Files
linux/drivers/gpu/drm/msm/disp/dpu1/dpu_hw_intf.c

368 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
*/
#include "dpu_hwio.h"
#include "dpu_hw_catalog.h"
#include "dpu_hw_intf.h"
#include "dpu_kms.h"
#define INTF_TIMING_ENGINE_EN 0x000
#define INTF_CONFIG 0x004
#define INTF_HSYNC_CTL 0x008
#define INTF_VSYNC_PERIOD_F0 0x00C
#define INTF_VSYNC_PERIOD_F1 0x010
#define INTF_VSYNC_PULSE_WIDTH_F0 0x014
#define INTF_VSYNC_PULSE_WIDTH_F1 0x018
#define INTF_DISPLAY_V_START_F0 0x01C
#define INTF_DISPLAY_V_START_F1 0x020
#define INTF_DISPLAY_V_END_F0 0x024
#define INTF_DISPLAY_V_END_F1 0x028
#define INTF_ACTIVE_V_START_F0 0x02C
#define INTF_ACTIVE_V_START_F1 0x030
#define INTF_ACTIVE_V_END_F0 0x034
#define INTF_ACTIVE_V_END_F1 0x038
#define INTF_DISPLAY_HCTL 0x03C
#define INTF_ACTIVE_HCTL 0x040
#define INTF_BORDER_COLOR 0x044
#define INTF_UNDERFLOW_COLOR 0x048
#define INTF_HSYNC_SKEW 0x04C
#define INTF_POLARITY_CTL 0x050
#define INTF_TEST_CTL 0x054
#define INTF_TP_COLOR0 0x058
#define INTF_TP_COLOR1 0x05C
#define INTF_CONFIG2 0x060
#define INTF_DISPLAY_DATA_HCTL 0x064
drm/msm/dpu: revise timing engine programming to support widebus feature Widebus feature will transmit two pixel data per pixel clock to interface. Timing engine provides driving force for this purpose. This patch base on HPG (Hardware Programming Guide) to revise timing engine register setting to accommodate both widebus and non widebus application. Also horizontal width parameters need to be reduced by half since two pixel data are clocked out per pixel clock when widebus feature enabled. Widebus can be enabled individually at DP. However at DSI, widebus have to be enabled along with DSC to achieve pixel clock rate be scaled down with same ratio as compression ratio when 10 bits per source component. Therefore this patch add no supports of DSI related widebus and compression. Changes in v2: -- remove compression related code from timing -- remove op_info from struct msm_drm_private -- remove unnecessary wide_bus_en variables -- pass wide_bus_en into timing configuration by struct msm_dp Changes in v3: -- split patch into 3 patches Changes in v4: -- rework timing engine to not interfere with dsi/hdmi -- cover both widebus and compression Changes in v5: -- remove supports of DSI widebus and compression Changes in v7: -- split this patch into 3 patches -- add Tested-by Changes in v8: -- move new registers writes under DATA_HCTL_EN features check. Changes in v10: -- add const inside dpu_encoder_is_widebus_enabled() -- drop useless parenthesis please Signed-off-by: Kuogee Hsieh <quic_khsieh@quicinc.com> Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org> Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Patchwork: https://patchwork.freedesktop.org/patch/476281/ Link: https://lore.kernel.org/r/1645824192-29670-4-git-send-email-quic_khsieh@quicinc.com Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
2022-02-25 13:23:11 -08:00
#define INTF_ACTIVE_DATA_HCTL 0x068
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
#define INTF_FRAME_LINE_COUNT_EN 0x0A8
#define INTF_FRAME_COUNT 0x0AC
#define INTF_LINE_COUNT 0x0B0
#define INTF_DEFLICKER_CONFIG 0x0F0
#define INTF_DEFLICKER_STRNG_COEFF 0x0F4
#define INTF_DEFLICKER_WEAK_COEFF 0x0F8
#define INTF_DSI_CMD_MODE_TRIGGER_EN 0x084
#define INTF_PANEL_FORMAT 0x090
#define INTF_TPG_ENABLE 0x100
#define INTF_TPG_MAIN_CONTROL 0x104
#define INTF_TPG_VIDEO_CONFIG 0x108
#define INTF_TPG_COMPONENT_LIMITS 0x10C
#define INTF_TPG_RECTANGLE 0x110
#define INTF_TPG_INITIAL_VALUE 0x114
#define INTF_TPG_BLK_WHITE_PATTERN_FRAMES 0x118
#define INTF_TPG_RGB_MAPPING 0x11C
#define INTF_PROG_FETCH_START 0x170
#define INTF_PROG_ROT_START 0x174
#define INTF_FRAME_LINE_COUNT_EN 0x0A8
#define INTF_FRAME_COUNT 0x0AC
#define INTF_LINE_COUNT 0x0B0
#define INTF_MUX 0x25C
#define INTF_CFG_ACTIVE_H_EN BIT(29)
#define INTF_CFG_ACTIVE_V_EN BIT(30)
#define INTF_CFG2_DATABUS_WIDEN BIT(0)
#define INTF_CFG2_DATA_HCTL_EN BIT(4)
static const struct dpu_intf_cfg *_intf_offset(enum dpu_intf intf,
const struct dpu_mdss_cfg *m,
