2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* linux/fs/proc/root.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
|
|
*
|
|
|
|
* proc root directory handling functions
|
|
|
|
*/
|
|
|
|
|
2016-12-24 19:46:01 +00:00
|
|
|
#include <linux/uaccess.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/time.h>
|
|
|
|
#include <linux/proc_fs.h>
|
|
|
|
#include <linux/stat.h>
|
|
|
|
#include <linux/init.h>
|
2006-10-18 17:55:46 +00:00
|
|
|
#include <linux/sched.h>
|
2017-02-08 17:51:35 +00:00
|
|
|
#include <linux/sched/stat.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/bitops.h>
|
2013-03-24 21:28:27 +00:00
|
|
|
#include <linux/user_namespace.h>
|
2006-10-02 09:17:07 +00:00
|
|
|
#include <linux/mount.h>
|
2007-10-19 06:40:08 +00:00
|
|
|
#include <linux/pid_namespace.h>
|
2012-01-10 23:11:27 +00:00
|
|
|
#include <linux/parser.h>
|
2017-02-02 16:54:15 +00:00
|
|
|
#include <linux/cred.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-01-08 09:04:16 +00:00
|
|
|
#include "internal.h"
|
|
|
|
|
2012-01-10 23:11:27 +00:00
|
|
|
enum {
|
procfs: add hidepid= and gid= mount options
Add support for mount options to restrict access to /proc/PID/
directories. The default backward-compatible "relaxed" behaviour is left
untouched.
The first mount option is called "hidepid" and its value defines how much
info about processes we want to be available for non-owners:
hidepid=0 (default) means the old behavior - anybody may read all
world-readable /proc/PID/* files.
hidepid=1 means users may not access any /proc/<pid>/ directories, but
their own. Sensitive files like cmdline, sched*, status are now protected
against other users. As permission checking done in proc_pid_permission()
and files' permissions are left untouched, programs expecting specific
files' modes are not confused.
hidepid=2 means hidepid=1 plus all /proc/PID/ will be invisible to other
users. It doesn't mean that it hides whether a process exists (it can be
learned by other means, e.g. by kill -0 $PID), but it hides process' euid
and egid. It compicates intruder's task of gathering info about running
processes, whether some daemon runs with elevated privileges, whether
another user runs some sensitive program, whether other users run any
program at all, etc.
gid=XXX defines a group that will be able to gather all processes' info
(as in hidepid=0 mode). This group should be used instead of putting
nonroot user in sudoers file or something. However, untrusted users (like
daemons, etc.) which are not supposed to monitor the tasks in the whole
system should not be added to the group.
hidepid=1 or higher is designed to restrict access to procfs files, which
might reveal some sensitive private information like precise keystrokes
timings:
http://www.openwall.com/lists/oss-security/2011/11/05/3
hidepid=1/2 doesn't break monitoring userspace tools. ps, top, pgrep, and
conky gracefully handle EPERM/ENOENT and behave as if the current user is
the only user running processes. pstree shows the process subtree which
contains "pstree" process.
Note: the patch doesn't deal with setuid/setgid issues of keeping
preopened descriptors of procfs files (like
https://lkml.org/lkml/2011/2/7/368). We rely on that the leaked
information like the scheduling counters of setuid apps doesn't threaten
anybody's privacy - only the user started the setuid program may read the
counters.
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg KH <greg@kroah.com>
Cc: Theodore Tso <tytso@MIT.EDU>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: James Morris <jmorris@namei.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:11:31 +00:00
|
|
|
Opt_gid, Opt_hidepid, Opt_err,
|
2012-01-10 23:11:27 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static const match_table_t tokens = {
|
procfs: add hidepid= and gid= mount options
Add support for mount options to restrict access to /proc/PID/
directories. The default backward-compatible "relaxed" behaviour is left
untouched.
