2016-11-23 15:52:26 +00:00
|
|
|
/*
|
|
|
|
* Functions to manage eBPF programs attached to cgroups
|
|
|
|
*
|
|
|
|
* Copyright (c) 2016 Daniel Mack
|
|
|
|
*
|
|
|
|
* This file is subject to the terms and conditions of version 2 of the GNU
|
|
|
|
* General Public License. See the file COPYING in the main directory of the
|
|
|
|
* Linux distribution for more details.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/atomic.h>
|
|
|
|
#include <linux/cgroup.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/bpf.h>
|
|
|
|
#include <linux/bpf-cgroup.h>
|
|
|
|
#include <net/sock.h>
|
|
|
|
|
|
|
|
DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key);
|
|
|
|
EXPORT_SYMBOL(cgroup_bpf_enabled_key);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cgroup_bpf_put() - put references of all bpf programs
|
|
|
|
* @cgrp: the cgroup to modify
|
|
|
|
*/
|
|
|
|
void cgroup_bpf_put(struct cgroup *cgrp)
|
|
|
|
{
|
|
|
|
unsigned int type;
|
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) {
|
|
|
|
struct list_head *progs = &cgrp->bpf.progs[type];
|
|
|
|
struct bpf_prog_list *pl, *tmp;
|
|
|
|
|
|
|
|
list_for_each_entry_safe(pl, tmp, progs, node) {
|
|
|
|
list_del(&pl->node);
|
|
|
|
bpf_prog_put(pl->prog);
|
|
|
|
kfree(pl);
|
2016-11-23 15:52:26 +00:00
|
|
|
static_branch_dec(&cgroup_bpf_enabled_key);
|
|
|
|
}
|
2017-10-03 05:50:21 +00:00
|
|
|
bpf_prog_array_free(cgrp->bpf.effective[type]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* count number of elements in the list.
|
|
|
|
* it's slow but the list cannot be long
|
|
|
|
*/
|
|
|
|
static u32 prog_list_length(struct list_head *head)
|
|
|
|
{
|
|
|
|
struct bpf_prog_list *pl;
|
|
|
|
u32 cnt = 0;
|
|
|
|
|
|
|
|
list_for_each_entry(pl, head, node) {
|
|
|
|
if (!pl->prog)
|
|
|
|
continue;
|
|
|
|
cnt++;
|
2016-11-23 15:52:26 +00:00
|
|
|
}
|
2017-10-03 05:50:21 +00:00
|
|
|
return cnt;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if parent has non-overridable prog attached,
|
|
|
|
* disallow attaching new programs to the descendent cgroup.
|
|
|
|
* if parent has overridable or multi-prog, allow attaching
|
|
|
|
*/
|
|
|
|
static bool hierarchy_allows_attach(struct cgroup *cgrp,
|
|
|
|
enum bpf_attach_type type,
|
|
|
|
u32 new_flags)
|
|
|
|
{
|
|
|
|
struct cgroup *p;
|
|
|
|
|
|
|
|
p = cgroup_parent(cgrp);
|
|
|
|
if (!p)
|
|
|
|
return true;
|
|
|
|
do {
|
|
|
|
u32 flags = p->bpf.flags[type];
|
|
|
|
u32 cnt;
|
|
|
|
|
|
|
|
if (flags & BPF_F_ALLOW_MULTI)
|
|
|
|
return true;
|
|
|
|
cnt = prog_list_length(&p->bpf.progs[type]);
|
|
|
|
WARN_ON_ONCE(cnt > 1);
|
|
|
|
if (cnt == 1)
|
|
|
|
return !!(flags & BPF_F_ALLOW_OVERRIDE);
|
|
|
|
p = cgroup_parent(p);
|
|
|
|
} while (p);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* compute a chain of effective programs for a given cgroup:
|
|
|
|
* start from the list of programs in this cgroup and add
|
|
|
|
* all parent programs.