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
void __iomem *addr,
struct dpu_hw_blk_reg_map *b)
{
int i;
for (i = 0; i < m->intf_count; i++) {
if ((intf == m->intf[i].id) &&
(m->intf[i].type != INTF_NONE)) {
b->base_off = addr;
b->blk_off = m->intf[i].base;
b->length = m->intf[i].len;
b->hwversion = m->hwversion;
b->log_mask = DPU_DBG_MASK_INTF;
return &m->intf[i];
}
}
return ERR_PTR(-EINVAL);
}
static void dpu_hw_intf_setup_timing_engine(struct dpu_hw_intf *ctx,
const struct intf_timing_params *p,
const struct dpu_format *fmt)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
u32 hsync_period, vsync_period;
u32 display_v_start, display_v_end;
u32 hsync_start_x, hsync_end_x;
drm/msm/dpu: revise timing engine programming to support widebus feature Widebus feature will transmit two pixel data per pixel clock to interface. Timing engine provides driving force for this purpose. This patch base on HPG (Hardware Programming Guide) to revise timing engine register setting to accommodate both widebus and non widebus application. Also horizontal width parameters need to be reduced by half since two pixel data are clocked out per pixel clock when widebus feature enabled. Widebus can be enabled individually at DP. However at DSI, widebus have to be enabled along with DSC to achieve pixel clock rate be scaled down with same ratio as compression ratio when 10 bits per source component. Therefore this patch add no supports of DSI related widebus and compression. Changes in v2: -- remove compression related code from timing -- remove op_info from struct msm_drm_private -- remove unnecessary wide_bus_en variables -- pass wide_bus_en into timing configuration by struct msm_dp Changes in v3: -- split patch into 3 patches Changes in v4: -- rework timing engine to not interfere with dsi/hdmi -- cover both widebus and compression Changes in v5: -- remove supports of DSI widebus and compression Changes in v7: -- split this patch into 3 patches -- add Tested-by Changes in v8: -- move new registers writes under DATA_HCTL_EN features check. Changes in v10: -- add const inside dpu_encoder_is_widebus_enabled() -- drop useless parenthesis please Signed-off-by: Kuogee Hsieh <quic_khsieh@quicinc.com> Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org> Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Patchwork: https://patchwork.freedesktop.org/patch/476281/ Link: https://lore.kernel.org/r/1645824192-29670-4-git-send-email-quic_khsieh@quicinc.com Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
2022-02-25 13:23:11 -08:00
u32 hsync_data_start_x, hsync_data_end_x;
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
u32 active_h_start, active_h_end;
u32 active_v_start, active_v_end;
u32 active_hctl, display_hctl, hsync_ctl;
u32 polarity_ctl, den_polarity, hsync_polarity, vsync_polarity;
u32 panel_format;
drm/msm/dpu: revise timing engine programming to support widebus feature Widebus feature will transmit two pixel data per pixel clock to interface. Timing engine provides driving force for this purpose. This patch base on HPG (Hardware Programming Guide) to revise timing engine register setting to accommodate both widebus and non widebus application. Also horizontal width parameters need to be reduced by half since two pixel data are clocked out per pixel clock when widebus feature enabled. Widebus can be enabled individually at DP. However at DSI, widebus have to be enabled along with DSC to achieve pixel clock rate be scaled down with same ratio as compression ratio when 10 bits per source component. Therefore this patch add no supports of DSI related widebus and compression. Changes in v2: -- remove compression related code from timing -- remove op_info from struct msm_drm_private -- remove unnecessary wide_bus_en variables -- pass wide_bus_en into timing configuration by struct msm_dp Changes in v3: -- split patch into 3 patches Changes in v4: -- rework timing engine to not interfere with dsi/hdmi -- cover both widebus and compression Changes in v5: -- remove supports of DSI widebus and compression Changes in v7: -- split this patch into 3 patches -- add Tested-by Changes in v8: -- move new registers writes under DATA_HCTL_EN features check. Changes in v10: -- add const inside dpu_encoder_is_widebus_enabled() -- drop useless parenthesis please Signed-off-by: Kuogee Hsieh <quic_khsieh@quicinc.com> Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org> Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Patchwork: https://patchwork.freedesktop.org/patch/476281/ Link: https://lore.kernel.org/r/1645824192-29670-4-git-send-email-quic_khsieh@quicinc.com Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
