2015-04-12 04:43:56 +00:00
|
|
|
/*
|
|
|
|
* linux/fs/ext4/crypto.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 2015, Google, Inc.
|
|
|
|
*
|
|
|
|
* This contains encryption functions for ext4
|
|
|
|
*
|
|
|
|
* Written by Michael Halcrow, 2014.
|
|
|
|
*
|
|
|
|
* Filename encryption additions
|
|
|
|
* Uday Savagaonkar, 2014
|
|
|
|
* Encryption policy handling additions
|
|
|
|
* Ildar Muslukhov, 2014
|
|
|
|
*
|
|
|
|
* This has not yet undergone a rigorous security audit.
|
|
|
|
*
|
|
|
|
* The usage of AES-XTS should conform to recommendations in NIST
|
|
|
|
* Special Publication 800-38E and IEEE P1619/D16.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <crypto/hash.h>
|
|
|
|
#include <crypto/sha.h>
|
|
|
|
#include <keys/user-type.h>
|
|
|
|
#include <keys/encrypted-type.h>
|
|
|
|
#include <linux/crypto.h>
|
|
|
|
#include <linux/ecryptfs.h>
|
|
|
|
#include <linux/gfp.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/key.h>
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/mempool.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/mutex.h>
|
|
|
|
#include <linux/random.h>
|
|
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include <linux/spinlock_types.h>
|
|
|
|
|
|
|
|
#include "ext4_extents.h"
|
|
|
|
#include "xattr.h"
|
|
|
|
|
|
|
|
/* Encryption added and removed here! (L: */
|
|
|
|
|
|
|
|
static unsigned int num_prealloc_crypto_pages = 32;
|
|
|
|
static unsigned int num_prealloc_crypto_ctxs = 128;
|
|
|
|
|
|
|
|
module_param(num_prealloc_crypto_pages, uint, 0444);
|
|
|
|
MODULE_PARM_DESC(num_prealloc_crypto_pages,
|
|
|
|
"Number of crypto pages to preallocate");
|
|
|
|
module_param(num_prealloc_crypto_ctxs, uint, 0444);
|
|
|
|
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
|
|
|
|
"Number of crypto contexts to preallocate");
|
|
|
|
|
|
|
|
static mempool_t *ext4_bounce_page_pool;
|
|
|
|
|
|
|
|
static LIST_HEAD(ext4_free_crypto_ctxs);
|
|
|
|
static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
|
|
|
|
|
2015-05-18 17:19:47 +00:00
|
|
|
static struct kmem_cache *ext4_crypto_ctx_cachep;
|
|
|
|
struct kmem_cache *ext4_crypt_info_cachep;
|
|
|
|
|
2015-04-12 04:43:56 +00:00
|
|
|
/**
|
|
|
|
* ext4_release_crypto_ctx() - Releases an encryption context
|
|
|
|
* @ctx: The encryption context to release.
|
|
|
|
*
|
|
|
|
* If the encryption context was allocated from the pre-allocated pool, returns
|
|
|
|
* it to that pool. Else, frees it.
|
|
|
|
*
|
|
|
|
* If there's a bounce page in the context, this frees that.
|
|
|
|
*/
|
|
|
|
void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (ctx->bounce_page) {
|
|
|
|
if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
|
|
|
|
__free_page(ctx->bounce_page);
|
|
|
|
else
|
|
|
|
mempool_free(ctx->bounce_page, ext4_bounce_page_pool);
|
|
|
|
ctx->bounce_page = NULL;
|
|
|
|
}
|
|
|
|
ctx->control_page = NULL;
|
|
|
|
if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
|
|
|
|
if (ctx->tfm)
|
|
|
|
crypto_free_tfm(ctx->tfm);
|
2015-05-18 17:19:47 +00:00
|
|
|
kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
|
2015-04-12 04:43:56 +00:00
|
|
|
} else {
|
|
|
|
spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
|
|
|
|
list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
|
|
|
|
spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ext4_get_crypto_ctx() - Gets an encryption context
|
|
|
|
* @inode: The inode for which we are doing the crypto
|
|
|
|
*
|
|
|
|
* Allocates and initializes an encryption context.
