Files
linux/drivers/gpu/drm/amd/display/dc/dcn32/dcn32_hwseq.c

1428 lines
46 KiB
C
Raw Normal View History

/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dm_helpers.h"
#include "core_types.h"
#include "resource.h"
#include "dccg.h"
#include "dce/dce_hwseq.h"
#include "dcn30/dcn30_cm_common.h"
#include "reg_helper.h"
#include "abm.h"
#include "hubp.h"
#include "dchubbub.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "mcif_wb.h"
#include "dc_dmub_srv.h"
#include "link_hwss.h"
#include "dpcd_defs.h"
#include "dcn32_hwseq.h"
#include "clk_mgr.h"
#include "dsc.h"
#include "dcn20/dcn20_optc.h"
#include "dmub_subvp_state.h"
#include "dce/dmub_hw_lock_mgr.h"
#include "dcn32_resource.h"
#include "dc_link_dp.h"
#include "dmub/inc/dmub_subvp_state.h"
#define DC_LOGGER_INIT(logger)
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#define DC_LOGGER \
dc->ctx->logger
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
void dcn32_dsc_pg_control(
struct dce_hwseq *hws,
unsigned int dsc_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
uint32_t org_ip_request_cntl = 0;
if (hws->ctx->dc->debug.disable_dsc_power_gate)
return;
REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
switch (dsc_inst) {
case 0: /* DSC0 */
REG_UPDATE(DOMAIN16_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN16_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DSC1 */
REG_UPDATE(DOMAIN17_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN17_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DSC2 */
REG_UPDATE(DOMAIN18_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN18_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DSC3 */
REG_UPDATE(DOMAIN19_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN19_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
}
void dcn32_enable_power_gating_plane(
struct dce_hwseq *hws,
bool enable)
{
bool force_on = true; /* disable power gating */
if (enable)
force_on = false;
/* DCHUBP0/1/2/3 */
REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
/* DCS0/1/2/3 */
REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
}
void dcn32_hubp_pg_control(struct dce_hwseq *hws, unsigned int hubp_inst, bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (hws->ctx->dc->debug.disable_hubp_power_gate)
return;
if (REG(DOMAIN0_PG_CONFIG) == 0)
return;
switch (hubp_inst) {
case 0:
REG_SET(DOMAIN0_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
break;
case 1:
REG_SET(DOMAIN1_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
break;
case 2:
REG_SET(DOMAIN2_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
break;
case 3:
REG_SET(DOMAIN3_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static bool dcn32_check_no_memory_request_for_cab(struct dc *dc)
{
int i;
/* First, check no-memory-request case */
for (i = 0; i < dc->current_state->stream_count; i++) {
if (dc->current_state->stream_status[i].plane_count)
/* Fail eligibility on a visible stream */
break;
}
if (i == dc->current_state->stream_count)
return true;
return false;
}
/* This function loops through every surface that needs to be cached in CAB for SS,
* and calculates the total number of ways required to store all surfaces (primary,
* meta, cursor).
*/
static uint32_t dcn32_calculate_cab_allocation(struct dc *dc, struct dc_state *ctx)
{
int i, j;
struct dc_stream_state *stream = NULL;
struct dc_plane_state *plane = NULL;
uint32_t cursor_size = 0;
uint32_t total_lines = 0;
uint32_t lines_per_way = 0;
uint8_t num_ways = 0;
uint8_t bytes_per_pixel = 0;
uint8_t cursor_bpp = 0;
uint16_t mblk_width = 0;
uint16_t mblk_height = 0;
uint16_t mall_alloc_width_blk_aligned = 0;
uint16_t mall_alloc_height_blk_aligned = 0;
uint16_t num_mblks = 0;
uint32_t bytes_in_mall = 0;
uint32_t cache_lines_used = 0;
uint32_t cache_lines_per_plane = 0;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (!pipe->stream || !pipe->plane_state ||
pipe->stream->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED ||
pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
continue;
bytes_per_pixel = pipe->plane_state->format >= SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 ? 8 : 4;
mblk_width = DCN3_2_MBLK_WIDTH;
mblk_height = bytes_per_pixel == 4 ? DCN3_2_MBLK_HEIGHT_4BPE : DCN3_2_MBLK_HEIGHT_8BPE;
/* full_vp_width_blk_aligned = FLOOR(vp_x_start + full_vp_width + blk_width - 1, blk_width) -
* FLOOR(vp_x_start, blk_width)
*
* mall_alloc_width_blk_aligned_l/c = full_vp_width_blk_aligned_l/c
*/
mall_alloc_width_blk_aligned = ((pipe->plane_res.scl_data.viewport.x +
pipe->plane_res.scl_data.viewport.width + mblk_width - 1) / mblk_width * mblk_width) -
(pipe->plane_res.scl_data.viewport.x / mblk_width * mblk_width);
/* full_vp_height_blk_aligned = FLOOR(vp_y_start + full_vp_height + blk_height - 1, blk_height) -
* FLOOR(vp_y_start, blk_height)
*
* mall_alloc_height_blk_aligned_l/c = full_vp_height_blk_aligned_l/c
*/
mall_alloc_height_blk_aligned = ((pipe->plane_res.scl_data.viewport.y +
pipe->plane_res.scl_data.viewport.height + mblk_height - 1) / mblk_height * mblk_height) -
(pipe->plane_res.scl_data.viewport.y / mblk_height * mblk_height);
num_mblks = ((mall_alloc_width_blk_aligned + mblk_width - 1) / mblk_width) *
((mall_alloc_height_blk_aligned + mblk_height - 1) / mblk_height);
/* For DCC:
* meta_num_mblk = CEILING(full_mblk_width_ub_l*full_mblk_height_ub_l*Bpe/256/mblk_bytes, 1)
*/
if (pipe->plane_state->dcc.enable)
num_mblks += (mall_alloc_width_blk_aligned * mall_alloc_width_blk_aligned * bytes_per_pixel +
(256 * DCN3_2_MALL_MBLK_SIZE_BYTES) - 1) / (256 * DCN3_2_MALL_MBLK_SIZE_BYTES);
bytes_in_mall = num_mblks * DCN3_2_MALL_MBLK_SIZE_BYTES;
/* (cache lines used is total bytes / cache_line size. Add +2 for worst case alignment
* (MALL is 64-byte aligned)
*/
cache_lines_per_plane = bytes_in_mall / dc->caps.cache_line_size + 2;
cache_lines_used += cache_lines_per_plane;
}
// Include cursor size for CAB allocation
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe = &ctx->res_ctx.pipe_ctx[j];
struct hubp *hubp = pipe->plane_res.hubp;
if (pipe->stream && pipe->plane_state && hubp)
/* Find the cursor plane and use the exact size instead of
using the max for calculation */
if (hubp->curs_attr.width > 0) {
// Round cursor width to next multiple of 64
cursor_size = (((hubp->curs_attr.width + 63) / 64) * 64) * hubp->curs_attr.height;
switch (pipe->stream->cursor_attributes.color_format) {
case CURSOR_MODE_MONO:
cursor_size /= 2;
cursor_bpp = 4;
break;
case CURSOR_MODE_COLOR_1BIT_AND:
case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
cursor_size *= 4;
cursor_bpp = 4;
break;
case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
cursor_size *= 8;
cursor_bpp = 8;
break;
}
if (pipe->stream->cursor_position.enable && !dc->debug.alloc_extra_way_for_cursor &&
cursor_size > 16384) {
/* cursor_num_mblk = CEILING(num_cursors*cursor_width*cursor_width*cursor_Bpe/mblk_bytes, 1)
*/
cache_lines_used += (((hubp->curs_attr.width * hubp->curs_attr.height * cursor_bpp +
DCN3_2_MALL_MBLK_SIZE_BYTES - 1) / DCN3_2_MALL_MBLK_SIZE_BYTES) *
DCN3_2_MALL_MBLK_SIZE_BYTES) / dc->caps.cache_line_size + 2;
}
break;
}
}
// Convert number of cache lines required to number of ways
total_lines = dc->caps.max_cab_allocation_bytes / dc->caps.cache_line_size;
lines_per_way = total_lines / dc->caps.cache_num_ways;
num_ways = cache_lines_used / lines_per_way;
if (cache_lines_used % lines_per_way > 0)
num_ways++;
for (i = 0; i < ctx->stream_count; i++) {
stream = ctx->streams[i];
for (j = 0; j < ctx->stream_status[i].plane_count; j++) {
plane = ctx->stream_status[i].plane_states[j];
if (stream->cursor_position.enable && plane &&
dc->debug.alloc_extra_way_for_cursor &&
cursor_size > 16384) {
/* Cursor caching is not supported since it won't be on the same line.