2022-02-25 13:23:11 -08:00
u32 intf_cfg, intf_cfg2 = 0;
u32 display_data_hctl = 0, active_data_hctl = 0;
u32 data_width;
bool dp_intf = false;
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
/* read interface_cfg */
intf_cfg = DPU_REG_READ(c, INTF_CONFIG);
drm/msm/dpu: revise timing engine programming to support widebus feature Widebus feature will transmit two pixel data per pixel clock to interface. Timing engine provides driving force for this purpose. This patch base on HPG (Hardware Programming Guide) to revise timing engine register setting to accommodate both widebus and non widebus application. Also horizontal width parameters need to be reduced by half since two pixel data are clocked out per pixel clock when widebus feature enabled. Widebus can be enabled individually at DP. However at DSI, widebus have to be enabled along with DSC to achieve pixel clock rate be scaled down with same ratio as compression ratio when 10 bits per source component. Therefore this patch add no supports of DSI related widebus and compression. Changes in v2: -- remove compression related code from timing -- remove op_info from struct msm_drm_private -- remove unnecessary wide_bus_en variables -- pass wide_bus_en into timing configuration by struct msm_dp Changes in v3: -- split patch into 3 patches Changes in v4: -- rework timing engine to not interfere with dsi/hdmi -- cover both widebus and compression Changes in v5: -- remove supports of DSI widebus and compression Changes in v7: -- split this patch into 3 patches -- add Tested-by Changes in v8: -- move new registers writes under DATA_HCTL_EN features check. Changes in v10: -- add const inside dpu_encoder_is_widebus_enabled() -- drop useless parenthesis please Signed-off-by: Kuogee Hsieh <quic_khsieh@quicinc.com> Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org> Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Patchwork: https://patchwork.freedesktop.org/patch/476281/ Link: https://lore.kernel.org/r/1645824192-29670-4-git-send-email-quic_khsieh@quicinc.com Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
2022-02-25 13:23:11 -08:00
if (ctx->cap->type == INTF_DP)
drm/msm/dpu: revise timing engine programming to support widebus feature Widebus feature will transmit two pixel data per pixel clock to interface. Timing engine provides driving force for this purpose. This patch base on HPG (Hardware Programming Guide) to revise timing engine register setting to accommodate both widebus and non widebus application. Also horizontal width parameters need to be reduced by half since two pixel data are clocked out per pixel clock when widebus feature enabled. Widebus can be enabled individually at DP. However at DSI, widebus have to be enabled along with DSC to achieve pixel clock rate be scaled down with same ratio as compression ratio when 10 bits per source component. Therefore this patch add no supports of DSI related widebus and compression. Changes in v2: -- remove compression related code from timing -- remove op_info from struct msm_drm_private -- remove unnecessary wide_bus_en variables -- pass wide_bus_en into timing configuration by struct msm_dp Changes in v3: -- split patch into 3 patches Changes in v4: -- rework timing engine to not interfere with dsi/hdmi -- cover both widebus and compression Changes in v5: -- remove supports of DSI widebus and compression Changes in v7: -- split this patch into 3 patches -- add Tested-by Changes in v8: -- move new registers writes under DATA_HCTL_EN features check. Changes in v10: -- add const inside dpu_encoder_is_widebus_enabled() -- drop useless parenthesis please Signed-off-by: Kuogee Hsieh <quic_khsieh@quicinc.com> Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org> Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Patchwork: https://patchwork.freedesktop.org/patch/476281/ Link: https://lore.kernel.org/r/1645824192-29670-4-git-send-email-quic_khsieh@quicinc.com Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
