we need just need to re-add the flag here.
*/
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
bp->b_flags |= _XBF_DELWRI_Q;
if (list_empty(&bp->b_list)) {
atomic_inc(&bp->b_hold);
list_add_tail(&bp->b_list, list);
}
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
return true;
}
/*
* Compare function is more complex than it needs to be because
* the return value is only 32 bits and we are doing comparisons
* on 64 bit values
*/
static int
xfs_buf_cmp(
void *priv,
struct list_head *a,
struct list_head *b)
{
struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
xfs_daddr_t diff;
diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
if (diff < 0)
return -1;
if (diff > 0)
return 1;
return 0;
}
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
static int
__xfs_buf_delwri_submit(
struct list_head *buffer_list,
struct list_head *io_list,
bool wait)
{
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
struct blk_plug plug;
struct xfs_buf *bp, *n;
int pinned = 0;
list_for_each_entry_safe(bp, n, buffer_list, b_list) {
if (!wait) {
if (xfs_buf_ispinned(bp)) {
pinned++;
continue;
}
if (!xfs_buf_trylock(bp))
continue;
} else {
xfs_buf_lock(bp);
}
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
/*
* Someone else might have written the buffer synchronously or
* marked it stale in the meantime. In that case only the
* _XBF_DELWRI_Q flag got cleared, and we have to drop the
* reference and remove it from the list here.
*/
if (!(bp->b_flags & _XBF_DELWRI_Q)) {
list_del_init(&bp->b_list);
xfs_buf_relse(bp);
continue;
}
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
list_move_tail(&bp->b_list, io_list);
trace_xfs_buf_delwri_split(bp, _RET_IP_);
}
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
list_sort(NULL, io_list, xfs_buf_cmp);
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
blk_start_plug(&plug);
list_for_each_entry_safe(bp, n, io_list, b_list) {
xfs: abort metadata writeback on permanent errors If we are doing aysnc writeback of metadata, we can get write errors but have nobody to report them to. At the moment, we simply attempt to reissue the write from io completion in the hope that it's a transient error. When it's not a transient error, the buffer is stuck forever in this loop, and we cannot break out of it. Eventually, unmount will hang because the AIL cannot be emptied and everything goes downhill from them. To solve this problem, only retry the write IO once before aborting it. We don't throw the buffer away because some transient errors can last minutes (e.g. FC path failover) or even hours (thin provisioned devices that have run out of backing space) before they go away. Hence we really want to keep trying until we can't try any more. Because the buffer was not cleaned, however, it does not get removed from the AIL and hence the next pass across the AIL will start IO on it again. As such, we still get the "retry forever" semantics that we currently have, but we allow other access to the buffer in the mean time. Meanwhile the filesystem can continue to modify the buffer and relog it, so the IO errors won't hang the log or the filesystem. Now when we are pushing the AIL, we can see all these "permanent IO error" buffers and we can issue a warning about failures before we retry the IO. We can also catch these buffers when unmounting an issue a corruption warning, too. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-12-12 05:34:38 +00:00
bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
bp->b_flags |= XBF_WRITE;
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
if (!wait) {
bp->b_flags |= XBF_ASYNC;
list_del_init(&bp->b_list);
}
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
xfs_bdstrat_cb(bp);
}
blk_finish_plug(&plug);
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
return pinned;
}
/*
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
* Write out a buffer list asynchronously.
*
* This will take the @buffer_list, write all non-locked and non-pinned buffers
* out and not wait for I/O completion on any of the buffers. This interface
* is only safely useable for callers that can track I/O completion by higher
* level means, e.g. AIL pushing as the @buffer_list is consumed in this
* function.
*/
int
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
xfs_buf_delwri_submit_nowait(
struct list_head *buffer_list)
{
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
LIST_HEAD (io_list);
return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
}
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
/*
* Write out a buffer list synchronously.
*
* This will take the @buffer_list, write all buffers out and wait for I/O
* completion on all of the buffers. @buffer_list is consumed by the function,
* so callers must have some other way of tracking buffers if they require such
* functionality.
*/
int
xfs_buf_delwri_submit(
struct list_head *buffer_list)
{
LIST_HEAD (io_list);
int error = 0, error2;
struct xfs_buf *bp;
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
__xfs_buf_delwri_submit(buffer_list, &io_list, true);
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
/* Wait for IO to complete. */
while (!list_empty(&io_list)) {
bp = list_first_entry(&io_list, struct xfs_buf, b_list);
list_del_init(&bp->b_list);
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
error2 = xfs_buf_iowait(bp);
xfs_buf_relse(bp);
if (!error)
error = error2;
}
xfs: on-stack delayed write buffer lists Queue delwri buffers on a local on-stack list instead of a per-buftarg one, and write back the buffers per-process instead of by waking up xfsbufd. This is now easily doable given that we have very few places left that write delwri buffers: - log recovery: Only done at mount time, and already forcing out the buffers synchronously using xfs_flush_buftarg - quotacheck: Same story. - dquot reclaim: Writes out dirty dquots on the LRU under memory pressure. We might want to look into doing more of this via xfsaild, but it's already more optimal than the synchronous inode reclaim that writes each buffer synchronously. - xfsaild: This is the main beneficiary of the change. By keeping a local list of buffers to write we reduce latency of writing out buffers, and more importably we can remove all the delwri list promotions which were hitting the buffer cache hard under sustained metadata loads. The implementation is very straight forward - xfs_buf_delwri_queue now gets a new list_head pointer that it adds the delwri buffers to, and all callers need to eventually submit the list using xfs_buf_delwi_submit or xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are skipped in xfs_buf_delwri_queue, assuming they already are on another delwri list. The biggest change to pass down the buffer list was done to the AIL pushing. Now that we operate on buffers the trylock, push and pushbuf log item methods are merged into a single push routine, which tries to lock the item, and if possible add the buffer that needs writeback to the buffer list. This leads to much simpler code than the previous split but requires the individual IOP_PUSH instances to unlock and reacquire the AIL around calls to blocking routines. Given that xfsailds now also handle writing out buffers, the conditions for log forcing and the sleep times needed some small changes. The most important one is that we consider an AIL busy as long we still have buffers to push, and the other one is that we do increment the pushed LSN for buffers that are under flushing at this moment, but still count them towards the stuck items for restart purposes. Without this we could hammer on stuck items without ever forcing the log and not make progress under heavy random delete workloads on fast flash storage devices. [ Dave Chinner: - rebase on previous patches. - improved comments for XBF_DELWRI_Q handling - fix XBF_ASYNC handling in queue submission (test 106 failure) - rename delwri submit function buffer list parameters for clarity - xfs_efd_item_push() should return XFS_ITEM_PINNED ] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 05:58:39 +00:00
return error;
}
int __init
xfs_buf_init(void)
{
xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
KM_ZONE_HWALIGN, NULL);
if (!xfs_buf_zone)
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
goto out;
xfslogd_workqueue = alloc_workqueue("xfslogd",
WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
if (!xfslogd_workqueue)
goto out_free_buf_zone;
return 0;
out_free_buf_zone:
kmem_zone_destroy(xfs_buf_zone);
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-14 23:14:59 +00:00
out:
return -ENOMEM;
}
void
xfs_buf_terminate(void)
{
destroy_workqueue(xfslogd_workqueue);
kmem_zone_destroy(xfs_buf_zone);
}