* So we need an extra line to accommodate it. With large cursors and a single 4k monitor
* this case triggers corruption. If we're at the edge, then dont trigger display refresh
* from MALL. We only need to cache cursor if its greater that 64x64 at 4 bpp.
*/
num_ways++;
/* We only expect one cursor plane */
break;
}
}
}
if (dc->debug.force_mall_ss_num_ways > 0) {
num_ways = dc->debug.force_mall_ss_num_ways;
}
return num_ways;
}
bool dcn32_apply_idle_power_optimizations(struct dc *dc, bool enable)
{
union dmub_rb_cmd cmd;
uint8_t ways, i;
int j;
bool mall_ss_unsupported = false;
struct dc_plane_state *plane = NULL;
if (!dc->ctx->dmub_srv)
return false;
if (enable) {
if (dc->current_state) {
/* 1. Check no memory request case for CAB.
* If no memory request case, send CAB_ACTION NO_DF_REQ DMUB message
*/
if (dcn32_check_no_memory_request_for_cab(dc)) {
/* Enable no-memory-requests case */
memset(&cmd, 0, sizeof(cmd));
cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_DCN_REQ;
cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
return true;
}
/* 2. Check if all surfaces can fit in CAB.
* If surfaces can fit into CAB, send CAB_ACTION_ALLOW DMUB message
* and configure HUBP's to fetch from MALL
*/
ways = dcn32_calculate_cab_allocation(dc, dc->current_state);
/* MALL not supported with Stereo3D or TMZ surface. If any plane is using stereo,
* or TMZ surface, don't try to enter MALL.
*/
for (i = 0; i < dc->current_state->stream_count; i++) {
for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
plane = dc->current_state->stream_status[i].plane_states[j];
if (plane->address.type == PLN_ADDR_TYPE_GRPH_STEREO ||
plane->address.tmz_surface) {
mall_ss_unsupported = true;
break;
}
}
if (mall_ss_unsupported)
break;
}
if (ways <= dc->caps.cache_num_ways && !mall_ss_unsupported) {
memset(&cmd, 0, sizeof(cmd));
cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_FIT_IN_CAB;
cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
cmd.cab.cab_alloc_ways = ways;
dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
return true;
}
}
return false;
}
/* Disable CAB */
memset(&cmd, 0, sizeof(cmd));
cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_IDLE_OPTIMIZATION;
cmd.cab.header.payload_bytes =
sizeof(cmd.cab) - sizeof(cmd.cab.header);
dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
return true;
}
/* Send DMCUB message with SubVP pipe info
* - For each pipe in context, populate payload with required SubVP information
* if the pipe is using SubVP for MCLK switch
* - This function must be called while the DMUB HW lock is acquired by driver
*/
void dcn32_commit_subvp_config(struct dc *dc, struct dc_state *context)
{
int i;
bool enable_subvp = false;
if (!dc->ctx || !dc->ctx->dmub_srv)
return;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.paired_stream &&
pipe_ctx->stream->mall_stream_config.type == SUBVP_MAIN) {
// There is at least 1 SubVP pipe, so enable SubVP
enable_subvp = true;
break;
}
}
dc_dmub_setup_subvp_dmub_command(dc, context, enable_subvp);
}
/* Sub-Viewport DMUB lock needs to be acquired by driver whenever SubVP is active and:
* 1. Any full update for any SubVP main pipe
* 2. Any immediate flip for any SubVP pipe
* 3. Any flip for DRR pipe
* 4. If SubVP was previously in use (i.e. in old context)
*/
void dcn32_subvp_pipe_control_lock(struct dc *dc,
struct dc_state *context,
bool lock,
bool should_lock_all_pipes,
struct pipe_ctx *top_pipe_to_program,
bool subvp_prev_use)
{
unsigned int i = 0;
bool subvp_immediate_flip = false;
bool subvp_in_use = false;
struct pipe_ctx *pipe;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
subvp_in_use = true;
break;
}
}
if (top_pipe_to_program && top_pipe_to_program->stream && top_pipe_to_program->plane_state) {
if (top_pipe_to_program->stream->mall_stream_config.type == SUBVP_MAIN &&
top_pipe_to_program->plane_state->flip_immediate)
subvp_immediate_flip = true;
}
// Don't need to lock for DRR VSYNC flips -- FW will wait for DRR pending update cleared.