2022-02-25 13:23:11 -08:00
dp_intf = true;
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
hsync_period = p->hsync_pulse_width + p->h_back_porch + p->width +
p->h_front_porch;
vsync_period = p->vsync_pulse_width + p->v_back_porch + p->height +
p->v_front_porch;
display_v_start = ((p->vsync_pulse_width + p->v_back_porch) *
hsync_period) + p->hsync_skew;
display_v_end = ((vsync_period - p->v_front_porch) * hsync_period) +
p->hsync_skew - 1;
hsync_start_x = p->h_back_porch + p->hsync_pulse_width;
hsync_end_x = hsync_period - p->h_front_porch - 1;
drm/msm/dpu: revise timing engine programming to support widebus feature Widebus feature will transmit two pixel data per pixel clock to interface. Timing engine provides driving force for this purpose. This patch base on HPG (Hardware Programming Guide) to revise timing engine register setting to accommodate both widebus and non widebus application. Also horizontal width parameters need to be reduced by half since two pixel data are clocked out per pixel clock when widebus feature enabled. Widebus can be enabled individually at DP. However at DSI, widebus have to be enabled along with DSC to achieve pixel clock rate be scaled down with same ratio as compression ratio when 10 bits per source component. Therefore this patch add no supports of DSI related widebus and compression. Changes in v2: -- remove compression related code from timing -- remove op_info from struct msm_drm_private -- remove unnecessary wide_bus_en variables -- pass wide_bus_en into timing configuration by struct msm_dp Changes in v3: -- split patch into 3 patches Changes in v4: -- rework timing engine to not interfere with dsi/hdmi -- cover both widebus and compression Changes in v5: -- remove supports of DSI widebus and compression Changes in v7: -- split this patch into 3 patches -- add Tested-by Changes in v8: -- move new registers writes under DATA_HCTL_EN features check. Changes in v10: -- add const inside dpu_encoder_is_widebus_enabled() -- drop useless parenthesis please Signed-off-by: Kuogee Hsieh <quic_khsieh@quicinc.com> Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org> Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Patchwork: https://patchwork.freedesktop.org/patch/476281/ Link: https://lore.kernel.org/r/1645824192-29670-4-git-send-email-quic_khsieh@quicinc.com Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
2022-02-25 13:23:11 -08:00
if (p->width != p->xres) { /* border fill added */
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
active_h_start = hsync_start_x;
active_h_end = active_h_start + p->xres - 1;
} else {
active_h_start = 0;
active_h_end = 0;
}
drm/msm/dpu: revise timing engine programming to support widebus feature Widebus feature will transmit two pixel data per pixel clock to interface. Timing engine provides driving force for this purpose. This patch base on HPG (Hardware Programming Guide) to revise timing engine register setting to accommodate both widebus and non widebus application. Also horizontal width parameters need to be reduced by half since two pixel data are clocked out per pixel clock when widebus feature enabled. Widebus can be enabled individually at DP. However at DSI, widebus have to be enabled along with DSC to achieve pixel clock rate be scaled down with same ratio as compression ratio when 10 bits per source component. Therefore this patch add no supports of DSI related widebus and compression. Changes in v2: -- remove compression related code from timing -- remove op_info from struct msm_drm_private -- remove unnecessary