|
|
|
|
*
|
|
|
|
* Return: An allocated and initialized encryption context on success; error
|
|
|
|
* value or NULL otherwise.
|
|
|
|
*/
|
|
|
|
struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
|
|
|
|
{
|
|
|
|
struct ext4_crypto_ctx *ctx = NULL;
|
|
|
|
int res = 0;
|
|
|
|
unsigned long flags;
|
ext4 crypto: reorganize how we store keys in the inode
This is a pretty massive patch which does a number of different things:
1) The per-inode encryption information is now stored in an allocated
data structure, ext4_crypt_info, instead of directly in the node.
This reduces the size usage of an in-memory inode when it is not
using encryption.
2) We drop the ext4_fname_crypto_ctx entirely, and use the per-inode
encryption structure instead. This remove an unnecessary memory
allocation and free for the fname_crypto_ctx as well as allowing us
to reuse the ctfm in a directory for multiple lookups and file
creations.
3) We also cache the inode's policy information in the ext4_crypt_info
structure so we don't have to continually read it out of the
extended attributes.
4) We now keep the keyring key in the inode's encryption structure
instead of releasing it after we are done using it to derive the
per-inode key. This allows us to test to see if the key has been
revoked; if it has, we prevent the use of the derived key and free
it.
5) When an inode is released (or when the derived key is freed), we
will use memset_explicit() to zero out the derived key, so it's not
left hanging around in memory. This implies that when a user logs
out, it is important to first revoke the key, and then unlink it,
and then finally, to use "echo 3 > /proc/sys/vm/drop_caches" to
release any decrypted pages and dcache entries from the system
caches.
6) All this, and we also shrink the number of lines of code by around
100. :-)
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2015-05-18 17:17:47 +00:00
|
|
|
struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
|
2015-04-12 04:43:56 +00:00
|
|
|
|
ext4 crypto: reorganize how we store keys in the inode
This is a pretty massive patch which does a number of different things:
1) The per-inode encryption information is now stored in an allocated
data structure, ext4_crypt_info, instead of directly in the node.
This reduces the size usage of an in-memory inode when it is not
using encryption.
2) We drop the ext4_fname_crypto_ctx entirely, and use the per-inode
encryption structure instead. This remove an unnecessary memory
allocation and free for the fname_crypto_ctx as well as allowing us
to reuse the ctfm in a directory for multiple lookups and file
creations.
3) We also cache the inode's policy information in the ext4_crypt_info
structure so we don't have to continually read it out of the
extended attributes.
4) We now keep the keyring key in the inode's encryption structure
instead of releasing it after we are done using it to derive the
per-inode key. This allows us to test to see if the key has been
revoked; if it has, we prevent the use of the derived key and free
it.
5) When an inode is released (or when the derived key is freed), we
will use memset_explicit() to zero out the derived key, so it's not
left hanging around in memory. This implies that when a user logs
out, it is important to first revoke the key, and then unlink it,
and then finally, to use "echo 3 > /proc/sys/vm/drop_caches" to
release any decrypted pages and dcache entries from the system
caches.
6) All this, and we also shrink the number of lines of code by around
100. :-)
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2015-05-18 17:17:47 +00:00
|
|
|
BUG_ON(ci == NULL);
|
2015-04-12 04:43:56 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We first try getting the ctx from a free list because in
|
|
|
|
* the common case the ctx will have an allocated and
|
|
|
|
* initialized crypto tfm, so it's probably a worthwhile
|
|
|
|
* optimization. For the bounce page, we first try getting it
|
|
|
|
* from the kernel allocator because that's just about as fast
|
|
|
|
* as getting it from a list and because a cache of free pages
|
|
|
|
* should generally be a "last resort" option for a filesystem
|
|
|
|
* to be able to do its job.