if ((subvp_in_use && (should_lock_all_pipes || subvp_immediate_flip)) || (!subvp_in_use && subvp_prev_use)) {
union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };
if (!lock) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN &&
should_lock_all_pipes)
pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
}
}
hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
hw_lock_cmd.bits.lock = lock;
hw_lock_cmd.bits.should_release = !lock;
dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
}
}
static bool dcn32_set_mpc_shaper_3dlut(
struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
bool result = false;
const struct pwl_params *shaper_lut = NULL;
//get the shaper lut params
if (stream->func_shaper) {
if (stream->func_shaper->type == TF_TYPE_HWPWL)
shaper_lut = &stream->func_shaper->pwl;
else if (stream->func_shaper->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(
stream->func_shaper,
&dpp_base->shaper_params, true);
shaper_lut = &dpp_base->shaper_params;
}
}
if (stream->lut3d_func &&
stream->lut3d_func->state.bits.initialized == 1) {
result = mpc->funcs->program_3dlut(mpc,
&stream->lut3d_func->lut_3d,
mpcc_id);
result = mpc->funcs->program_shaper(mpc,
shaper_lut,
mpcc_id);
}
return result;
}
bool dcn32_set_mcm_luts(
struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
bool result = true;
struct pwl_params *lut_params = NULL;
// 1D LUT
if (plane_state->blend_tf) {
if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
lut_params = &plane_state->blend_tf->pwl;
else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(
plane_state->blend_tf,
&dpp_base->regamma_params, false);
lut_params = &dpp_base->regamma_params;
}
}
result = mpc->funcs->program_1dlut(mpc, lut_params, mpcc_id);
// Shaper
if (plane_state->in_shaper_func) {
if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
lut_params = &plane_state->in_shaper_func->pwl;
else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
// TODO: dpp_base replace
ASSERT(false);
cm_helper_translate_curve_to_hw_format(
plane_state->in_shaper_func,
&dpp_base->shaper_params, true);
lut_params = &dpp_base->shaper_params;
}
}
result = mpc->funcs->program_shaper(mpc, lut_params, mpcc_id);
// 3D
if (plane_state->lut3d_func && plane_state->lut3d_func->state.bits.initialized == 1)
result = mpc->funcs->program_3dlut(mpc, &plane_state->lut3d_func->lut_3d, mpcc_id);
else
result = mpc->funcs->program_3dlut(mpc, NULL, mpcc_id);
return result;
}
bool dcn32_set_input_transfer_func(struct dc *dc,
struct pipe_ctx *pipe_ctx,
const struct dc_plane_state *plane_state)
{
struct dce_hwseq *hws = dc->hwseq;
struct mpc *mpc = dc->res_pool->mpc;
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
enum dc_transfer_func_predefined tf;
bool result = true;
struct pwl_params *params = NULL;
if (mpc == NULL || plane_state == NULL)
return false;
tf = TRANSFER_FUNCTION_UNITY;
if (plane_state->in_transfer_func &&
plane_state->in_transfer_func->type == TF_TYPE_PREDEFINED)
tf = plane_state->in_transfer_func->tf;
dpp_base->funcs->dpp_set_pre_degam(dpp_base, tf);
if (plane_state->in_transfer_func) {
if (plane_state->in_transfer_func->type == TF_TYPE_HWPWL)
params = &plane_state->in_transfer_func->pwl;
else if (plane_state->in_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS &&
cm3_helper_translate_curve_to_hw_format(plane_state->in_transfer_func,
&dpp_base->degamma_params, false))
params = &dpp_base->degamma_params;
}
dpp_base->funcs->dpp_program_gamcor_lut(dpp_base, params);
if (pipe_ctx->stream_res.opp &&
pipe_ctx->stream_res.opp->ctx &&
hws->funcs.set_mcm_luts)
result = hws->funcs.set_mcm_luts(pipe_ctx, plane_state);
return result;
}
bool dcn32_set_output_transfer_func(struct dc *dc,
struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream)
{
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
struct pwl_params *params = NULL;
bool ret = false;
/* program OGAM or 3DLUT only for the top pipe*/
if (pipe_ctx->top_pipe == NULL) {
/*program shaper and 3dlut in MPC*/
ret = dcn32_set_mpc_shaper_3dlut(pipe_ctx, stream);
if (ret == false && mpc->funcs->set_output_gamma && stream->out_transfer_func) {
if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
params = &stream->out_transfer_func->pwl;
else if (pipe_ctx->stream->out_transfer_func->type ==
TF_TYPE_DISTRIBUTED_POINTS &&
cm3_helper_translate_curve_to_hw_format(
stream->out_transfer_func,
&mpc->blender_params, false))
params = &mpc->blender_params;
/* there are no ROM LUTs in OUTGAM */
if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
BREAK_TO_DEBUGGER();
}
}
mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
return ret;
}
/* Program P-State force value according to if pipe is using SubVP or not:
* 1. Reset P-State force on all pipes first
* 2. For each main pipe, force P-State disallow (P-State allow moderated by DMUB)
*/
void dcn32_subvp_update_force_pstate(struct dc *dc, struct dc_state *context)
{
int i;
int num_subvp = 0;
/* Unforce p-state for each pipe
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = pipe->plane_res.hubp;
if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
hubp->funcs->hubp_update_force_pstate_disallow(hubp, false);
if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
num_subvp++;
}
if (num_subvp == 0)
return;
/* Loop through each pipe -- for each subvp main pipe force p-state allow equal to false.
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
// For SubVP + DRR, also force disallow on the DRR pipe
// (We will force allow in the DMUB sequence -- some DRR timings by default won't allow P-State so we have
// to force once the vblank is stretched).
if (pipe->stream && pipe->plane_state && (pipe->stream->mall_stream_config.type == SUBVP_MAIN ||
(pipe->stream->mall_stream_config.type == SUBVP_NONE && pipe->stream->ignore_msa_timing_param))) {
struct hubp *hubp = pipe->plane_res.hubp;
if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
hubp->funcs->hubp_update_force_pstate_disallow(hubp, true);
}
}
}
/* Update MALL_SEL register based on if pipe / plane
* is a phantom pipe, main pipe, and if using MALL
* for SS.
*/
void dcn32_update_mall_sel(struct dc *dc, struct dc_state *context)
{
int i;
unsigned int num_ways = dcn32_calculate_cab_allocation(dc, context);
bool cache_cursor = false;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = pipe->plane_res.hubp;
if (pipe->stream && pipe->plane_state && hubp && hubp->funcs->hubp_update_mall_sel) {
//Round cursor width up to next multiple of 64
int cursor_width = ((hubp->curs_attr.width + 63) / 64) * 64;
int cursor_height = hubp->curs_attr.height;
int cursor_size = cursor_width * cursor_height;
switch (hubp->curs_attr.color_format) {
case CURSOR_MODE_MONO:
cursor_size /= 2;
break;
case CURSOR_MODE_COLOR_1BIT_AND:
case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
cursor_size *= 4;
break;
case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
default:
cursor_size *= 8;
break;
}
if (cursor_size > 16384)
cache_cursor = true;
if (pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
hubp->funcs->hubp_update_mall_sel(hubp, 1, false);
} else {
// MALL not supported with Stereo3D
hubp->funcs->hubp_update_mall_sel(hubp,
num_ways <= dc->caps.cache_num_ways &&
pipe->stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED &&
pipe->plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO &&
!pipe->plane_state->address.tmz_surface ? 2 : 0,
cache_cursor);
}
}
}
}
/* Program the sub-viewport pipe configuration after the main / phantom pipes
* have been programmed in hardware.