wide_bus_en variables -- pass wide_bus_en into timing configuration by struct msm_dp Changes in v3: -- split patch into 3 patches Changes in v4: -- rework timing engine to not interfere with dsi/hdmi -- cover both widebus and compression Changes in v5: -- remove supports of DSI widebus and compression Changes in v7: -- split this patch into 3 patches -- add Tested-by Changes in v8: -- move new registers writes under DATA_HCTL_EN features check. Changes in v10: -- add const inside dpu_encoder_is_widebus_enabled() -- drop useless parenthesis please Signed-off-by: Kuogee Hsieh <quic_khsieh@quicinc.com> Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org> Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Patchwork: https://patchwork.freedesktop.org/patch/476281/ Link: https://lore.kernel.org/r/1645824192-29670-4-git-send-email-quic_khsieh@quicinc.com Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
2022-02-25 13:23:11 -08:00
if (p->height != p->yres) { /* border fill added */
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
active_v_start = display_v_start;
active_v_end = active_v_start + (p->yres * hsync_period) - 1;
} else {
active_v_start = 0;
active_v_end = 0;
}
if (active_h_end) {
active_hctl = (active_h_end << 16) | active_h_start;
intf_cfg |= INTF_CFG_ACTIVE_H_EN;
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
} else {
active_hctl = 0;
}
if (active_v_end)
intf_cfg |= INTF_CFG_ACTIVE_V_EN;
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
hsync_ctl = (hsync_period << 16) | p->hsync_pulse_width;
display_hctl = (hsync_end_x << 16) | hsync_start_x;
drm/msm/dpu: revise timing engine programming to support widebus feature Widebus feature will transmit two pixel data per pixel clock to interface. Timing engine provides driving force for this purpose. This patch base on HPG (Hardware Programming Guide) to revise timing engine register setting to accommodate both widebus and non widebus application. Also horizontal width parameters need to be reduced by half since two pixel data are clocked out per pixel clock when widebus feature enabled. Widebus can be enabled individually at DP. However at DSI, widebus have to be enabled along with DSC to achieve pixel clock rate be scaled down with same ratio as compression ratio when 10 bits per source component. Therefore this patch add no supports of DSI related widebus and compression. Changes in v2: -- remove compression related code from timing -- remove op_info from struct msm_drm_private -- remove unnecessary wide_bus_en variables -- pass wide_bus_en into timing configuration by struct msm_dp Changes in v3: -- split patch into 3 patches Changes in v4: -- rework timing engine to not interfere with dsi/hdmi -- cover both widebus and compression Changes in v5: -- remove supports of DSI widebus and compression Changes in v7: -- split this patch into 3 patches -- add Tested-by Changes in v8: -- move new registers writes under DATA_HCTL_EN features check. Changes in v10: -- add const inside dpu_encoder_is_widebus_enabled() -- drop useless parenthesis please Signed-off-by: Kuogee Hsieh <quic_khsieh@quicinc.com> Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org> Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Patchwork: https://patchwork.freedesktop.org/patch/476281/ Link: https://lore.kernel.org/r/1645824192-29670-4-git-send-email-quic_khsieh@quicinc.com Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
2022-02-25 13:23:11 -08:00
/*
* DATA_HCTL_EN controls data timing which can be different from
* video timing. It is recommended to enable it for all cases, except
* if compression is enabled in 1 pixel per clock mode
*/
if (p->wide_bus_en)
intf_cfg2 |= INTF_CFG2_DATABUS_WIDEN | INTF_CFG2_DATA_HCTL_EN;
data_width = p->width;
hsync_data_start_x = hsync_start_x;
hsync_data_end_x = hsync_start_x + data_width - 1;
display_data_hctl = (hsync_data_end_x << 16) | hsync_data_start_x;
if (dp_intf) {
/* DP timing adjustment */
display_v_start += p->hsync_pulse_width + p->h_back_porch;
display_v_end -= p->h_front_porch;
active_h_start = hsync_start_x;
