forked from Minki/linux
211 lines
5.8 KiB
C
211 lines
5.8 KiB
C
|
#ifndef __PARISC_SYSTEM_H
|
||
|
#define __PARISC_SYSTEM_H
|
||
|
|
||
|
#include <linux/config.h>
|
||
|
#include <asm/psw.h>
|
||
|
|
||
|
/* The program status word as bitfields. */
|
||
|
struct pa_psw {
|
||
|
unsigned int y:1;
|
||
|
unsigned int z:1;
|
||
|
unsigned int rv:2;
|
||
|
unsigned int w:1;
|
||
|
unsigned int e:1;
|
||
|
unsigned int s:1;
|
||
|
unsigned int t:1;
|
||
|
|
||
|
unsigned int h:1;
|
||
|
unsigned int l:1;
|
||
|
unsigned int n:1;
|
||
|
unsigned int x:1;
|
||
|
unsigned int b:1;
|
||
|
unsigned int c:1;
|
||
|
unsigned int v:1;
|
||
|
unsigned int m:1;
|
||
|
|
||
|
unsigned int cb:8;
|
||
|
|
||
|
unsigned int o:1;
|
||
|
unsigned int g:1;
|
||
|
unsigned int f:1;
|
||
|
unsigned int r:1;
|
||
|
unsigned int q:1;
|
||
|
unsigned int p:1;
|
||
|
unsigned int d:1;
|
||
|
unsigned int i:1;
|
||
|
};
|
||
|
|
||
|
#ifdef __LP64__
|
||
|
#define pa_psw(task) ((struct pa_psw *) ((char *) (task) + TASK_PT_PSW + 4))
|
||
|
#else
|
||
|
#define pa_psw(task) ((struct pa_psw *) ((char *) (task) + TASK_PT_PSW))
|
||
|
#endif
|
||
|
|
||
|
struct task_struct;
|
||
|
|
||
|
extern struct task_struct *_switch_to(struct task_struct *, struct task_struct *);
|
||
|
|
||
|
#define switch_to(prev, next, last) do { \
|
||
|
(last) = _switch_to(prev, next); \
|
||
|
} while(0)
|
||
|
|
||
|
|
||
|
|
||
|
/* interrupt control */
|
||
|
#define local_save_flags(x) __asm__ __volatile__("ssm 0, %0" : "=r" (x) : : "memory")
|
||
|
#define local_irq_disable() __asm__ __volatile__("rsm %0,%%r0\n" : : "i" (PSW_I) : "memory" )
|
||
|
#define local_irq_enable() __asm__ __volatile__("ssm %0,%%r0\n" : : "i" (PSW_I) : "memory" )
|
||
|
|
||
|
#define local_irq_save(x) \
|
||
|
__asm__ __volatile__("rsm %1,%0" : "=r" (x) :"i" (PSW_I) : "memory" )
|
||
|
#define local_irq_restore(x) \
|
||
|
__asm__ __volatile__("mtsm %0" : : "r" (x) : "memory" )
|
||
|
|
||
|
#define irqs_disabled() \
|
||
|
({ \
|
||
|
unsigned long flags; \
|
||
|
local_save_flags(flags); \
|
||
|
(flags & PSW_I) == 0; \
|
||
|
})
|
||
|
|
||
|
#define mfctl(reg) ({ \
|
||
|
unsigned long cr; \
|
||
|
__asm__ __volatile__( \
|
||
|
"mfctl " #reg ",%0" : \
|
||
|
"=r" (cr) \
|
||
|
); \
|
||
|
cr; \
|
||
|
})
|
||
|
|
||
|
#define mtctl(gr, cr) \
|
||
|
__asm__ __volatile__("mtctl %0,%1" \
|
||
|
: /* no outputs */ \
|
||
|
: "r" (gr), "i" (cr) : "memory")
|
||
|
|
||
|
/* these are here to de-mystefy the calling code, and to provide hooks */
|
||
|
/* which I needed for debugging EIEM problems -PB */
|
||
|
#define get_eiem() mfctl(15)
|
||
|
static inline void set_eiem(unsigned long val)
|
||
|
{
|
||
|
mtctl(val, 15);
|
||
|
}
|
||
|
|
||
|
#define mfsp(reg) ({ \
|
||
|
unsigned long cr; \
|
||
|
__asm__ __volatile__( \
|
||
|
"mfsp " #reg ",%0" : \
|
||
|
"=r" (cr) \
|
||
|
); \
|
||
|
cr; \
|
||
|
})
|
||
|
|
||
|
#define mtsp(gr, cr) \
|
||
|
__asm__ __volatile__("mtsp %0,%1" \
|
||
|
: /* no outputs */ \
|
||
|
: "r" (gr), "i" (cr) : "memory")