* 1. Update force P-State for all the main pipes (disallow P-state)
* 2. Update MALL_SEL register
* 3. Program FORCE_ONE_ROW_FOR_FRAME for main subvp pipes
*/
void dcn32_program_mall_pipe_config(struct dc *dc, struct dc_state *context)
{
int i;
struct dce_hwseq *hws = dc->hwseq;
// Don't force p-state disallow -- can't block dummy p-state
// Update MALL_SEL register for each pipe
if (hws && hws->funcs.update_mall_sel)
hws->funcs.update_mall_sel(dc, context);
// Program FORCE_ONE_ROW_FOR_FRAME and CURSOR_REQ_MODE for main subvp pipes
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = pipe->plane_res.hubp;
if (pipe->stream && hubp && hubp->funcs->hubp_prepare_subvp_buffering) {
/* TODO - remove setting CURSOR_REQ_MODE to 0 for legacy cases
* - need to investigate single pipe MPO + SubVP case to
* see if CURSOR_REQ_MODE will be back to 1 for SubVP
* when it should be 0 for MPO
*/
if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
hubp->funcs->hubp_prepare_subvp_buffering(hubp, true);
}
}
}
}
void dcn32_init_hw(struct dc *dc)
{
struct abm **abms = dc->res_pool->multiple_abms;
struct dce_hwseq *hws = dc->hwseq;
struct dc_bios *dcb = dc->ctx->dc_bios;
struct resource_pool *res_pool = dc->res_pool;
int i;
int edp_num;
uint32_t backlight = MAX_BACKLIGHT_LEVEL;
if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
// Initialize the dccg
if (res_pool->dccg->funcs->dccg_init)
res_pool->dccg->funcs->dccg_init(res_pool->dccg);
if (!dcb->funcs->is_accelerated_mode(dcb)) {
hws->funcs.bios_golden_init(dc);
hws->funcs.disable_vga(dc->hwseq);
}
// Set default OPTC memory power states
if (dc->debug.enable_mem_low_power.bits.optc) {
// Shutdown when unassigned and light sleep in VBLANK
REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1);
}
if (dc->debug.enable_mem_low_power.bits.vga) {
// Power down VGA memory
REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1);
}
if (dc->ctx->dc_bios->fw_info_valid) {
res_pool->ref_clocks.xtalin_clock_inKhz =
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
if (res_pool->dccg && res_pool->hubbub) {
(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
&res_pool->ref_clocks.dccg_ref_clock_inKhz);
(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
res_pool->ref_clocks.dccg_ref_clock_inKhz,
&res_pool->ref_clocks.dchub_ref_clock_inKhz);
} else {
// Not all ASICs have DCCG sw component
res_pool->ref_clocks.dccg_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
res_pool->ref_clocks.dchub_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
}
} else
ASSERT_CRITICAL(false);
for (i = 0; i < dc->link_count; i++) {
/* Power up AND update implementation according to the
* required signal (which may be different from the
* default signal on connector).
*/
struct dc_link *link = dc->links[i];
link->link_enc->funcs->hw_init(link->link_enc);
/* Check for enabled DIG to identify enabled display */
if (link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
link->link_status.link_active = true;
drm/amd/display: rework recent update PHY state commit [why] Original change 594b237b9a07 ("drm/amd/display: Add interface to track PHY state") was implemented by assuming stream's dpms off is equivalent to PHY power off. This assumption doesn't hold in following situations: 1. MST multiple stream scenario, where multiple streams are sharing the same PHY output. Toggle dpms off for one of the stream doesn't power off the PHY due to the presence of other streams. 2. enable stream failure scenario, where enable stream fails due to failure of link training. This will cause DPMS off is set to false, while the actual PHY power state is off in certain cases. Due to the problematic assumption, the logic will skip disabling other streams for MST multiple stream scenario, therefore PHY is not actually powered off. [how] 1. Rework this refactor by moving PHY state update down to hardware level, where we update PHY state in place when hardware sequencer is actually changing the power state of the PHY hardware. 2. Reimplement symclk on TX off workaround in place when we are actually calling transmitter control to power off PHY in dcn32. Note the workaround is added due to the lack of proper software interface to set TX while keeping symclk on. We plan to address this interface problem so we can set TX off only without affecting symclk in future dcn versions. Fixes: 594b237b9a07 ("drm/amd/display: Add interface to track PHY state") Reviewed-by: Jun Lei <Jun.Lei@amd.com> Acked-by: Wayne Lin <wayne.lin@amd.com> Signed-off-by: Wenjing Liu <wenjing.liu@amd.com> Tested-by: Daniel Wheeler <daniel.wheeler@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2022-08-31 14:56:46 -04:00
link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
if (link->link_enc->funcs->fec_is_active &&
link->link_enc->funcs->fec_is_active(link->link_enc))
link->fec_state = dc_link_fec_enabled;
}
}
/* Power gate DSCs */
for (i = 0; i < res_pool->res_cap->num_dsc; i++)
if (hws->funcs.dsc_pg_control != NULL)
hws->funcs.dsc_pg_control(hws, res_pool->dscs[i]->inst, false);
/* we want to turn off all dp displays before doing detection */
dc_link_blank_all_dp_displays(dc);
/* If taking control over from VBIOS, we may want to optimize our first
* mode set, so we need to skip powering down pipes until we know which
* pipes we want to use.
* Otherwise, if taking control is not possible, we need to power
* everything down.
*/
if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
hws->funcs.init_pipes(dc, dc->current_state);
if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
}
/* In headless boot cases, DIG may be turned
* on which causes HW/SW discrepancies.