|
|
|
|
* Note that parent's F_ALLOW_OVERRIDE-type program is yielding
|
|
|
|
* to programs in this cgroup
|
|
|
|
*/
|
|
|
|
static int compute_effective_progs(struct cgroup *cgrp,
|
|
|
|
enum bpf_attach_type type,
|
|
|
|
struct bpf_prog_array __rcu **array)
|
|
|
|
{
|
|
|
|
struct bpf_prog_array __rcu *progs;
|
|
|
|
struct bpf_prog_list *pl;
|
|
|
|
struct cgroup *p = cgrp;
|
|
|
|
int cnt = 0;
|
|
|
|
|
|
|
|
/* count number of effective programs by walking parents */
|
|
|
|
do {
|
|
|
|
if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
|
|
|
|
cnt += prog_list_length(&p->bpf.progs[type]);
|
|
|
|
p = cgroup_parent(p);
|
|
|
|
} while (p);
|
|
|
|
|
|
|
|
progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
|
|
|
|
if (!progs)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
/* populate the array with effective progs */
|
|
|
|
cnt = 0;
|
|
|
|
p = cgrp;
|
|
|
|
do {
|
|
|
|
if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
|
|
|
|
list_for_each_entry(pl,
|
|
|
|
&p->bpf.progs[type], node) {
|
|
|
|
if (!pl->prog)
|
|
|
|
continue;
|
|
|
|
rcu_dereference_protected(progs, 1)->
|
|
|
|
progs[cnt++] = pl->prog;
|
|
|
|
}
|
|
|
|
p = cgroup_parent(p);
|
|
|
|
} while (p);
|
|
|
|
|
|
|
|
*array = progs;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void activate_effective_progs(struct cgroup *cgrp,
|
|
|
|
enum bpf_attach_type type,
|
|
|
|
struct bpf_prog_array __rcu *array)
|
|
|
|
{
|
|
|
|
struct bpf_prog_array __rcu *old_array;
|
|
|
|
|
|
|
|
old_array = xchg(&cgrp->bpf.effective[type], array);
|
|
|
|
/* free prog array after grace period, since __cgroup_bpf_run_*()
|
|
|
|
* might be still walking the array
|
|
|
|
*/
|
|
|
|
bpf_prog_array_free(old_array);
|
2016-11-23 15:52:26 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cgroup_bpf_inherit() - inherit effective programs from parent
|
|
|
|
* @cgrp: the cgroup to modify
|
|
|
|
*/
|
2017-10-03 05:50:21 +00:00
|
|
|
int cgroup_bpf_inherit(struct cgroup *cgrp)
|
2016-11-23 15:52:26 +00:00
|
|
|
{
|
2017-10-03 05:50:21 +00:00
|
|
|
/* has to use marco instead of const int, since compiler thinks
|
|
|
|
* that array below is variable length
|
|
|
|
*/
|
|
|
|
#define NR ARRAY_SIZE(cgrp->bpf.effective)
|
|
|
|
struct bpf_prog_array __rcu *arrays[NR] = {};
|
|
|
|
int i;
|
2016-11-23 15:52:26 +00:00
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
for (i = 0; i < NR; i++)
|
|
|
|
INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
|
2016-11-23 15:52:26 +00:00
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
for (i = 0; i < NR; i++)
|
|
|
|
if (compute_effective_progs(cgrp, i, &arrays[i]))
|
|
|
|
goto cleanup;
|
|
|
|
|
|
|
|
for (i = 0; i < NR; i++)
|
|
|
|
activate_effective_progs(cgrp, i, arrays[i]);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
cleanup:
|
|
|
|
for (i = 0; i < NR; i++)
|
|
|
|
bpf_prog_array_free(arrays[i]);
|
|
|
|
return -ENOMEM;
|
2016-11-23 15:52:26 +00:00
|
|
|
}
|
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
#define BPF_CGROUP_MAX_PROGS 64
|
|
|
|
|
2016-11-23 15:52:26 +00:00
|
|
|
/**
|
2017-10-03 05:50:21 +00:00
|
|
|
* __cgroup_bpf_attach() - Attach the program to a cgroup, and
|
2016-11-23 15:52:26 +00:00
|
|
|
* propagate the change to descendants
|
|
|
|
* @cgrp: The cgroup which descendants to traverse
|
2017-10-03 05:50:21 +00:00
|
|
|
* @prog: A program to attach
|
|
|
|
* @type: Type of attach operation
|
2016-11-23 15:52:26 +00:00
|
|
|
*
|
|
|
|
* Must be called with cgroup_mutex held.