|
|
|
|
*/
|
|
|
|
spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
|
|
|
|
ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
|
|
|
|
struct ext4_crypto_ctx, free_list);
|
|
|
|
if (ctx)
|
|
|
|
list_del(&ctx->free_list);
|
|
|
|
spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
|
|
|
|
if (!ctx) {
|
2015-05-18 17:19:47 +00:00
|
|
|
ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
|
|
|
|
if (!ctx) {
|
|
|
|
res = -ENOMEM;
|
2015-04-12 04:43:56 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
|
} else {
|
|
|
|
ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate a new Crypto API context if we don't already have
|
|
|
|
* one or if it isn't the right mode. */
|
2015-05-18 17:20:47 +00:00
|
|
|
if (ctx->tfm && (ctx->mode != ci->ci_data_mode)) {
|
2015-04-12 04:43:56 +00:00
|
|
|
crypto_free_tfm(ctx->tfm);
|
|
|
|
ctx->tfm = NULL;
|
|
|
|
ctx->mode = EXT4_ENCRYPTION_MODE_INVALID;
|
|
|
|
}
|
|
|
|
if (!ctx->tfm) {
|
2015-05-18 17:20:47 +00:00
|
|
|
switch (ci->ci_data_mode) {
|
2015-04-12 04:43:56 +00:00
|
|
|
case EXT4_ENCRYPTION_MODE_AES_256_XTS:
|
|
|
|
ctx->tfm = crypto_ablkcipher_tfm(
|
|
|
|
crypto_alloc_ablkcipher("xts(aes)", 0, 0));
|
|
|
|
break;
|
|
|
|
case EXT4_ENCRYPTION_MODE_AES_256_GCM:
|
|
|
|
/* TODO(mhalcrow): AEAD w/ gcm(aes);
|
|
|
|
* crypto_aead_setauthsize() */
|
|
|
|
ctx->tfm = ERR_PTR(-ENOTSUPP);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
if (IS_ERR_OR_NULL(ctx->tfm)) {
|
|
|
|
res = PTR_ERR(ctx->tfm);
|
|
|
|
ctx->tfm = NULL;
|
|
|
|
goto out;
|
|
|
|
}
|
2015-05-18 17:20:47 +00:00
|
|
|
ctx->mode = ci->ci_data_mode;
|
2015-04-12 04:43:56 +00:00
|
|
|
}
|
2015-05-18 17:20:47 +00:00
|
|
|
BUG_ON(ci->ci_size != ext4_encryption_key_size(ci->ci_data_mode));
|
2015-04-12 04:43:56 +00:00
|
|
|
|
|
|
|
/* There shouldn't be a bounce page attached to the crypto
|
|
|
|
* context at this point. */
|
|
|
|
BUG_ON(ctx->bounce_page);
|
|
|
|
|
|
|
|
out:
|
|
|
|
if (res) {
|
|
|
|
if (!IS_ERR_OR_NULL(ctx))
|
|
|
|
ext4_release_crypto_ctx(ctx);
|
|
|
|
ctx = ERR_PTR(res);
|
|
|
|
}
|
|
|
|
return ctx;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct workqueue_struct *ext4_read_workqueue;
|
|
|
|
static DEFINE_MUTEX(crypto_init);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ext4_exit_crypto() - Shutdown the ext4 encryption system
|
|
|
|
*/
|
|
|
|
void ext4_exit_crypto(void)
|
|
|
|
{
|
|
|
|
struct ext4_crypto_ctx *pos, *n;
|
|
|
|
|
|
|
|
list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) {
|
|
|
|
if (pos->bounce_page) {
|
|
|
|
if (pos->flags &
|
|
|
|
EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) {
|
|
|
|
__free_page(pos->bounce_page);
|
|
|
|
} else {
|
|
|
|
mempool_free(pos->bounce_page,
|
|
|
|
ext4_bounce_page_pool);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (pos->tfm)
|
|
|
|
crypto_free_tfm(pos->tfm);
|
2015-05-18 17:19:47 +00:00
|
|
|
kmem_cache_free(ext4_crypto_ctx_cachep, pos);
|
2015-04-12 04:43:56 +00:00
|
|
|
}
|
|
|
|
INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
|
|
|
|
if (ext4_bounce_page_pool)
|
|
|
|
mempool_destroy(ext4_bounce_page_pool);
|
|
|
|
ext4_bounce_page_pool = NULL;
|
|
|
|
if (ext4_read_workqueue)
|
|
|
|
destroy_workqueue(ext4_read_workqueue);
|
|
|
|
ext4_read_workqueue = NULL;
|
2015-05-18 17:19:47 +00:00
|
|
|
if (ext4_crypto_ctx_cachep)
|
|
|
|
kmem_cache_destroy(ext4_crypto_ctx_cachep);
|
|
|
|
ext4_crypto_ctx_cachep = NULL;
|
|
|
|
if (ext4_crypt_info_cachep)
|
|
|
|
kmem_cache_destroy(ext4_crypt_info_cachep);
|
|
|
|
ext4_crypt_info_cachep = NULL;
|
2015-04-12 04:43:56 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ext4_init_crypto() - Set up for ext4 encryption.
