linux/drivers/net/ethernet/freescale/enetc/Kconfig

58 lines
1.9 KiB
Plaintext
Raw Normal View History

enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 13:29:54 +00:00
# SPDX-License-Identifier: GPL-2.0
config FSL_ENETC
tristate "ENETC PF driver"
depends on PCI && PCI_MSI
select FSL_ENETC_MDIO
select PHYLINK
select PCS_LYNX
enetc: Add adaptive interrupt coalescing Use the generic dynamic interrupt moderation (dim) framework to implement adaptive interrupt coalescing on Rx. With the per-packet interrupt scheme, a high interrupt rate has been noted for moderate traffic flows leading to high CPU utilization. The 'dim' scheme implemented by the current patch addresses this issue improving CPU utilization while using minimal coalescing time thresholds in order to preserve a good latency. On the Tx side use an optimal time threshold value by default. This value has been optimized for Tx TCP streams at a rate of around 85kpps on a 1G link, at which rate half of the Tx ring size (128) gets filled in 1500 usecs. Scaling this down to 2.5G links yields the current value of 600 usecs, which is conservative and gives good enough results for 1G links too (see next). Below are some measurement results for before and after this patch (and related dependencies) basically, for a 2 ARM Cortex-A72 @1.3Ghz CPUs system (32 KB L1 data cache), using 60secs log netperf TCP stream tests @ 1Gbit link (maximum throughput): 1) 1 Rx TCP flow, both Rx and Tx processed by the same NAPI thread on the same CPU: CPU utilization int rate (ints/sec) Before: 50%-60% (over 50%) 92k After: 13%-22% 3.5k-12k Comment: Major CPU utilization improvement for a single flow Rx TCP flow (i.e. netperf -t TCP_MAERTS) on a single CPU. Usually settles under 16% for longer tests. 2) 4 Rx TCP flows + 4 Tx TCP flows (+ pings to check the latency): Total CPU utilization Total int rate (ints/sec) Before: ~80% (spikes to 90%) ~100k After: 60% (more steady) ~4k Comment: Important improvement for this load test, while the ping test outcome does not show any notable difference compared to before. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-21 07:55:22 +00:00
select DIMLIB
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 13:29:54 +00:00
help
This driver supports NXP ENETC gigabit ethernet controller PCIe
physical function (PF) devices, managing ENETC Ports at a privileged
level.
If compiled as module (M), the module name is fsl-enetc.
config FSL_ENETC_VF
tristate "ENETC VF driver"
depends on PCI && PCI_MSI
select FSL_ENETC_MDIO
select PHYLINK
enetc: Add adaptive interrupt coalescing Use the generic dynamic interrupt moderation (dim) framework to implement adaptive interrupt coalescing on Rx. With the per-packet interrupt scheme, a high interrupt rate has been noted for moderate traffic flows leading to high CPU utilization. The 'dim' scheme implemented by the current patch addresses this issue improving CPU utilization while using minimal coalescing time thresholds in order to preserve a good latency. On the Tx side use an optimal time threshold value by default. This value has been optimized for Tx TCP streams at a rate of around 85kpps on a 1G link, at which rate half of the Tx ring size (128) gets filled in 1500 usecs. Scaling this down to 2.5G links yields the current value of 600 usecs, which is conservative and gives good enough results for 1G links too (see next). Below are some measurement results for before and after this patch (and related dependencies) basically, for a 2 ARM Cortex-A72 @1.3Ghz CPUs system (32 KB L1 data cache), using 60secs log netperf TCP stream tests @ 1Gbit link (maximum throughput): 1) 1 Rx TCP flow, both Rx and Tx processed by the same NAPI thread on the same CPU: CPU utilization int rate (ints/sec) Before: 50%-60% (over 50%) 92k After: 13%-22% 3.5k-12k Comment: Major CPU utilization improvement for a single flow Rx TCP flow (i.e. netperf -t TCP_MAERTS) on a single CPU. Usually settles under 16% for longer tests. 2) 4 Rx TCP flows + 4 Tx TCP flows (+ pings to check the latency): Total CPU utilization Total int rate (ints/sec) Before: ~80% (spikes to 90%) ~100k After: 60% (more steady) ~4k Comment: Important improvement for this load test, while the ping test outcome does not show any notable difference compared to before. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-21 07:55:22 +00:00
select DIMLIB
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 13:29:54 +00:00
help
This driver supports NXP ENETC gigabit ethernet controller PCIe
virtual function (VF) devices enabled by the ENETC PF driver.
If compiled as module (M), the module name is fsl-enetc-vf.
config FSL_ENETC_MDIO
tristate "ENETC MDIO driver"
depends on PCI
help
This driver supports NXP ENETC Central MDIO controller as a PCIe
physical function (PF) device.
If compiled as module (M), the module name is fsl-enetc-mdio.
config FSL_ENETC_PTP_CLOCK
tristate "ENETC PTP clock driver"
depends on PTP_1588_CLOCK_QORIQ && (FSL_ENETC || FSL_ENETC_VF)
default y
help
This driver adds support for using the ENETC 1588 timer
as a PTP clock. This clock is only useful if your PTP
programs are getting hardware time stamps on the PTP Ethernet
packets using the SO_TIMESTAMPING API.
If compiled as module (M), the module name is fsl-enetc-ptp.
config FSL_ENETC_QOS
bool "ENETC hardware Time-sensitive Network support"
depends on (FSL_ENETC || FSL_ENETC_VF) && (NET_SCH_TAPRIO || NET_SCH_CBS)
help
There are Time-Sensitive Network(TSN) capabilities(802.1Qbv/802.1Qci
/802.1Qbu etc.) supported by ENETC. These TSN capabilities can be set
enable/disable from user space via Qos commands(tc). In the kernel
side, it can be loaded by Qos driver. Currently, it is only support
taprio(802.1Qbv) and Credit Based Shaper(802.1Qbu).