active_h_end = active_h_start + p->xres - 1;
active_v_start = display_v_start;
active_v_end = active_v_start + (p->yres * hsync_period) - 1;
active_hctl = (active_h_end << 16) | active_h_start;
display_hctl = active_hctl;
drm/msm/dpu: revise timing engine programming to support widebus feature Widebus feature will transmit two pixel data per pixel clock to interface. Timing engine provides driving force for this purpose. This patch base on HPG (Hardware Programming Guide) to revise timing engine register setting to accommodate both widebus and non widebus application. Also horizontal width parameters need to be reduced by half since two pixel data are clocked out per pixel clock when widebus feature enabled. Widebus can be enabled individually at DP. However at DSI, widebus have to be enabled along with DSC to achieve pixel clock rate be scaled down with same ratio as compression ratio when 10 bits per source component. Therefore this patch add no supports of DSI related widebus and compression. Changes in v2: -- remove compression related code from timing -- remove op_info from struct msm_drm_private -- remove unnecessary wide_bus_en variables -- pass wide_bus_en into timing configuration by struct msm_dp Changes in v3: -- split patch into 3 patches Changes in v4: -- rework timing engine to not interfere with dsi/hdmi -- cover both widebus and compression Changes in v5: -- remove supports of DSI widebus and compression Changes in v7: -- split this patch into 3 patches -- add Tested-by Changes in v8: -- move new registers writes under DATA_HCTL_EN features check. Changes in v10: -- add const inside dpu_encoder_is_widebus_enabled() -- drop useless parenthesis please Signed-off-by: Kuogee Hsieh <quic_khsieh@quicinc.com> Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org> Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Patchwork: https://patchwork.freedesktop.org/patch/476281/ Link: https://lore.kernel.org/r/1645824192-29670-4-git-send-email-quic_khsieh@quicinc.com Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
2022-02-25 13:23:11 -08:00
intf_cfg |= INTF_CFG_ACTIVE_H_EN | INTF_CFG_ACTIVE_V_EN;
}
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
den_polarity = 0;
if (ctx->cap->type == INTF_HDMI) {
hsync_polarity = p->yres >= 720 ? 0 : 1;
vsync_polarity = p->yres >= 720 ? 0 : 1;
} else if (ctx->cap->type == INTF_DP) {
hsync_polarity = p->hsync_polarity;
vsync_polarity = p->vsync_polarity;
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
} else {
hsync_polarity = 0;
vsync_polarity = 0;
}
polarity_ctl = (den_polarity << 2) | /* DEN Polarity */
(vsync_polarity << 1) | /* VSYNC Polarity */
(hsync_polarity << 0); /* HSYNC Polarity */
if (!DPU_FORMAT_IS_YUV(fmt))
panel_format = (fmt->bits[C0_G_Y] |
(fmt->bits[C1_B_Cb] << 2) |
(fmt->bits[C2_R_Cr] << 4) |
(0x21 << 8));
else
/* Interface treats all the pixel data in RGB888 format */
panel_format = (COLOR_8BIT |
(COLOR_8BIT << 2) |
(COLOR_8BIT << 4) |
(0x21 << 8));
DPU_REG_WRITE(c, INTF_HSYNC_CTL, hsync_ctl);
DPU_REG_WRITE(c, INTF_VSYNC_PERIOD_F0, vsync_period * hsync_period);
DPU_REG_WRITE(c, INTF_VSYNC_PULSE_WIDTH_F0,
p->vsync_pulse_width * hsync_period);
DPU_REG_WRITE(c, INTF_DISPLAY_HCTL, display_hctl);
DPU_REG_WRITE(c, INTF_DISPLAY_V_START_F0, display_v_start);
DPU_REG_WRITE(c, INTF_DISPLAY_V_END_F0, display_v_end);
DPU_REG_WRITE(c, INTF_ACTIVE_HCTL, active_hctl);
DPU_REG_WRITE(c, INTF_ACTIVE_V_START_F0, active_v_start);
DPU_REG_WRITE(c, INTF_ACTIVE_V_END_F0, active_v_end);
DPU_REG_WRITE(c, INTF_BORDER_COLOR, p->border_clr);
DPU_REG_WRITE(c, INTF_UNDERFLOW_COLOR, p->underflow_clr);
DPU_REG_WRITE(c, INTF_HSYNC_SKEW, p->hsync_skew);
DPU_REG_WRITE(c, INTF_POLARITY_CTL, polarity_ctl);
DPU_REG_WRITE(c, INTF_FRAME_LINE_COUNT_EN, 0x3);
DPU_REG_WRITE(c, INTF_CONFIG, intf_cfg);
DPU_REG_WRITE(c, INTF_PANEL_FORMAT, panel_format);