|
|
|
|
*
|
|
|
|
* We only call this when we start accessing encrypted files, since it
|
|
|
|
* results in memory getting allocated that wouldn't otherwise be used.
|
|
|
|
*
|
|
|
|
* Return: Zero on success, non-zero otherwise.
|
|
|
|
*/
|
|
|
|
int ext4_init_crypto(void)
|
|
|
|
{
|
2015-05-18 17:19:47 +00:00
|
|
|
int i, res = -ENOMEM;
|
2015-04-12 04:43:56 +00:00
|
|
|
|
|
|
|
mutex_lock(&crypto_init);
|
|
|
|
if (ext4_read_workqueue)
|
|
|
|
goto already_initialized;
|
|
|
|
ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
|
2015-05-18 17:19:47 +00:00
|
|
|
if (!ext4_read_workqueue)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
|
|
|
|
SLAB_RECLAIM_ACCOUNT);
|
|
|
|
if (!ext4_crypto_ctx_cachep)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
|
|
|
|
SLAB_RECLAIM_ACCOUNT);
|
|
|
|
if (!ext4_crypt_info_cachep)
|
2015-04-12 04:43:56 +00:00
|
|
|
goto fail;
|
|
|
|
|
|
|
|
for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
|
|
|
|
struct ext4_crypto_ctx *ctx;
|
|
|
|
|
2015-05-18 17:19:47 +00:00
|
|
|
ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
|
|
|
|
if (!ctx) {
|
|
|
|
res = -ENOMEM;
|
2015-04-12 04:43:56 +00:00
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
|
|
|
|
}
|
|
|
|
|
|
|
|
ext4_bounce_page_pool =
|
|
|
|
mempool_create_page_pool(num_prealloc_crypto_pages, 0);
|
|
|
|
if (!ext4_bounce_page_pool) {
|
|
|
|
res = -ENOMEM;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
already_initialized:
|
|
|
|
mutex_unlock(&crypto_init);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
ext4_exit_crypto();
|
|
|
|
mutex_unlock(&crypto_init);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ext4_restore_control_page(struct page *data_page)
|
|
|
|
{
|
|
|
|
struct ext4_crypto_ctx *ctx =
|
|
|
|
(struct ext4_crypto_ctx *)page_private(data_page);
|
|
|
|
|
|
|
|
set_page_private(data_page, (unsigned long)NULL);
|
|
|
|
ClearPagePrivate(data_page);
|
|
|
|
unlock_page(data_page);
|
|
|
|
ext4_release_crypto_ctx(ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ext4_crypt_complete() - The completion callback for page encryption
|
|
|
|
* @req: The asynchronous encryption request context
|
|
|
|
* @res: The result of the encryption operation
|
|
|
|
*/
|
|
|
|
static void ext4_crypt_complete(struct crypto_async_request *req, int res)
|
|
|
|
{
|
|
|
|
struct ext4_completion_result *ecr = req->data;
|
|
|
|
|
|
|
|
if (res == -EINPROGRESS)
|
|
|
|
return;
|
|
|
|
ecr->res = res;
|
|
|
|
complete(&ecr->completion);
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
EXT4_DECRYPT = 0,
|
|
|
|
EXT4_ENCRYPT,
|
|
|
|
} ext4_direction_t;
|
|
|
|
|
|
|
|
static int ext4_page_crypto(struct ext4_crypto_ctx *ctx,
|
|
|
|
struct inode *inode,
|
|
|
|
ext4_direction_t rw,
|
|
|
|
pgoff_t index,
|
|
|
|
struct page *src_page,
|
|
|
|
struct page *dest_page)
|
|
|
|
|
|
|
|
{
|
|
|
|
u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
|
|
|
|
struct ablkcipher_request *req = NULL;
|
|
|
|
DECLARE_EXT4_COMPLETION_RESULT(ecr);
|
|
|
|
struct scatterlist dst, src;
|
|
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
|
|
struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