|
|
|
|
*/
|
2017-10-03 05:50:21 +00:00
|
|
|
int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
|
|
|
|
enum bpf_attach_type type, u32 flags)
|
2016-11-23 15:52:26 +00:00
|
|
|
{
|
2017-10-03 05:50:21 +00:00
|
|
|
struct list_head *progs = &cgrp->bpf.progs[type];
|
|
|
|
struct bpf_prog *old_prog = NULL;
|
|
|
|
struct cgroup_subsys_state *css;
|
|
|
|
struct bpf_prog_list *pl;
|
|
|
|
bool pl_was_allocated;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if ((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI))
|
|
|
|
/* invalid combination */
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (!hierarchy_allows_attach(cgrp, type, flags))
|
2017-02-11 04:28:24 +00:00
|
|
|
return -EPERM;
|
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
if (!list_empty(progs) && cgrp->bpf.flags[type] != flags)
|
|
|
|
/* Disallow attaching non-overridable on top
|
|
|
|
* of existing overridable in this cgroup.
|
|
|
|
* Disallow attaching multi-prog if overridable or none
|
2017-02-11 04:28:24 +00:00
|
|
|
*/
|
|
|
|
return -EPERM;
|
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
|
|
|
|
return -E2BIG;
|
|
|
|
|
|
|
|
if (flags & BPF_F_ALLOW_MULTI) {
|
|
|
|
list_for_each_entry(pl, progs, node)
|
|
|
|
if (pl->prog == prog)
|
|
|
|
/* disallow attaching the same prog twice */
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
pl = kmalloc(sizeof(*pl), GFP_KERNEL);
|
|
|
|
if (!pl)
|
|
|
|
return -ENOMEM;
|
|
|
|
pl_was_allocated = true;
|
|
|
|
pl->prog = prog;
|
|
|
|
list_add_tail(&pl->node, progs);
|
|
|
|
} else {
|
|
|
|
if (list_empty(progs)) {
|
|
|
|
pl = kmalloc(sizeof(*pl), GFP_KERNEL);
|
|
|
|
if (!pl)
|
|
|
|
return -ENOMEM;
|
|
|
|
pl_was_allocated = true;
|
|
|
|
list_add_tail(&pl->node, progs);
|
|
|
|
} else {
|
|
|
|
pl = list_first_entry(progs, typeof(*pl), node);
|
|
|
|
old_prog = pl->prog;
|
|
|
|
pl_was_allocated = false;
|
|
|
|
}
|
|
|
|
pl->prog = prog;
|
2017-02-11 04:28:24 +00:00
|
|
|
}
|
2016-11-23 15:52:26 +00:00
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
cgrp->bpf.flags[type] = flags;
|
2017-02-11 04:28:24 +00:00
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
/* allocate and recompute effective prog arrays */
|
|
|
|
css_for_each_descendant_pre(css, &cgrp->self) {
|
|
|
|
struct cgroup *desc = container_of(css, struct cgroup, self);
|
2016-11-23 15:52:26 +00:00
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
err = compute_effective_progs(desc, type, &desc->bpf.inactive);
|
|
|
|
if (err)
|
|
|
|
goto cleanup;
|
2016-11-23 15:52:26 +00:00
|
|
|
}
|
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
/* all allocations were successful. Activate all prog arrays */
|
|
|
|
css_for_each_descendant_pre(css, &cgrp->self) {
|
|
|
|
struct cgroup *desc = container_of(css, struct cgroup, self);
|
2016-11-23 15:52:26 +00:00
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
activate_effective_progs(desc, type, desc->bpf.inactive);
|
|
|
|
desc->bpf.inactive = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static_branch_inc(&cgroup_bpf_enabled_key);
|
2016-11-23 15:52:26 +00:00
|
|
|
if (old_prog) {
|
|
|
|
bpf_prog_put(old_prog);
|
|
|
|
static_branch_dec(&cgroup_bpf_enabled_key);
|
|
|
|
}
|