* To avoid this, power down hardware on boot
* if DIG is turned on and seamless boot not enabled
*/
if (!dc->config.seamless_boot_edp_requested) {
struct dc_link *edp_links[MAX_NUM_EDP];
struct dc_link *edp_link;
get_edp_links(dc, edp_links, &edp_num);
if (edp_num) {
for (i = 0; i < edp_num; i++) {
edp_link = edp_links[i];
if (edp_link->link_enc->funcs->is_dig_enabled &&
edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
dc->hwss.edp_backlight_control &&
dc->hwss.power_down &&
dc->hwss.edp_power_control) {
dc->hwss.edp_backlight_control(edp_link, false);
dc->hwss.power_down(dc);
dc->hwss.edp_power_control(edp_link, false);
}
}
} else {
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
dc->hwss.power_down) {
dc->hwss.power_down(dc);
break;
}
}
}
}
for (i = 0; i < res_pool->audio_count; i++) {
struct audio *audio = res_pool->audios[i];
audio->funcs->hw_init(audio);
}
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->panel_cntl)
backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (abms[i] != NULL && abms[i]->funcs != NULL)
abms[i]->funcs->abm_init(abms[i], backlight);
}
/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
REG_WRITE(DIO_MEM_PWR_CTRL, 0);
if (!dc->debug.disable_clock_gate) {
/* enable all DCN clock gating */
REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
}
if (hws->funcs.enable_power_gating_plane)
hws->funcs.enable_power_gating_plane(dc->hwseq, true);
if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks)
dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub);
if (dc->clk_mgr->funcs->notify_wm_ranges)
dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
if (dc->clk_mgr->funcs->set_hard_max_memclk)
dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
dc->res_pool->hubbub->funcs->force_pstate_change_control(
dc->res_pool->hubbub, false, false);
if (dc->res_pool->hubbub->funcs->init_crb)
dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
// Get DMCUB capabilities
if (dc->ctx->dmub_srv) {
dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv->dmub);
dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr;
}
/* Enable support for ODM and windowed MPO if policy flag is set */
if (dc->debug.enable_single_display_2to1_odm_policy)
dc->config.enable_windowed_mpo_odm = true;
}
static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream,
int opp_cnt)
{
bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing);
int flow_ctrl_cnt;
if (opp_cnt >= 2)
hblank_halved = true;
flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable -
stream->timing.h_border_left -
stream->timing.h_border_right;
if (hblank_halved)
flow_ctrl_cnt /= 2;
/* ODM combine 4:1 case */
if (opp_cnt == 4)
flow_ctrl_cnt /= 2;
return flow_ctrl_cnt;
}
static void update_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable)
{
struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
struct dc_stream_state *stream = pipe_ctx->stream;
struct pipe_ctx *odm_pipe;
int opp_cnt = 1;
ASSERT(dsc);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
opp_cnt++;
if (enable) {
struct dsc_config dsc_cfg;
struct dsc_optc_config dsc_optc_cfg;
enum optc_dsc_mode optc_dsc_mode;
/* Enable DSC hw block */
dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt;
dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom;
dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
dsc_cfg.color_depth = stream->timing.display_color_depth;
dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0);
dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg);
dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc;
ASSERT(odm_dsc);
odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg);
odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst);
}
dsc_cfg.dc_dsc_cfg.num_slices_h *= opp_cnt;
dsc_cfg.pic_width *= opp_cnt;
optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED;
/* Enable DSC in OPTC */
DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst);
pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg,
optc_dsc_mode,
dsc_optc_cfg.bytes_per_pixel,
dsc_optc_cfg.slice_width);
} else {
/* disable DSC in OPTC */
pipe_ctx->stream_res.tg->funcs->set_dsc_config(
pipe_ctx->stream_res.tg,
OPTC_DSC_DISABLED, 0, 0);
/* disable DSC block */
dsc->funcs->dsc_disable(pipe_ctx->stream_res.dsc);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
ASSERT(odm_pipe->stream_res.dsc);
odm_pipe->stream_res.dsc->funcs->dsc_disable(odm_pipe->stream_res.dsc);
}
}
}
/*
* Given any pipe_ctx, return the total ODM combine factor, and optionally return
* the OPPids which are used
* */
static unsigned int get_odm_config(struct pipe_ctx *pipe_ctx, unsigned int *opp_instances)
{
unsigned int opp_count = 1;
struct pipe_ctx *odm_pipe;
/* First get to the top pipe */
for (odm_pipe = pipe_ctx; odm_pipe->prev_odm_pipe; odm_pipe = odm_pipe->prev_odm_pipe)
;
/* First pipe is always used */
if (opp_instances)
opp_instances[0] = odm_pipe->stream_res.opp->inst;
/* Find and count odm pipes, if any */
for (odm_pipe = odm_pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
if (opp_instances)
opp_instances[opp_count] = odm_pipe->stream_res.opp->inst;
opp_count++;
}
return opp_count;
}
void dcn32_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
{
struct pipe_ctx *odm_pipe;
int opp_cnt = 0;
int opp_inst[MAX_PIPES] = {0};
bool rate_control_2x_pclk = (pipe_ctx->stream->timing.flags.INTERLACE || optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing));
struct mpc_dwb_flow_control flow_control;
struct mpc *mpc = dc->res_pool->mpc;
int i;
opp_cnt = get_odm_config(pipe_ctx, opp_inst);
if (opp_cnt > 1)
pipe_ctx->stream_res.tg->funcs->set_odm_combine(
pipe_ctx->stream_res.tg,
opp_inst, opp_cnt,
&pipe_ctx->stream->timing);
else
pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1;
flow_control.flow_ctrl_mode = 0;
flow_control.flow_ctrl_cnt0 = 0x80;
flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(pipe_ctx->stream, opp_cnt);
if (mpc->funcs->set_out_rate_control) {
for (i = 0; i < opp_cnt; ++i) {
mpc->funcs->set_out_rate_control(
mpc, opp_inst[i],
true,
rate_control_2x_pclk,
&flow_control);
}
}
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
odm_pipe->stream_res.opp,
true);
}
if (pipe_ctx->stream_res.dsc) {
struct pipe_ctx *current_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
update_dsc_on_stream(pipe_ctx, pipe_ctx->stream->timing.flags.DSC);
/* Check if no longer using pipe for ODM, then need to disconnect DSC for that pipe */
if (!pipe_ctx->next_odm_pipe && current_pipe_ctx->next_odm_pipe &&
current_pipe_ctx->next_odm_pipe->stream_res.dsc) {
struct display_stream_compressor *dsc = current_pipe_ctx->next_odm_pipe->stream_res.dsc;
/* disconnect DSC block from stream */
dsc->funcs->dsc_disconnect(dsc);
}
}
}
unsigned int dcn32_calculate_dccg_k1_k2_values(struct pipe_ctx *pipe_ctx, unsigned int *k1_div, unsigned int *k2_div)
{
struct dc_stream_state *stream = pipe_ctx->stream;
unsigned int odm_combine_factor = 0;
bool two_pix_per_container = false;
// For phantom pipes, use the same programming as the main pipes
if (pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM) {
stream = pipe_ctx->stream->mall_stream_config.paired_stream;