|
|
|
|
int res = 0;
|
|
|
|
|
|
|
|
BUG_ON(!ctx->tfm);
|
2015-05-18 17:20:47 +00:00
|
|
|
BUG_ON(ctx->mode != ei->i_crypt_info->ci_data_mode);
|
2015-04-12 04:43:56 +00:00
|
|
|
|
|
|
|
if (ctx->mode != EXT4_ENCRYPTION_MODE_AES_256_XTS) {
|
|
|
|
printk_ratelimited(KERN_ERR
|
|
|
|
"%s: unsupported crypto algorithm: %d\n",
|
|
|
|
__func__, ctx->mode);
|
|
|
|
return -ENOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
crypto_ablkcipher_clear_flags(atfm, ~0);
|
|
|
|
crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
|
|
|
|
|
ext4 crypto: reorganize how we store keys in the inode
This is a pretty massive patch which does a number of different things:
1) The per-inode encryption information is now stored in an allocated
data structure, ext4_crypt_info, instead of directly in the node.
This reduces the size usage of an in-memory inode when it is not
using encryption.
2) We drop the ext4_fname_crypto_ctx entirely, and use the per-inode
encryption structure instead. This remove an unnecessary memory
allocation and free for the fname_crypto_ctx as well as allowing us
to reuse the ctfm in a directory for multiple lookups and file
creations.
3) We also cache the inode's policy information in the ext4_crypt_info
structure so we don't have to continually read it out of the
extended attributes.
4) We now keep the keyring key in the inode's encryption structure
instead of releasing it after we are done using it to derive the
per-inode key. This allows us to test to see if the key has been
revoked; if it has, we prevent the use of the derived key and free
it.
5) When an inode is released (or when the derived key is freed), we
will use memset_explicit() to zero out the derived key, so it's not
left hanging around in memory. This implies that when a user logs
out, it is important to first revoke the key, and then unlink it,
and then finally, to use "echo 3 > /proc/sys/vm/drop_caches" to
release any decrypted pages and dcache entries from the system
caches.
6) All this, and we also shrink the number of lines of code by around
100. :-)
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2015-05-18 17:17:47 +00:00
|
|
|
res = crypto_ablkcipher_setkey(atfm, ei->i_crypt_info->ci_raw,
|
|
|
|
ei->i_crypt_info->ci_size);
|
2015-04-12 04:43:56 +00:00
|
|
|
if (res) {
|
|
|
|
printk_ratelimited(KERN_ERR
|
|
|
|
"%s: crypto_ablkcipher_setkey() failed\n",
|
|
|
|
__func__);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
req = ablkcipher_request_alloc(atfm, GFP_NOFS);
|
|
|
|
if (!req) {
|
|
|
|
printk_ratelimited(KERN_ERR
|
|
|
|
"%s: crypto_request_alloc() failed\n",
|
|
|
|
__func__);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
ablkcipher_request_set_callback(
|
|
|
|
req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
|
|
ext4_crypt_complete, &ecr);
|
|
|
|
|
|
|
|
BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
|
|
|
|
memcpy(xts_tweak, &index, sizeof(index));
|
|
|
|
memset(&xts_tweak[sizeof(index)], 0,
|
|
|
|
EXT4_XTS_TWEAK_SIZE - sizeof(index));
|
|
|
|
|
|
|
|
sg_init_table(&dst, 1);
|
|
|
|
sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
|
|
|
|
sg_init_table(&src, 1);
|