2017-02-11 04:28:24 +00:00
|
|
|
return 0;
|
2017-10-03 05:50:21 +00:00
|
|
|
|
|
|
|
cleanup:
|
|
|
|
/* oom while computing effective. Free all computed effective arrays
|
|
|
|
* since they were not activated
|
|
|
|
*/
|
|
|
|
css_for_each_descendant_pre(css, &cgrp->self) {
|
|
|
|
struct cgroup *desc = container_of(css, struct cgroup, self);
|
|
|
|
|
|
|
|
bpf_prog_array_free(desc->bpf.inactive);
|
|
|
|
desc->bpf.inactive = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* and cleanup the prog list */
|
|
|
|
pl->prog = old_prog;
|
|
|
|
if (pl_was_allocated) {
|
|
|
|
list_del(&pl->node);
|
|
|
|
kfree(pl);
|
|
|
|
}
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __cgroup_bpf_detach() - Detach the program from a cgroup, and
|
|
|
|
* propagate the change to descendants
|
|
|
|
* @cgrp: The cgroup which descendants to traverse
|
|
|
|
* @prog: A program to detach or NULL
|
|
|
|
* @type: Type of detach operation
|
|
|
|
*
|
|
|
|
* Must be called with cgroup_mutex held.
|
|
|
|
*/
|
|
|
|
int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
|
|
|
|
enum bpf_attach_type type, u32 unused_flags)
|
|
|
|
{
|
|
|
|
struct list_head *progs = &cgrp->bpf.progs[type];
|
|
|
|
u32 flags = cgrp->bpf.flags[type];
|
|
|
|
struct bpf_prog *old_prog = NULL;
|
|
|
|
struct cgroup_subsys_state *css;
|
|
|
|
struct bpf_prog_list *pl;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (flags & BPF_F_ALLOW_MULTI) {
|
|
|
|
if (!prog)
|
|
|
|
/* to detach MULTI prog the user has to specify valid FD
|
|
|
|
* of the program to be detached
|
|
|
|
*/
|
|
|
|
return -EINVAL;
|
|
|
|
} else {
|
|
|
|
if (list_empty(progs))
|
|
|
|
/* report error when trying to detach and nothing is attached */
|
|
|
|
return -ENOENT;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (flags & BPF_F_ALLOW_MULTI) {
|
|
|
|
/* find the prog and detach it */
|
|
|
|
list_for_each_entry(pl, progs, node) {
|
|
|
|
if (pl->prog != prog)
|
|
|
|
continue;
|
|
|
|
old_prog = prog;
|
|
|
|
/* mark it deleted, so it's ignored while
|
|
|
|
* recomputing effective
|
|
|
|
*/
|
|
|
|
pl->prog = NULL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (!old_prog)
|
|
|
|
return -ENOENT;
|
|
|
|
} else {
|
|
|
|
/* to maintain backward compatibility NONE and OVERRIDE cgroups
|
|
|
|
* allow detaching with invalid FD (prog==NULL)
|
|
|
|
*/
|
|
|
|
pl = list_first_entry(progs, typeof(*pl), node);
|
|
|
|
old_prog = pl->prog;
|
|
|
|
pl->prog = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* allocate and recompute effective prog arrays */
|
|
|
|
css_for_each_descendant_pre(css, &cgrp->self) {
|
|
|
|
struct cgroup *desc = container_of(css, struct cgroup, self);
|
|
|
|
|
|
|
|
err = compute_effective_progs(desc, type, &desc->bpf.inactive);
|
|
|
|
if (err)
|
|
|
|
goto cleanup;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* all allocations were successful. Activate all prog arrays */
|
|
|
|
css_for_each_descendant_pre(css, &cgrp->self) {
|
|
|
|
struct cgroup *desc = container_of(css, struct cgroup, self);
|
|
|
|
|
|
|
|
activate_effective_progs(desc, type, desc->bpf.inactive);
|
|
|
|
desc->bpf.inactive = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* now can actually delete it from this cgroup list */