}
two_pix_per_container = optc2_is_two_pixels_per_containter(&stream->timing);
odm_combine_factor = get_odm_config(pipe_ctx, NULL);
if (pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
return odm_combine_factor;
if (is_dp_128b_132b_signal(pipe_ctx)) {
*k2_div = PIXEL_RATE_DIV_BY_1;
} else if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) || dc_is_dvi_signal(pipe_ctx->stream->signal)) {
*k1_div = PIXEL_RATE_DIV_BY_1;
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
*k2_div = PIXEL_RATE_DIV_BY_2;
else
*k2_div = PIXEL_RATE_DIV_BY_4;
} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
if (two_pix_per_container) {
*k1_div = PIXEL_RATE_DIV_BY_1;
*k2_div = PIXEL_RATE_DIV_BY_2;
} else {
*k1_div = PIXEL_RATE_DIV_BY_1;
*k2_div = PIXEL_RATE_DIV_BY_4;
if ((odm_combine_factor == 2) || dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx))
*k2_div = PIXEL_RATE_DIV_BY_2;
}
}
if ((*k1_div == PIXEL_RATE_DIV_NA) && (*k2_div == PIXEL_RATE_DIV_NA))
ASSERT(false);
return odm_combine_factor;
}
void dcn32_set_pixels_per_cycle(struct pipe_ctx *pipe_ctx)
{
uint32_t pix_per_cycle = 1;
uint32_t odm_combine_factor = 1;
if (!pipe_ctx || !pipe_ctx->stream || !pipe_ctx->stream_res.stream_enc)
return;
odm_combine_factor = get_odm_config(pipe_ctx, NULL);
if (optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing) || odm_combine_factor > 1
|| dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx))
pix_per_cycle = 2;
if (pipe_ctx->stream_res.stream_enc->funcs->set_input_mode)
pipe_ctx->stream_res.stream_enc->funcs->set_input_mode(pipe_ctx->stream_res.stream_enc,
pix_per_cycle);
}
void dcn32_unblank_stream(struct pipe_ctx *pipe_ctx,
struct dc_link_settings *link_settings)
{
struct encoder_unblank_param params = {0};
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dce_hwseq *hws = link->dc->hwseq;
struct pipe_ctx *odm_pipe;
uint32_t pix_per_cycle = 1;
params.opp_cnt = 1;
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
params.opp_cnt++;
/* only 3 items below are used by unblank */
params.timing = pipe_ctx->stream->timing;
params.link_settings.link_rate = link_settings->link_rate;
if (is_dp_128b_132b_signal(pipe_ctx)) {
/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
pipe_ctx->stream_res.hpo_dp_stream_enc,
pipe_ctx->stream_res.tg->inst);
} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1
|| dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx)) {
params.timing.pix_clk_100hz /= 2;
pix_per_cycle = 2;
}
pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
pipe_ctx->stream_res.stream_enc, pix_per_cycle > 1);
pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
}
if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP)
hws->funcs.edp_backlight_control(link, true);
}
bool dcn32_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx *pipe_ctx)
{
struct dc *dc = pipe_ctx->stream->ctx->dc;
if (!is_h_timing_divisible_by_2(pipe_ctx->stream))
return false;
if (dc_is_dp_signal(pipe_ctx->stream->signal) && !is_dp_128b_132b_signal(pipe_ctx) &&
dc->debug.enable_dp_dig_pixel_rate_div_policy)
return true;
return false;
}
drm/amd/display: rework recent update PHY state commit [why] Original change 594b237b9a07 ("drm/amd/display: Add interface to track PHY state") was implemented by assuming stream's dpms off is equivalent to PHY power off. This assumption doesn't hold in following situations: 1. MST multiple stream scenario, where multiple streams are sharing the same PHY output. Toggle dpms off for one of the stream doesn't power off the PHY due to the presence of other streams. 2. enable stream failure scenario, where enable stream fails due to failure of link training. This will cause DPMS off is set to false, while the actual PHY power state is off in certain cases. Due to the problematic assumption, the logic will skip disabling other streams for MST multiple stream scenario, therefore PHY is not actually powered off. [how] 1. Rework this refactor by moving PHY state update down to hardware level, where we update PHY state in place when hardware sequencer is actually changing the power state of the PHY hardware. 2. Reimplement symclk on TX off workaround in place when we are actually calling transmitter control to power off PHY in dcn32. Note the workaround is added due to the lack of proper software interface to set TX while keeping symclk on. We plan to address this interface problem so we can set TX off only without affecting symclk in future dcn versions. Fixes: 594b237b9a07 ("drm/amd/display: Add interface to track PHY state") Reviewed-by: Jun Lei <Jun.Lei@amd.com> Acked-by: Wayne Lin <wayne.lin@amd.com> Signed-off-by: Wenjing Liu <wenjing.liu@amd.com> Tested-by: Daniel Wheeler <daniel.wheeler@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2022-08-31 14:56:46 -04:00
static void apply_symclk_on_tx_off_wa(struct dc_link *link)
{
drm/amd/display: rework recent update PHY state commit [why] Original change 594b237b9a07 ("drm/amd/display: Add interface to track PHY state") was implemented by assuming stream's dpms off is equivalent to PHY power off. This assumption doesn't hold in following situations: 1. MST multiple stream scenario, where multiple streams are sharing the same PHY output. Toggle dpms off for one of the stream doesn't power off the PHY due to the presence of other streams. 2. enable stream failure scenario, where enable stream fails due to failure of link training. This will cause DPMS off is set to false, while the actual PHY power state is off in certain cases. Due to the problematic assumption, the logic will skip disabling other streams for MST multiple stream scenario, therefore PHY is not actually powered off. [how] 1. Rework this refactor by moving PHY state update down to hardware level, where we update PHY state in place when hardware sequencer is actually changing the power state of the PHY hardware. 2. Reimplement symclk on TX off workaround in place when we are actually calling transmitter control to power off PHY in dcn32. Note the workaround is added due to the lack of proper software interface to set TX while keeping symclk on. We plan to address this interface problem so we can set TX off only without affecting symclk in future dcn versions. Fixes: 594b237b9a07 ("drm/amd/display: Add interface to track PHY state") Reviewed-by: Jun Lei <Jun.Lei@amd.com> Acked-by: Wayne Lin <wayne.lin@amd.com> Signed-off-by: Wenjing Liu <wenjing.liu@amd.com> Tested-by: Daniel Wheeler <daniel.wheeler@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2022-08-31 14:56:46 -04:00
/* There are use cases where SYMCLK is referenced by OTG. For instance
* for TMDS signal, OTG relies SYMCLK even if TX video output is off.
* However current link interface will power off PHY when disabling link
* output. This will turn off SYMCLK generated by PHY. The workaround is
* to identify such case where SYMCLK is still in use by OTG when we
* power off PHY. When this is detected, we will temporarily power PHY
* back on and move PHY's SYMCLK state to SYMCLK_ON_TX_OFF by calling
* program_pix_clk interface. When OTG is disabled, we will then power
* off PHY by calling disable link output again.