The first mount option is called "hidepid" and its value defines how much
info about processes we want to be available for non-owners:
hidepid=0 (default) means the old behavior - anybody may read all
world-readable /proc/PID/* files.
hidepid=1 means users may not access any /proc/<pid>/ directories, but
their own. Sensitive files like cmdline, sched*, status are now protected
against other users. As permission checking done in proc_pid_permission()
and files' permissions are left untouched, programs expecting specific
files' modes are not confused.
hidepid=2 means hidepid=1 plus all /proc/PID/ will be invisible to other
users. It doesn't mean that it hides whether a process exists (it can be
learned by other means, e.g. by kill -0 $PID), but it hides process' euid
and egid. It compicates intruder's task of gathering info about running
processes, whether some daemon runs with elevated privileges, whether
another user runs some sensitive program, whether other users run any
program at all, etc.
gid=XXX defines a group that will be able to gather all processes' info
(as in hidepid=0 mode). This group should be used instead of putting
nonroot user in sudoers file or something. However, untrusted users (like
daemons, etc.) which are not supposed to monitor the tasks in the whole
system should not be added to the group.
hidepid=1 or higher is designed to restrict access to procfs files, which
might reveal some sensitive private information like precise keystrokes
timings:
http://www.openwall.com/lists/oss-security/2011/11/05/3
hidepid=1/2 doesn't break monitoring userspace tools. ps, top, pgrep, and
conky gracefully handle EPERM/ENOENT and behave as if the current user is
the only user running processes. pstree shows the process subtree which
contains "pstree" process.
Note: the patch doesn't deal with setuid/setgid issues of keeping
preopened descriptors of procfs files (like
https://lkml.org/lkml/2011/2/7/368). We rely on that the leaked
information like the scheduling counters of setuid apps doesn't threaten
anybody's privacy - only the user started the setuid program may read the
counters.
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg KH <greg@kroah.com>
Cc: Theodore Tso <tytso@MIT.EDU>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: James Morris <jmorris@namei.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:11:31 +00:00
|
|
|
{Opt_hidepid, "hidepid=%u"},
|
|
|
|
{Opt_gid, "gid=%u"},
|
2012-01-10 23:11:27 +00:00
|
|
|
{Opt_err, NULL},
|
|
|
|
};
|
|
|
|
|
2016-06-09 20:32:10 +00:00
|
|
|
int proc_parse_options(char *options, struct pid_namespace *pid)
|
2012-01-10 23:11:27 +00:00
|
|
|
{
|
|
|
|
char *p;
|
|
|
|
substring_t args[MAX_OPT_ARGS];
|
procfs: add hidepid= and gid= mount options
Add support for mount options to restrict access to /proc/PID/
directories. The default backward-compatible "relaxed" behaviour is left
untouched.
The first mount option is called "hidepid" and its value defines how much
info about processes we want to be available for non-owners:
hidepid=0 (default) means the old behavior - anybody may read all
world-readable /proc/PID/* files.
hidepid=1 means users may not access any /proc/<pid>/ directories, but
their own. Sensitive files like cmdline, sched*, status are now protected
against other users. As permission checking done in proc_pid_permission()
and files' permissions are left untouched, programs expecting specific
files' modes are not confused.
hidepid=2 means hidepid=1 plus all /proc/PID/ will be invisible to other
users. It doesn't mean that it hides whether a process exists (it can be
learned by other means, e.g. by kill -0 $PID), but it hides process' euid
and egid. It compicates intruder's task of gathering info about running
processes, whether some daemon runs with elevated privileges, whether
another user runs some sensitive program, whether other users run any
program at all, etc.
gid=XXX defines a group that will be able to gather all processes' info
(as in hidepid=0 mode). This group should be used instead of putting
nonroot user in sudoers file or something. However, untrusted users (like
daemons, etc.) which are not supposed to monitor the tasks in the whole
system should not be added to the group.
hidepid=1 or higher is designed to restrict access to procfs files, which
might reveal some sensitive private information like precise keystrokes
timings:
http://www.openwall.com/lists/oss-security/2011/11/05/3
hidepid=1/2 doesn't break monitoring userspace tools. ps, top, pgrep, and
conky gracefully handle EPERM/ENOENT and behave as if the current user is
the only user running processes. pstree shows the process subtree which
contains "pstree" process.
Note: the patch doesn't deal with setuid/setgid issues of keeping
preopened descriptors of procfs files (like
https://lkml.org/lkml/2011/2/7/368). We rely on that the leaked
information like the scheduling counters of setuid apps doesn't threaten
anybody's privacy - only the user started the setuid program may read the
counters.