|
|
|
|
list_del(&pl->node);
|
|
|
|
kfree(pl);
|
|
|
|
if (list_empty(progs))
|
|
|
|
/* last program was detached, reset flags to zero */
|
|
|
|
cgrp->bpf.flags[type] = 0;
|
|
|
|
|
|
|
|
bpf_prog_put(old_prog);
|
|
|
|
static_branch_dec(&cgroup_bpf_enabled_key);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
cleanup:
|
|
|
|
/* oom while computing effective. Free all computed effective arrays
|
|
|
|
* since they were not activated
|
|
|
|
*/
|
|
|
|
css_for_each_descendant_pre(css, &cgrp->self) {
|
|
|
|
struct cgroup *desc = container_of(css, struct cgroup, self);
|
|
|
|
|
|
|
|
bpf_prog_array_free(desc->bpf.inactive);
|
|
|
|
desc->bpf.inactive = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* and restore back old_prog */
|
|
|
|
pl->prog = old_prog;
|
|
|
|
return err;
|
2016-11-23 15:52:26 +00:00
|
|
|
}
|
|
|
|
|
2017-10-03 05:50:22 +00:00
|
|
|
/* Must be called with cgroup_mutex held to avoid races. */
|
|
|
|
int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
|
|
|
|
union bpf_attr __user *uattr)
|
|
|
|
{
|
|
|
|
__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
|
|
|
|
enum bpf_attach_type type = attr->query.attach_type;
|
|
|
|
struct list_head *progs = &cgrp->bpf.progs[type];
|
|
|
|
u32 flags = cgrp->bpf.flags[type];
|
|
|
|
int cnt, ret = 0, i;
|
|
|
|
|
|
|
|
if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
|
|
|
|
cnt = bpf_prog_array_length(cgrp->bpf.effective[type]);
|
|
|
|
else
|
|
|
|
cnt = prog_list_length(progs);
|
|
|
|
|
|
|
|
if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
|
|
|
|
return -EFAULT;
|
|
|
|
if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
|
|
|
|
return -EFAULT;
|
|
|
|
if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
|
|
|
|
/* return early if user requested only program count + flags */
|
|
|
|
return 0;
|
|
|
|
if (attr->query.prog_cnt < cnt) {
|
|
|
|
cnt = attr->query.prog_cnt;
|
|
|
|
ret = -ENOSPC;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
|
|
|
|
return bpf_prog_array_copy_to_user(cgrp->bpf.effective[type],
|
|
|
|
prog_ids, cnt);
|
|
|
|
} else {
|
|
|
|
struct bpf_prog_list *pl;
|
|
|
|
u32 id;
|
|
|
|
|
|
|
|
i = 0;
|
|
|
|
list_for_each_entry(pl, progs, node) {
|
|
|
|
id = pl->prog->aux->id;
|
|
|
|
if (copy_to_user(prog_ids + i, &id, sizeof(id)))
|
|
|
|
return -EFAULT;
|
|
|
|
if (++i == cnt)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2016-11-23 15:52:26 +00:00
|
|
|
/**
|
2016-12-01 16:48:03 +00:00
|
|
|
* __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
|
2017-04-11 18:08:08 +00:00
|
|
|
* @sk: The socket sending or receiving traffic
|
2016-11-23 15:52:26 +00:00
|
|
|
* @skb: The skb that is being sent or received
|
|
|
|
* @type: The type of program to be exectuted
|
|
|
|
*
|
|
|
|
* If no socket is passed, or the socket is not of type INET or INET6,
|
|
|
|
* this function does nothing and returns 0.
|
|
|
|
*
|
|
|
|
* The program type passed in via @type must be suitable for network
|
|
|
|
* filtering. No further check is performed to assert that.
|
|
|
|
*
|
|
|
|
* This function will return %-EPERM if any if an attached program was found
|
|
|
|
* and if it returned != 1 during execution. In all other cases, 0 is returned.