drm/msm/dpu: revise timing engine programming to support widebus feature Widebus feature will transmit two pixel data per pixel clock to interface. Timing engine provides driving force for this purpose. This patch base on HPG (Hardware Programming Guide) to revise timing engine register setting to accommodate both widebus and non widebus application. Also horizontal width parameters need to be reduced by half since two pixel data are clocked out per pixel clock when widebus feature enabled. Widebus can be enabled individually at DP. However at DSI, widebus have to be enabled along with DSC to achieve pixel clock rate be scaled down with same ratio as compression ratio when 10 bits per source component. Therefore this patch add no supports of DSI related widebus and compression. Changes in v2: -- remove compression related code from timing -- remove op_info from struct msm_drm_private -- remove unnecessary wide_bus_en variables -- pass wide_bus_en into timing configuration by struct msm_dp Changes in v3: -- split patch into 3 patches Changes in v4: -- rework timing engine to not interfere with dsi/hdmi -- cover both widebus and compression Changes in v5: -- remove supports of DSI widebus and compression Changes in v7: -- split this patch into 3 patches -- add Tested-by Changes in v8: -- move new registers writes under DATA_HCTL_EN features check. Changes in v10: -- add const inside dpu_encoder_is_widebus_enabled() -- drop useless parenthesis please Signed-off-by: Kuogee Hsieh <quic_khsieh@quicinc.com> Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org> Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Patchwork: https://patchwork.freedesktop.org/patch/476281/ Link: https://lore.kernel.org/r/1645824192-29670-4-git-send-email-quic_khsieh@quicinc.com Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
2022-02-25 13:23:11 -08:00
if (ctx->cap->features & BIT(DPU_DATA_HCTL_EN)) {
DPU_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
DPU_REG_WRITE(c, INTF_DISPLAY_DATA_HCTL, display_data_hctl);
DPU_REG_WRITE(c, INTF_ACTIVE_DATA_HCTL, active_data_hctl);
}
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
}
static void dpu_hw_intf_enable_timing_engine(
struct dpu_hw_intf *intf,
u8 enable)
{
struct dpu_hw_blk_reg_map *c = &intf->hw;
/* Note: Display interface select is handled in top block hw layer */
DPU_REG_WRITE(c, INTF_TIMING_ENGINE_EN, enable != 0);
}
static void dpu_hw_intf_setup_prg_fetch(
struct dpu_hw_intf *intf,
const struct intf_prog_fetch *fetch)
{
struct dpu_hw_blk_reg_map *c = &intf->hw;
int fetch_enable;
/*
* Fetch should always be outside the active lines. If the fetching
* is programmed within active region, hardware behavior is unknown.
*/
fetch_enable = DPU_REG_READ(c, INTF_CONFIG);
if (fetch->enable) {
fetch_enable |= BIT(31);
DPU_REG_WRITE(c, INTF_PROG_FETCH_START,
fetch->fetch_start);
} else {
fetch_enable &= ~BIT(31);
}
DPU_REG_WRITE(c, INTF_CONFIG, fetch_enable);
}
static void dpu_hw_intf_bind_pingpong_blk(
struct dpu_hw_intf *intf,
bool enable,
const enum dpu_pingpong pp)
{
struct dpu_hw_blk_reg_map *c = &intf->hw;
u32 mux_cfg;
mux_cfg = DPU_REG_READ(c, INTF_MUX);
mux_cfg &= ~0xf;
if (enable)
mux_cfg |= (pp - PINGPONG_0) & 0x7;
else
mux_cfg |= 0xf;
DPU_REG_WRITE(c, INTF_MUX, mux_cfg);
}
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
static void dpu_hw_intf_get_status(
struct dpu_hw_intf *intf,
struct intf_status *s)
{
struct dpu_hw_blk_reg_map *c = &intf->hw;
s->is_en = DPU_REG_READ(c, INTF_TIMING_ENGINE_EN);
2021-02-18 04:35:46 -08:00
s->is_prog_fetch_en = !!(DPU_REG_READ(c, INTF_CONFIG) & BIT(31));
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
if (s->is_en) {
s->frame_count = DPU_REG_READ(c, INTF_FRAME_COUNT);
s->line_count = DPU_REG_READ(c, INTF_LINE_COUNT);
} else {
s->line_count = 0;
s->frame_count = 0;
}
}
static u32 dpu_hw_intf_get_line_count(struct dpu_hw_intf *intf)
{
struct dpu_hw_blk_reg_map *c;
if (!intf)
return 0;
c = &intf->hw;
return DPU_REG_READ(c, INTF_LINE_COUNT);
}
static void _setup_intf_ops(struct dpu_hw_intf_ops *ops,
unsigned long cap)
{
ops->setup_timing_gen = dpu_hw_intf_setup_timing_engine;
ops->setup_prg_fetch = dpu_hw_intf_setup_prg_fetch;
ops->get_status = dpu_hw_intf_get_status;
ops->enable_timing = dpu_hw_intf_enable_timing_engine;
ops->get_line_count = dpu_hw_intf_get_line_count;