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg KH <greg@kroah.com>
Cc: Theodore Tso <tytso@MIT.EDU>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: James Morris <jmorris@namei.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:11:31 +00:00
|
|
|
int option;
|
2012-01-10 23:11:27 +00:00
|
|
|
|
|
|
|
if (!options)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
while ((p = strsep(&options, ",")) != NULL) {
|
|
|
|
int token;
|
|
|
|
if (!*p)
|
|
|
|
continue;
|
|
|
|
|
2012-10-05 00:15:46 +00:00
|
|
|
args[0].to = args[0].from = NULL;
|
2012-01-10 23:11:27 +00:00
|
|
|
token = match_token(p, tokens, args);
|
|
|
|
switch (token) {
|
procfs: add hidepid= and gid= mount options
Add support for mount options to restrict access to /proc/PID/
directories. The default backward-compatible "relaxed" behaviour is left
untouched.
The first mount option is called "hidepid" and its value defines how much
info about processes we want to be available for non-owners:
hidepid=0 (default) means the old behavior - anybody may read all
world-readable /proc/PID/* files.
hidepid=1 means users may not access any /proc/<pid>/ directories, but
their own. Sensitive files like cmdline, sched*, status are now protected
against other users. As permission checking done in proc_pid_permission()
and files' permissions are left untouched, programs expecting specific
files' modes are not confused.
hidepid=2 means hidepid=1 plus all /proc/PID/ will be invisible to other
users. It doesn't mean that it hides whether a process exists (it can be
learned by other means, e.g. by kill -0 $PID), but it hides process' euid
and egid. It compicates intruder's task of gathering info about running
processes, whether some daemon runs with elevated privileges, whether
another user runs some sensitive program, whether other users run any
program at all, etc.
gid=XXX defines a group that will be able to gather all processes' info
(as in hidepid=0 mode). This group should be used instead of putting
nonroot user in sudoers file or something. However, untrusted users (like
daemons, etc.) which are not supposed to monitor the tasks in the whole
system should not be added to the group.
hidepid=1 or higher is designed to restrict access to procfs files, which
might reveal some sensitive private information like precise keystrokes
timings:
http://www.openwall.com/lists/oss-security/2011/11/05/3
hidepid=1/2 doesn't break monitoring userspace tools. ps, top, pgrep, and
conky gracefully handle EPERM/ENOENT and behave as if the current user is
the only user running processes. pstree shows the process subtree which
contains "pstree" process.
Note: the patch doesn't deal with setuid/setgid issues of keeping
preopened descriptors of procfs files (like
https://lkml.org/lkml/2011/2/7/368). We rely on that the leaked
information like the scheduling counters of setuid apps doesn't threaten
anybody's privacy - only the user started the setuid program may read the
counters.
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg KH <greg@kroah.com>
Cc: Theodore Tso <tytso@MIT.EDU>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: James Morris <jmorris@namei.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:11:31 +00:00
|
|
|
case Opt_gid:
|
|
|
|
if (match_int(&args[0], &option))
|
|
|
|
return 0;
|
2012-02-09 16:48:21 +00:00
|
|
|
pid->pid_gid = make_kgid(current_user_ns(), option);
|
procfs: add hidepid= and gid= mount options
Add support for mount options to restrict access to /proc/PID/
directories. The default backward-compatible "relaxed" behaviour is left
untouched.
The first mount option is called "hidepid" and its value defines how much
info about processes we want to be available for non-owners:
hidepid=0 (default) means the old behavior - anybody may read all
world-readable /proc/PID/* files.
hidepid=1 means users may not access any /proc/<pid>/ directories, but
their own. Sensitive files like cmdline, sched*, status are now protected
against other users. As permission checking done in proc_pid_permission()
and files' permissions are left untouched, programs expecting specific
files' modes are not confused.
hidepid=2 means hidepid=1 plus all /proc/PID/ will be invisible to other
users. It doesn't mean that it hides whether a process exists (it can be
learned by other means, e.g. by kill -0 $PID), but it hides process' euid
and egid. It compicates intruder's task of gathering info about running
processes, whether some daemon runs with elevated privileges, whether
another user runs some sensitive program, whether other users run any
program at all, etc.
gid=XXX defines a group that will be able to gather all processes' info
(as in hidepid=0 mode). This group should be used instead of putting
nonroot user in sudoers file or something. However, untrusted users (like
daemons, etc.) which are not supposed to monitor the tasks in the whole
system should not be added to the group.
hidepid=1 or higher is designed to restrict access to procfs files, which
might reveal some sensitive private information like precise keystrokes
timings:
http://www.openwall.com/lists/oss-security/2011/11/05/3
hidepid=1/2 doesn't break monitoring userspace tools. ps, top, pgrep, and
conky gracefully handle EPERM/ENOENT and behave as if the current user is
the only user running processes. pstree shows the process subtree which
contains "pstree" process.