|
||
|
|
||
|
|
||
|
/*
|
||
|
** This is simply the barrier() macro from linux/kernel.h but when serial.c
|
||
|
** uses tqueue.h uses smp_mb() defined using barrier(), linux/kernel.h
|
||
|
** hasn't yet been included yet so it fails, thus repeating the macro here.
|
||
|
**
|
||
|
** PA-RISC architecture allows for weakly ordered memory accesses although
|
||
|
** none of the processors use it. There is a strong ordered bit that is
|
||
|
** set in the O-bit of the page directory entry. Operating systems that
|
||
|
** can not tolerate out of order accesses should set this bit when mapping
|
||
|
** pages. The O-bit of the PSW should also be set to 1 (I don't believe any
|
||
|
** of the processor implemented the PSW O-bit). The PCX-W ERS states that
|
||
|
** the TLB O-bit is not implemented so the page directory does not need to
|
||
|
** have the O-bit set when mapping pages (section 3.1). This section also
|
||
|
** states that the PSW Y, Z, G, and O bits are not implemented.
|
||
|
** So it looks like nothing needs to be done for parisc-linux (yet).
|
||
|
** (thanks to chada for the above comment -ggg)
|
||
|
**
|
||
|
** The __asm__ op below simple prevents gcc/ld from reordering
|
||
|
** instructions across the mb() "call".
|
||
|
*/
|
||
|
#define mb() __asm__ __volatile__("":::"memory") /* barrier() */
|
||
|
#define rmb() mb()
|
||
|
#define wmb() mb()
|
||
|
#define smp_mb() mb()
|
||
|
#define smp_rmb() mb()
|
||
|
#define smp_wmb() mb()
|
||
|
#define smp_read_barrier_depends() do { } while(0)
|
||
|
#define read_barrier_depends() do { } while(0)
|
||
|
|
||
|
#define set_mb(var, value) do { var = value; mb(); } while (0)
|
||
|
#define set_wmb(var, value) do { var = value; wmb(); } while (0)
|
||
|
|
||
|
|
||
|
/* LDCW, the only atomic read-write operation PA-RISC has. *sigh*. */
|
||
|
#define __ldcw(a) ({ \
|
||
|
unsigned __ret; \
|
||
|
__asm__ __volatile__("ldcw 0(%1),%0" : "=r" (__ret) : "r" (a)); \
|
||
|
__ret; \
|
||
|
})
|
||
|
|
||
|
/* Because kmalloc only guarantees 8-byte alignment for kmalloc'd data,
|
||
|
and GCC only guarantees 8-byte alignment for stack locals, we can't
|
||
|
be assured of 16-byte alignment for atomic lock data even if we
|
||
|
specify "__attribute ((aligned(16)))" in the type declaration. So,
|
||
|
we use a struct containing an array of four ints for the atomic lock
|
||
|
type and dynamically select the 16-byte aligned int from the array
|
||
|
for the semaphore. */
|
||
|
#define __PA_LDCW_ALIGNMENT 16
|
||
|
#define __ldcw_align(a) ({ \
|
||
|
unsigned long __ret = (unsigned long) &(a)->lock[0]; \
|
||
|
__ret = (__ret + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1); \
|
||
|
(volatile unsigned int *) __ret; \
|
||
|
})
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
/*
|
||
|
* Your basic SMP spinlocks, allowing only a single CPU anywhere
|
||
|
*/
|
||
|
|
||
|
typedef struct {
|
||
|
volatile unsigned int lock[4];
|
||
|
#ifdef CONFIG_DEBUG_SPINLOCK
|
||
|
unsigned long magic;
|
||
|
volatile unsigned int babble;
|
||
|
const char *module;
|
||
|
char *bfile;
|
||
|
int bline;
|
||
|
int oncpu;
|
||
|
void *previous;
|
||
|
struct task_struct * task;
|
||
|
#endif
|
||
|
#ifdef CONFIG_PREEMPT
|
||
|
unsigned int break_lock;
|
||
|
#endif
|
||
|
} spinlock_t;
|
||
|
|
||
|
#define __lock_aligned __attribute__((__section__(".data.lock_aligned")))
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#define KERNEL_START (0x10100000 - 0x1000)
|
||
|
|
||
|
/* This is for the serialisation of PxTLB broadcasts. At least on the
|
||
|
* N class systems, only one PxTLB inter processor broadcast can be
|
||
|
* active at any one time on the Merced bus. This tlb purge
|
||
|
* synchronisation is fairly lightweight and harmless so we activate
|
||
|
* it on all SMP systems not just the N class. */
|
||
|
#ifdef CONFIG_SMP
|
||
|
extern spinlock_t pa_tlb_lock;
|
||
|
|
||
|
#define purge_tlb_start(x) spin_lock(&pa_tlb_lock)
|
||
|
#define purge_tlb_end(x) spin_unlock(&pa_tlb_lock)
|
||
|
|
||
|
#else
|
||
|
|
||
|
#define purge_tlb_start(x) do { } while(0)
|
||
|
#define purge_tlb_end(x) do { } while (0)
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#define arch_align_stack(x) (x)
|
||
|
|
||
|
#endif
|