if (cap & BIT(DPU_INTF_INPUT_CTRL))
ops->bind_pingpong_blk = dpu_hw_intf_bind_pingpong_blk;
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
}
struct dpu_hw_intf *dpu_hw_intf_init(enum dpu_intf idx,
void __iomem *addr,
const struct dpu_mdss_cfg *m)
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
{
struct dpu_hw_intf *c;
const struct dpu_intf_cfg *cfg;
drm/msm: Add SDM845 DPU support SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a top level wrapper consisting of Display Processing Unit (DPU) and display peripheral modules such as Display Serial Interface (DSI) and DisplayPort (DP). MDSS functions essentially as a back-end composition engine. It blends video and graphic images stored in the frame buffers and scans out the composed image to a display sink (over DSI/DP). The following diagram represents hardware blocks for a simple pipeline (two planes are present on a given crtc which is connected to a DSI connector): MDSS +---------------------------------+ | +-----------------------------+ | | | DPU | | | | +--------+ +--------+ | | | | | SSPP | | SSPP | | | | | +----+---+ +----+---+ | | | | | | | | | | +----v-----------v---+ | | | | | Layer Mixer (LM) | | | | | +--------------------+ | | | | +--------------------+ | | | | | PingPong (PP) | | | | | +--------------------+ | | | | +--------------------+ | | | | | INTERFACE (VIDEO) | | | | | +---+----------------+ | | | +------|----------------------+ | | | | | +------|---------------------+ | | | | DISPLAY PERIPHERALS | | | | +---v-+ +-----+ | | | | | DSI | | DP | | | | | +-----+ +-----+ | | | +----------------------------+ | +---------------------------------+ The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs) depends on SoC capabilities. Overview of DPU sub-blocks: --------------------------- * Source Surface Processor (SSPP): Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are capable of performing format conversion, scaling and quality improvement for source surfaces. * Layer Mixer (LM): Blend source surfaces together (in requested zorder) * PingPong (PP): This block controls frame done interrupt output, EOL and EOF generation, overflow/underflow control. * Display interface (INTF): Timing generator and interface connecting the display peripherals. DRM components mapping to DPU architecture: ------------------------------------------ PLANEs maps to SSPPs CRTC maps to LMs Encoder maps to PPs, INTFs Data flow setup: --------------- MDSS hardware can support various data flows (e.g.): - Dual pipe: Output from two LMs combined to single display. - Split display: Output from two LMs connected to two separate interfaces. The hardware capabilities determine the number of concurrent data paths possible. Any control path (i.e. pipeline w/i DPU) can be routed to any of the hardware data paths. A given control path can be triggered, flushed and controlled independently. Changes in v3: - Move msm_media_info.h from uapi to dpu/ subdir - Remove preclose callback dpu (it's handled in core) - Fix kbuild warnings with parent_ops - Remove unused functions from dpu_core_irq - Rename mdss_phys to mdss - Rename mdp_phys address space to mdp - Drop _phys from vbif and regdma binding names Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org> Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org> Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org> Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org> Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org> Signed-off-by: Sean Paul <seanpaul@chromium.org> [robclark minor rebase] Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-06-27 15:26:09 -04:00
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return ERR_PTR(-ENOMEM);
cfg = _intf_offset(idx, m, addr, &c->hw);
if (IS_ERR_OR_NULL(cfg)) {
kfree(c);
pr_err("failed to create dpu_hw_intf %d\n", idx);
return ERR_PTR(-EINVAL);
}
/*
* Assign ops
*/
c->idx = idx;
c->cap = cfg;
c->mdss = m;
_setup_intf_ops(&c->ops, c->cap->features);
return c;
}
void dpu_hw_intf_destroy(struct dpu_hw_intf *intf)
{
kfree(intf);
}