|
|
|
sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
|
|
|
|
ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
|
|
|
|
xts_tweak);
|
|
|
|
if (rw == EXT4_DECRYPT)
|
|
|
|
res = crypto_ablkcipher_decrypt(req);
|
|
|
|
else
|
|
|
|
res = crypto_ablkcipher_encrypt(req);
|
|
|
|
if (res == -EINPROGRESS || res == -EBUSY) {
|
|
|
|
BUG_ON(req->base.data != &ecr);
|
|
|
|
wait_for_completion(&ecr.completion);
|
|
|
|
res = ecr.res;
|
|
|
|
}
|
|
|
|
ablkcipher_request_free(req);
|
|
|
|
if (res) {
|
|
|
|
printk_ratelimited(
|
|
|
|
KERN_ERR
|
|
|
|
"%s: crypto_ablkcipher_encrypt() returned %d\n",
|
|
|
|
__func__, res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ext4_encrypt() - Encrypts a page
|
|
|
|
* @inode: The inode for which the encryption should take place
|
|
|
|
* @plaintext_page: The page to encrypt. Must be locked.
|
|
|
|
*
|
|
|
|
* Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
|
|
|
|
* encryption context.
|
|
|
|
*
|
|
|
|
* Called on the page write path. The caller must call
|
|
|
|
* ext4_restore_control_page() on the returned ciphertext page to
|
|
|
|
* release the bounce buffer and the encryption context.
|
|
|
|
*
|
|
|
|
* Return: An allocated page with the encrypted content on success. Else, an
|
|
|
|
* error value or NULL.
|
|
|
|
*/
|
|
|
|
struct page *ext4_encrypt(struct inode *inode,
|
|
|
|
struct page *plaintext_page)
|
|
|
|
{
|
|
|
|
struct ext4_crypto_ctx *ctx;
|
|
|
|
struct page *ciphertext_page = NULL;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
BUG_ON(!PageLocked(plaintext_page));
|
|
|
|
|
|
|
|
ctx = ext4_get_crypto_ctx(inode);
|
|
|
|
if (IS_ERR(ctx))
|
|
|
|
return (struct page *) ctx;
|
|
|
|
|
|
|
|
/* The encryption operation will require a bounce page. */
|
|
|
|
ciphertext_page = alloc_page(GFP_NOFS);
|
|
|
|
if (!ciphertext_page) {
|
|
|
|
/* This is a potential bottleneck, but at least we'll have
|
|
|
|
* forward progress. */
|
|
|
|
ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
|
|
|
|
GFP_NOFS);
|
|
|
|
if (WARN_ON_ONCE(!ciphertext_page)) {
|
|
|
|
ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
|
|
|
|
GFP_NOFS | __GFP_WAIT);
|
|
|
|
}
|
|
|
|
ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
|
} else {
|
|
|
|
ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
|
}
|
|
|
|
ctx->bounce_page = ciphertext_page;
|
|
|
|
ctx->control_page = plaintext_page;
|
|
|
|
err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index,
|
|
|
|
plaintext_page, ciphertext_page);
|
|
|
|
if (err) {
|
|
|
|
ext4_release_crypto_ctx(ctx);
|
|
|
|
return ERR_PTR(err);
|
|
|
|
}
|
|
|
|
SetPagePrivate(ciphertext_page);
|
|
|
|
set_page_private(ciphertext_page, (unsigned long)ctx);
|
|
|
|
lock_page(ciphertext_page);
|
|
|
|
return ciphertext_page;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ext4_decrypt() - Decrypts a page in-place
|
|
|
|
* @ctx: The encryption context.
|
|
|
|
* @page: The page to decrypt. Must be locked.
|
|
|
|
*
|
|
|
|
* Decrypts page in-place using the ctx encryption context.
|
|
|
|
*
|
|
|
|
* Called from the read completion callback.
|
|
|
|
*
|
|
|
|
* Return: Zero on success, non-zero otherwise.