*
* In future dcn generations, we plan to rework transmitter control
* interface so that we could have an option to set SYMCLK ON TX OFF
* state in one step without this workaround
*/
struct dc *dc = link->ctx->dc;
struct pipe_ctx *pipe_ctx = NULL;
uint8_t i;
if (link->phy_state.symclk_ref_cnts.otg > 0) {
for (i = 0; i < MAX_PIPES; i++) {
pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream && pipe_ctx->stream->link == link && pipe_ctx->top_pipe == NULL) {
drm/amd/display: rework recent update PHY state commit [why] Original change 594b237b9a07 ("drm/amd/display: Add interface to track PHY state") was implemented by assuming stream's dpms off is equivalent to PHY power off. This assumption doesn't hold in following situations: 1. MST multiple stream scenario, where multiple streams are sharing the same PHY output. Toggle dpms off for one of the stream doesn't power off the PHY due to the presence of other streams. 2. enable stream failure scenario, where enable stream fails due to failure of link training. This will cause DPMS off is set to false, while the actual PHY power state is off in certain cases. Due to the problematic assumption, the logic will skip disabling other streams for MST multiple stream scenario, therefore PHY is not actually powered off. [how] 1. Rework this refactor by moving PHY state update down to hardware level, where we update PHY state in place when hardware sequencer is actually changing the power state of the PHY hardware. 2. Reimplement symclk on TX off workaround in place when we are actually calling transmitter control to power off PHY in dcn32. Note the workaround is added due to the lack of proper software interface to set TX while keeping symclk on. We plan to address this interface problem so we can set TX off only without affecting symclk in future dcn versions. Fixes: 594b237b9a07 ("drm/amd/display: Add interface to track PHY state") Reviewed-by: Jun Lei <Jun.Lei@amd.com> Acked-by: Wayne Lin <wayne.lin@amd.com> Signed-off-by: Wenjing Liu <wenjing.liu@amd.com> Tested-by: Daniel Wheeler <daniel.wheeler@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2022-08-31 14:56:46 -04:00
pipe_ctx->clock_source->funcs->program_pix_clk(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
dp_get_link_encoding_format(&pipe_ctx->link_config.dp_link_settings),
&pipe_ctx->pll_settings);
link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
break;
}
}
drm/amd/display: rework recent update PHY state commit [why] Original change 594b237b9a07 ("drm/amd/display: Add interface to track PHY state") was implemented by assuming stream's dpms off is equivalent to PHY power off. This assumption doesn't hold in following situations: 1. MST multiple stream scenario, where multiple streams are sharing the same PHY output. Toggle dpms off for one of the stream doesn't power off the PHY due to the presence of other streams. 2. enable stream failure scenario, where enable stream fails due to failure of link training. This will cause DPMS off is set to false, while the actual PHY power state is off in certain cases. Due to the problematic assumption, the logic will skip disabling other streams for MST multiple stream scenario, therefore PHY is not actually powered off. [how] 1. Rework this refactor by moving PHY state update down to hardware level, where we update PHY state in place when hardware sequencer is actually changing the power state of the PHY hardware. 2. Reimplement symclk on TX off workaround in place when we are actually calling transmitter control to power off PHY in dcn32. Note the workaround is added due to the lack of proper software interface to set TX while keeping symclk on. We plan to address this interface problem so we can set TX off only without affecting symclk in future dcn versions. Fixes: 594b237b9a07 ("drm/amd/display: Add interface to track PHY state") Reviewed-by: Jun Lei <Jun.Lei@amd.com> Acked-by: Wayne Lin <wayne.lin@amd.com> Signed-off-by: Wenjing Liu <wenjing.liu@amd.com> Tested-by: Daniel Wheeler <daniel.wheeler@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2022-08-31 14:56:46 -04:00
}
}
drm/amd/display: rework recent update PHY state commit [why] Original change 594b237b9a07 ("drm/amd/display: Add interface to track PHY state") was implemented by assuming stream's dpms off is equivalent to PHY power off. This assumption doesn't hold in following situations: 1. MST multiple stream scenario, where multiple streams are sharing the same PHY output. Toggle dpms off for one of the stream doesn't power off the PHY due to the presence of other streams. 2. enable stream failure scenario, where enable stream fails due to failure of link training. This will cause DPMS off is set to false, while the actual PHY power state is off in certain cases. Due to the problematic assumption, the logic will skip disabling other streams for MST multiple stream scenario, therefore PHY is not actually powered off. [how] 1. Rework this refactor by moving PHY state update down to hardware level, where we update PHY state in place when hardware sequencer is actually changing the power state of the PHY hardware. 2. Reimplement symclk on TX off workaround in place when we are actually calling transmitter control to power off PHY in dcn32. Note the workaround is added due to the lack of proper software interface to set TX while keeping symclk on. We plan to address this interface problem so we can set TX off only without affecting symclk in future dcn versions. Fixes: 594b237b9a07 ("drm/amd/display: Add interface to track PHY state") Reviewed-by: Jun Lei <Jun.Lei@amd.com> Acked-by: Wayne Lin <wayne.lin@amd.com> Signed-off-by: Wenjing Liu <wenjing.liu@amd.com> Tested-by: Daniel Wheeler <daniel.wheeler@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2022-08-31 14:56:46 -04:00
void dcn32_disable_link_output(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal)
{
struct dc *dc = link->ctx->dc;
const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
struct dmcu *dmcu = dc->res_pool->dmcu;
if (signal == SIGNAL_TYPE_EDP &&
link->dc->hwss.edp_backlight_control)
link->dc->hwss.edp_backlight_control(link, false);
else if (dmcu != NULL && dmcu->funcs->lock_phy)
dmcu->funcs->lock_phy(dmcu);
link_hwss->disable_link_output(link, link_res, signal);
link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
if (signal == SIGNAL_TYPE_EDP &&
link->dc->hwss.edp_backlight_control)
link->dc->hwss.edp_power_control(link, false);
else if (dmcu != NULL && dmcu->funcs->lock_phy)
dmcu->funcs->unlock_phy(dmcu);
dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
apply_symclk_on_tx_off_wa(link);
}
/* For SubVP the main pipe can have a viewport position change
* without a full update. In this case we must also update the
* viewport positions for the phantom pipe accordingly.