|
|
|
|
*/
|
2016-12-01 16:48:03 +00:00
|
|
|
int __cgroup_bpf_run_filter_skb(struct sock *sk,
|
|
|
|
struct sk_buff *skb,
|
|
|
|
enum bpf_attach_type type)
|
2016-11-23 15:52:26 +00:00
|
|
|
{
|
2017-10-03 05:50:21 +00:00
|
|
|
unsigned int offset = skb->data - skb_network_header(skb);
|
|
|
|
struct sock *save_sk;
|
2016-11-23 15:52:26 +00:00
|
|
|
struct cgroup *cgrp;
|
2017-10-03 05:50:21 +00:00
|
|
|
int ret;
|
2016-11-23 15:52:26 +00:00
|
|
|
|
|
|
|
if (!sk || !sk_fullsock(sk))
|
|
|
|
return 0;
|
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
|
2016-11-23 15:52:26 +00:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
|
2017-10-03 05:50:21 +00:00
|
|
|
save_sk = skb->sk;
|
|
|
|
skb->sk = sk;
|
|
|
|
__skb_push(skb, offset);
|
|
|
|
ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb,
|
|
|
|
bpf_prog_run_save_cb);
|
|
|
|
__skb_pull(skb, offset);
|
|
|
|
skb->sk = save_sk;
|
|
|
|
return ret == 1 ? 0 : -EPERM;
|
2016-11-23 15:52:26 +00:00
|
|
|
}
|
2016-12-01 16:48:03 +00:00
|
|
|
EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
|
2016-12-01 16:48:04 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* __cgroup_bpf_run_filter_sk() - Run a program on a sock
|
|
|
|
* @sk: sock structure to manipulate
|
|
|
|
* @type: The type of program to be exectuted
|
|
|
|
*
|
|
|
|
* socket is passed is expected to be of type INET or INET6.
|
|
|
|
*
|
|
|
|
* The program type passed in via @type must be suitable for sock
|
|
|
|
* filtering. No further check is performed to assert that.
|
|
|
|
*
|
|
|
|
* This function will return %-EPERM if any if an attached program was found
|
|
|
|
* and if it returned != 1 during execution. In all other cases, 0 is returned.
|
|
|
|
*/
|
|
|
|
int __cgroup_bpf_run_filter_sk(struct sock *sk,
|
|
|
|
enum bpf_attach_type type)
|
|
|
|
{
|
|
|
|
struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
|
2017-10-03 05:50:21 +00:00
|
|
|
int ret;
|
2016-12-01 16:48:04 +00:00
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN);
|
|
|
|
return ret == 1 ? 0 : -EPERM;
|
2016-12-01 16:48:04 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
|
bpf: BPF support for sock_ops
Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding
struct that allows BPF programs of this type to access some of the
socket's fields (such as IP addresses, ports, etc.). It uses the
existing bpf cgroups infrastructure so the programs can be attached per
cgroup with full inheritance support. The program will be called at
appropriate times to set relevant connections parameters such as buffer
sizes, SYN and SYN-ACK RTOs, etc., based on connection information such
as IP addresses, port numbers, etc.
Alghough there are already 3 mechanisms to set parameters (sysctls,
route metrics and setsockopts), this new mechanism provides some
distinct advantages. Unlike sysctls, it can set parameters per
connection. In contrast to route metrics, it can also use port numbers
and information provided by a user level program. In addition, it could
set parameters probabilistically for evaluation purposes (i.e. do
something different on 10% of the flows and compare results with the
other 90% of the flows). Also, in cases where IPv6 addresses contain
geographic information, the rules to make changes based on the distance
(or RTT) between the hosts are much easier than route metric rules and
can be global. Finally, unlike setsockopt, it oes not require
application changes and it can be updated easily at any time.
Although the bpf cgroup framework already contains a sock related
program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type
(BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called
only once during the connections's lifetime. In contrast, the new
program type will be called multiple times from different places in the
network stack code. For example, before sending SYN and SYN-ACKs to set
an appropriate timeout, when the connection is established to set
congestion control, etc. As a result it has "op" field to specify the
type of operation requested.
The purpose of this new program type is to simplify setting connection
parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is
easy to use facebook's internal IPv6 addresses to determine if both hosts
of a connection are in the same datacenter. Therefore, it is easy to
write a BPF program to choose a small SYN RTO value when both hosts are
in the same datacenter.
This patch only contains the framework to support the new BPF program
type, following patches add the functionality to set various connection
parameters.