|
|
|
|
*/
|
|
|
|
int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
|
|
|
|
{
|
|
|
|
BUG_ON(!PageLocked(page));
|
|
|
|
|
|
|
|
return ext4_page_crypto(ctx, page->mapping->host,
|
|
|
|
EXT4_DECRYPT, page->index, page, page);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convenience function which takes care of allocating and
|
|
|
|
* deallocating the encryption context
|
|
|
|
*/
|
|
|
|
int ext4_decrypt_one(struct inode *inode, struct page *page)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);
|
|
|
|
|
|
|
|
if (!ctx)
|
|
|
|
return -ENOMEM;
|
|
|
|
ret = ext4_decrypt(ctx, page);
|
|
|
|
ext4_release_crypto_ctx(ctx);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
|
|
|
|
{
|
|
|
|
struct ext4_crypto_ctx *ctx;
|
|
|
|
struct page *ciphertext_page = NULL;
|
|
|
|
struct bio *bio;
|
|
|
|
ext4_lblk_t lblk = ex->ee_block;
|
|
|
|
ext4_fsblk_t pblk = ext4_ext_pblock(ex);
|
|
|
|
unsigned int len = ext4_ext_get_actual_len(ex);
|
|
|
|
int err = 0;
|
|
|
|
|
|
|
|
BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
|
|
|
|
|
|
|
|
ctx = ext4_get_crypto_ctx(inode);
|
|
|
|
if (IS_ERR(ctx))
|
|
|
|
return PTR_ERR(ctx);
|
|
|
|
|
|
|
|
ciphertext_page = alloc_page(GFP_NOFS);
|
|
|
|
if (!ciphertext_page) {
|
|
|
|
/* This is a potential bottleneck, but at least we'll have
|
|
|
|
* forward progress. */
|
|
|
|
ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
|
|
|
|
GFP_NOFS);
|
|
|
|
if (WARN_ON_ONCE(!ciphertext_page)) {
|
|
|
|
ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
|
|
|
|
GFP_NOFS | __GFP_WAIT);
|
|
|
|
}
|
|
|
|
ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
|
} else {
|
|
|
|
ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
|
}
|
|
|
|
ctx->bounce_page = ciphertext_page;
|
|
|
|
|
|
|
|
while (len--) {
|
|
|
|
err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk,
|
|
|
|
ZERO_PAGE(0), ciphertext_page);
|
|
|
|
if (err)
|
|
|
|
goto errout;
|
|
|
|
|
|
|
|
bio = bio_alloc(GFP_KERNEL, 1);
|
|
|
|
if (!bio) {
|
|
|
|
err = -ENOMEM;
|
|
|
|
goto errout;
|
|
|
|
}
|
|
|
|
bio->bi_bdev = inode->i_sb->s_bdev;
|
|
|
|
bio->bi_iter.bi_sector = pblk;
|
|
|
|
err = bio_add_page(bio, ciphertext_page,
|
|
|
|
inode->i_sb->s_blocksize, 0);
|
|
|
|
if (err) {
|
|
|
|
bio_put(bio);
|
|
|
|
goto errout;
|
|
|
|
}
|
|
|
|
err = submit_bio_wait(WRITE, bio);
|
|
|
|
if (err)
|
|
|
|
goto errout;
|
|
|
|
}
|
|
|
|
err = 0;
|
|
|
|
errout:
|
|
|
|
ext4_release_crypto_ctx(ctx);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ext4_valid_contents_enc_mode(uint32_t mode)
|
|
|
|
{
|
|
|
|
return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ext4_validate_encryption_key_size() - Validate the encryption key size
|
|
|
|
* @mode: The key mode.
|
|
|
|
* @size: The key size to validate.
|
|
|
|
*
|
|
|
|
* Return: The validated key size for @mode. Zero if invalid.
|
|
|
|
*/
|
|
|
|
uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
|
|
|
|
{
|
|
|
|
if (size == ext4_encryption_key_size(mode))
|
|
|
|
return size;
|
|
|
|
return 0;
|
|
|
|
}
|