*/
void dcn32_update_phantom_vp_position(struct dc *dc,
struct dc_state *context,
struct pipe_ctx *phantom_pipe)
{
uint32_t i;
struct dc_plane_state *phantom_plane = phantom_pipe->plane_state;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_MAIN &&
pipe->stream->mall_stream_config.paired_stream == phantom_pipe->stream) {
if (pipe->plane_state && pipe->plane_state->update_flags.bits.position_change) {
phantom_plane->src_rect.x = pipe->plane_state->src_rect.x;
phantom_plane->src_rect.y = pipe->plane_state->src_rect.y;
phantom_plane->clip_rect.x = pipe->plane_state->clip_rect.x;
phantom_plane->dst_rect.x = pipe->plane_state->dst_rect.x;
phantom_plane->dst_rect.y = pipe->plane_state->dst_rect.y;
phantom_pipe->plane_state->update_flags.bits.position_change = 1;
resource_build_scaling_params(phantom_pipe);
return;
}
}
}
}
drm/amd/display: Fix various dynamic ODM transitions on DCN32 [Why&How] Several transitions were fixed that will allow Dynamic ODM and MPO transitions to be supported on DCN32. 1) Due to resource limitations, in certain scenarios that require an MPO plane to be split, the features cannot be combined with the current policy. This is due to unsafe transitions being required (OPP instance per MPCC being switched on active pipe is not supported by DCN), to support the split plane with ODM active as it moves across the viewport. Dynamic ODM will now be disabled when MPO is required. 2) When exiting MPO and re-entering ODM, DC assigns an inactive pipe for the next ODM pipe, which under previous power gating policy would result in programming a gated DSC HW block. New policy dynamically gates/un-gates DSC blocks when Dynamic ODM is active to support transitions on DCN32 only. 3) Entry and exit from 3 plane MPO and Dynamic ODM requires a minimal transition so that all pipes which require their MPCC OPP instance to be changed have a full frame to be disabled before reprogramming. To solve this, the Dynamic ODM policy now utilizes minimal state transitions when entering or exiting 3 plane scenarios. 4) Various fixes to DCN32 pipe merge/split algorithm to support Dynamic ODM and MPO transitions. In summary, this commit fixes various transitions to support ODM->MPO and MPO->ODM. Reviewed-by: Martin Leung <Martin.Leung@amd.com> Reviewed-by: Jun Lei <Jun.Lei@amd.com> Acked-by: Jasdeep Dhillon <jdhillon@amd.com> Signed-off-by: Dillon Varone <Dillon.Varone@amd.com> Tested-by: Daniel Wheeler <daniel.wheeler@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2022-09-09 12:49:55 -04:00
bool dcn32_dsc_pg_status(
struct dce_hwseq *hws,
unsigned int dsc_inst)
{
uint32_t pwr_status = 0;
switch (dsc_inst) {
case 0: /* DSC0 */
REG_GET(DOMAIN16_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, &pwr_status);
break;
case 1: /* DSC1 */
REG_GET(DOMAIN17_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, &pwr_status);
break;
case 2: /* DSC2 */
REG_GET(DOMAIN18_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, &pwr_status);
break;
case 3: /* DSC3 */
REG_GET(DOMAIN19_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, &pwr_status);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
return pwr_status == 0;
drm/amd/display: Fix various dynamic ODM transitions on DCN32 [Why&How] Several transitions were fixed that will allow Dynamic ODM and MPO transitions to be supported on DCN32. 1) Due to resource limitations, in certain scenarios that require an MPO plane to be split, the features cannot be combined with the current policy. This is due to unsafe transitions being required (OPP instance per MPCC being switched on active pipe is not supported by DCN), to support the split plane with ODM active as it moves across the viewport. Dynamic ODM will now be disabled when MPO is required. 2) When exiting MPO and re-entering ODM, DC assigns an inactive pipe for the next ODM pipe, which under previous power gating policy would result in programming a gated DSC HW block. New policy dynamically gates/un-gates DSC blocks when Dynamic ODM is active to support transitions on DCN32 only. 3) Entry and exit from 3 plane MPO and Dynamic ODM requires a minimal transition so that all pipes which require their MPCC OPP instance to be changed have a full frame to be disabled before reprogramming. To solve this, the Dynamic ODM policy now utilizes minimal state transitions when entering or exiting 3 plane scenarios. 4) Various fixes to DCN32 pipe merge/split algorithm to support Dynamic ODM and MPO transitions. In summary, this commit fixes various transitions to support ODM->MPO and MPO->ODM. Reviewed-by: Martin Leung <Martin.Leung@amd.com> Reviewed-by: Jun Lei <Jun.Lei@amd.com> Acked-by: Jasdeep Dhillon <jdhillon@amd.com> Signed-off-by: Dillon Varone <Dillon.Varone@amd.com> Tested-by: Daniel Wheeler <daniel.wheeler@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2022-09-09 12:49:55 -04:00
}
void dcn32_update_dsc_pg(struct dc *dc,
struct dc_state *context,
bool safe_to_disable)
{
struct dce_hwseq *hws = dc->hwseq;
int i;
drm/amd/display: Fix various dynamic ODM transitions on DCN32 [Why&How] Several transitions were fixed that will allow Dynamic ODM and MPO transitions to be supported on DCN32. 1) Due to resource limitations, in certain scenarios that require an MPO plane to be split, the features cannot be combined with the current policy. This is due to unsafe transitions being required (OPP instance per MPCC being switched on active pipe is not supported by DCN), to support the split plane with ODM active as it moves across the viewport. Dynamic ODM will now be disabled when MPO is required. 2) When exiting MPO and re-entering ODM, DC assigns an inactive pipe for the next ODM pipe, which under previous power gating policy would result in programming a gated DSC HW block. New policy dynamically gates/un-gates DSC blocks when Dynamic ODM is active to support transitions on DCN32 only. 3) Entry and exit from 3 plane MPO and Dynamic ODM requires a minimal transition so that all pipes which require their MPCC OPP instance to be changed have a full frame to be disabled before reprogramming. To solve this, the Dynamic ODM policy now utilizes minimal state transitions when entering or exiting 3 plane scenarios. 4) Various fixes to DCN32 pipe merge/split algorithm to support Dynamic ODM and MPO transitions. In summary, this commit fixes various transitions to support ODM->MPO and MPO->ODM. Reviewed-by: Martin Leung <Martin.Leung@amd.com> Reviewed-by: Jun Lei <Jun.Lei@amd.com> Acked-by: Jasdeep Dhillon <jdhillon@amd.com> Signed-off-by: Dillon Varone <Dillon.Varone@amd.com> Tested-by: Daniel Wheeler <daniel.wheeler@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2022-09-09 12:49:55 -04:00
for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
drm/amd/display: Fix various dynamic ODM transitions on DCN32 [Why&How] Several transitions were fixed that will allow Dynamic ODM and MPO transitions to be supported on DCN32. 1) Due to resource limitations, in certain scenarios that require an MPO plane to be split, the features cannot be combined with the current policy. This is due to unsafe transitions being required (OPP instance per MPCC being switched on active pipe is not supported by DCN), to support the split plane with ODM active as it moves across the viewport. Dynamic ODM will now be disabled when MPO is required. 2) When exiting MPO and re-entering ODM, DC assigns an inactive pipe for the next ODM pipe, which under previous power gating policy would result in programming a gated DSC HW block. New policy dynamically gates/un-gates DSC blocks when Dynamic ODM is active to support transitions on DCN32 only. 3) Entry and exit from 3 plane MPO and Dynamic ODM requires a minimal transition so that all pipes which require their MPCC OPP instance to be changed have a full frame to be disabled before reprogramming. To solve this, the Dynamic ODM policy now utilizes minimal state transitions when entering or exiting 3 plane scenarios. 4) Various fixes to DCN32 pipe merge/split algorithm to support Dynamic ODM and MPO transitions. In summary, this commit fixes various transitions to support ODM->MPO and MPO->ODM. Reviewed-by: Martin Leung <Martin.Leung@amd.com> Reviewed-by: Jun Lei <Jun.Lei@amd.com> Acked-by: Jasdeep Dhillon <jdhillon@amd.com> Signed-off-by: Dillon Varone <Dillon.Varone@amd.com> Tested-by: Daniel Wheeler <daniel.wheeler@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2022-09-09 12:49:55 -04:00
struct display_stream_compressor *dsc = dc->res_pool->dscs[i];
bool is_dsc_ungated = hws->funcs.dsc_pg_status(hws, dsc->inst);
if (context->res_ctx.is_dsc_acquired[i]) {
if (!is_dsc_ungated) {
hws->funcs.dsc_pg_control(hws, dsc->inst, true);
}
} else if (safe_to_disable) {
if (is_dsc_ungated) {
hws->funcs.dsc_pg_control(hws, dsc->inst, false);
}
}
}
}