This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS
and a new bpf syscall command to load a new program of this type:
BPF_PROG_LOAD_SOCKET_OPS.
Two new corresponding structs (one for the kernel one for the user/BPF
program):
/* kernel version */
struct bpf_sock_ops_kern {
struct sock *sk;
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
};
/* user version
* Some fields are in network byte order reflecting the sock struct
* Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to
* convert them to host byte order.
*/
struct bpf_sock_ops {
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
__u32 family;
__u32 remote_ip4; /* In network byte order */
__u32 local_ip4; /* In network byte order */
__u32 remote_ip6[4]; /* In network byte order */
__u32 local_ip6[4]; /* In network byte order */
__u32 remote_port; /* In network byte order */
__u32 local_port; /* In host byte horder */
};
Currently there are two types of ops. The first type expects the BPF
program to return a value which is then used by the caller (or a
negative value to indicate the operation is not supported). The second
type expects state changes to be done by the BPF program, for example
through a setsockopt BPF helper function, and they ignore the return
value.
The reply fields of the bpf_sockt_ops struct are there in case a bpf
program needs to return a value larger than an integer.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-01 03:02:40 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
|
|
|
|
* @sk: socket to get cgroup from
|
|
|
|
* @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
|
|
|
|
* sk with connection information (IP addresses, etc.) May not contain
|
|
|
|
* cgroup info if it is a req sock.
|
|
|
|
* @type: The type of program to be exectuted
|
|
|
|
*
|
|
|
|
* socket passed is expected to be of type INET or INET6.
|
|
|
|
*
|
|
|
|
* The program type passed in via @type must be suitable for sock_ops
|
|
|
|
* filtering. No further check is performed to assert that.
|
|
|
|
*
|
|
|
|
* This function will return %-EPERM if any if an attached program was found
|
|
|
|
* and if it returned != 1 during execution. In all other cases, 0 is returned.
|
|
|
|
*/
|
|
|
|
int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
|
|
|
|
struct bpf_sock_ops_kern *sock_ops,
|
|
|
|
enum bpf_attach_type type)
|
|
|
|
{
|
|
|
|
struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
|
2017-10-03 05:50:21 +00:00
|
|
|
int ret;
|
bpf: BPF support for sock_ops
Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding
struct that allows BPF programs of this type to access some of the
socket's fields (such as IP addresses, ports, etc.). It uses the
existing bpf cgroups infrastructure so the programs can be attached per
cgroup with full inheritance support. The program will be called at
appropriate times to set relevant connections parameters such as buffer
sizes, SYN and SYN-ACK RTOs, etc., based on connection information such
as IP addresses, port numbers, etc.
Alghough there are already 3 mechanisms to set parameters (sysctls,
route metrics and setsockopts), this new mechanism provides some
distinct advantages. Unlike sysctls, it can set parameters per
connection. In contrast to route metrics, it can also use port numbers
and information provided by a user level program. In addition, it could
set parameters probabilistically for evaluation purposes (i.e. do
something different on 10% of the flows and compare results with the
other 90% of the flows). Also, in cases where IPv6 addresses contain
geographic information, the rules to make changes based on the distance
(or RTT) between the hosts are much easier than route metric rules and
can be global. Finally, unlike setsockopt, it oes not require
application changes and it can be updated easily at any time.
Although the bpf cgroup framework already contains a sock related
program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type
(BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called
only once during the connections's lifetime. In contrast, the new
program type will be called multiple times from different places in the
network stack code. For example, before sending SYN and SYN-ACKs to set
an appropriate timeout, when the connection is established to set
congestion control, etc. As a result it has "op" field to specify the
type of operation requested.
The purpose of this new program type is to simplify setting connection
parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is
easy to use facebook's internal IPv6 addresses to determine if both hosts
of a connection are in the same datacenter. Therefore, it is easy to
write a BPF program to choose a small SYN RTO value when both hosts are
in the same datacenter.
This patch only contains the framework to support the new BPF program
type, following patches add the functionality to set various connection
parameters.
This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS
and a new bpf syscall command to load a new program of this type:
BPF_PROG_LOAD_SOCKET_OPS.
Two new corresponding structs (one for the kernel one for the user/BPF
program):
/* kernel version */
struct bpf_sock_ops_kern {
struct sock *sk;
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
};
/* user version
* Some fields are in network byte order reflecting the sock struct
* Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to
* convert them to host byte order.
*/
struct bpf_sock_ops {
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
__u32 family;
__u32 remote_ip4; /* In network byte order */
__u32 local_ip4; /* In network byte order */
__u32 remote_ip6[4]; /* In network byte order */
__u32 local_ip6[4]; /* In network byte order */
__u32 remote_port; /* In network byte order */
__u32 local_port; /* In host byte horder */
};
Currently there are two types of ops. The first type expects the BPF
program to return a value which is then used by the caller (or a
negative value to indicate the operation is not supported). The second
type expects state changes to be done by the BPF program, for example
through a setsockopt BPF helper function, and they ignore the return
value.
The reply fields of the bpf_sockt_ops struct are there in case a bpf
program needs to return a value larger than an integer.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-01 03:02:40 +00:00
|
|
|
|
2017-10-03 05:50:21 +00:00
|
|
|
ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops,
|
|
|
|
BPF_PROG_RUN);
|
|
|
|
return ret == 1 ? 0 : -EPERM;
|
bpf: BPF support for sock_ops
Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding
struct that allows BPF programs of this type to access some of the
socket's fields (such as IP addresses, ports, etc.). It uses the
existing bpf cgroups infrastructure so the programs can be attached per
cgroup with full inheritance support. The program will be called at
appropriate times to set relevant connections parameters such as buffer
sizes, SYN and SYN-ACK RTOs, etc., based on connection information such
as IP addresses, port numbers, etc.
Alghough there are already 3 mechanisms to set parameters (sysctls,
route metrics and setsockopts), this new mechanism provides some
distinct advantages. Unlike sysctls, it can set parameters per
connection. In contrast to route metrics, it can also use port numbers
and information provided by a user level program. In addition, it could
set parameters probabilistically for evaluation purposes (i.e. do
something different on 10% of the flows and compare results with the
other 90% of the flows). Also, in cases where IPv6 addresses contain
geographic information, the rules to make changes based on the distance
(or RTT) between the hosts are much easier than route metric rules and
can be global. Finally, unlike setsockopt, it oes not require
application changes and it can be updated easily at any time.
Although the bpf cgroup framework already contains a sock related
program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type
(BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called
only once during the connections's lifetime. In contrast, the new
program type will be called multiple times from different places in the
network stack code. For example, before sending SYN and SYN-ACKs to set
an appropriate timeout, when the connection is established to set
congestion control, etc. As a result it has "op" field to specify the
type of operation requested.
The purpose of this new program type is to simplify setting connection
parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is
easy to use facebook's internal IPv6 addresses to determine if both hosts
of a connection are in the same datacenter. Therefore, it is easy to
write a BPF program to choose a small SYN RTO value when both hosts are
in the same datacenter.
This patch only contains the framework to support the new BPF program
type, following patches add the functionality to set various connection
parameters.
This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS
and a new bpf syscall command to load a new program of this type:
BPF_PROG_LOAD_SOCKET_OPS.
Two new corresponding structs (one for the kernel one for the user/BPF
program):
/* kernel version */
struct bpf_sock_ops_kern {
struct sock *sk;
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
};
/* user version
* Some fields are in network byte order reflecting the sock struct
* Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to
* convert them to host byte order.
*/
struct bpf_sock_ops {
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
__u32 family;
__u32 remote_ip4; /* In network byte order */
__u32 local_ip4; /* In network byte order */
__u32 remote_ip6[4]; /* In network byte order */
__u32 local_ip6[4]; /* In network byte order */
__u32 remote_port; /* In network byte order */
__u32 local_port; /* In host byte horder */
};
Currently there are two types of ops. The first type expects the BPF
program to return a value which is then used by the caller (or a
negative value to indicate the operation is not supported). The second
type expects state changes to be done by the BPF program, for example
through a setsockopt BPF helper function, and they ignore the return
value.
The reply fields of the bpf_sockt_ops struct are there in case a bpf
program needs to return a value larger than an integer.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-01 03:02:40 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
|