Note: the patch doesn't deal with setuid/setgid issues of keeping
preopened descriptors of procfs files (like
https://lkml.org/lkml/2011/2/7/368). We rely on that the leaked
information like the scheduling counters of setuid apps doesn't threaten
anybody's privacy - only the user started the setuid program may read the
counters.
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg KH <greg@kroah.com>
Cc: Theodore Tso <tytso@MIT.EDU>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: James Morris <jmorris@namei.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:11:31 +00:00
|
|
|
break;
|
|
|
|
case Opt_hidepid:
|
|
|
|
if (match_int(&args[0], &option))
|
|
|
|
return 0;
|
2017-02-24 23:00:23 +00:00
|
|
|
if (option < HIDEPID_OFF ||
|
|
|
|
option > HIDEPID_INVISIBLE) {
|
procfs: add hidepid= and gid= mount options
Add support for mount options to restrict access to /proc/PID/
directories. The default backward-compatible "relaxed" behaviour is left
untouched.
The first mount option is called "hidepid" and its value defines how much
info about processes we want to be available for non-owners:
hidepid=0 (default) means the old behavior - anybody may read all
world-readable /proc/PID/* files.
hidepid=1 means users may not access any /proc/<pid>/ directories, but
their own. Sensitive files like cmdline, sched*, status are now protected
against other users. As permission checking done in proc_pid_permission()
and files' permissions are left untouched, programs expecting specific
files' modes are not confused.
hidepid=2 means hidepid=1 plus all /proc/PID/ will be invisible to other
users. It doesn't mean that it hides whether a process exists (it can be
learned by other means, e.g. by kill -0 $PID), but it hides process' euid
and egid. It compicates intruder's task of gathering info about running
processes, whether some daemon runs with elevated privileges, whether
another user runs some sensitive program, whether other users run any
program at all, etc.
gid=XXX defines a group that will be able to gather all processes' info
(as in hidepid=0 mode). This group should be used instead of putting
nonroot user in sudoers file or something. However, untrusted users (like
daemons, etc.) which are not supposed to monitor the tasks in the whole
system should not be added to the group.
hidepid=1 or higher is designed to restrict access to procfs files, which
might reveal some sensitive private information like precise keystrokes
timings:
http://www.openwall.com/lists/oss-security/2011/11/05/3
hidepid=1/2 doesn't break monitoring userspace tools. ps, top, pgrep, and
conky gracefully handle EPERM/ENOENT and behave as if the current user is
the only user running processes. pstree shows the process subtree which
contains "pstree" process.
Note: the patch doesn't deal with setuid/setgid issues of keeping
preopened descriptors of procfs files (like
https://lkml.org/lkml/2011/2/7/368). We rely on that the leaked
information like the scheduling counters of setuid apps doesn't threaten
anybody's privacy - only the user started the setuid program may read the
counters.
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg KH <greg@kroah.com>
Cc: Theodore Tso <tytso@MIT.EDU>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: James Morris <jmorris@namei.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:11:31 +00:00
|
|
|
pr_err("proc: hidepid value must be between 0 and 2.\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
pid->hide_pid = option;
|
|
|
|
break;
|
2012-01-10 23:11:27 +00:00
|
|
|
default:
|
|
|
|
pr_err("proc: unrecognized mount option \"%s\" "
|
|
|
|
"or missing value\n", p);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int proc_remount(struct super_block *sb, int *flags, char *data)
|
|
|
|
{
|
|
|
|
struct pid_namespace *pid = sb->s_fs_info;
|
2014-03-13 14:14:33 +00:00
|
|
|
|
|
|
|
sync_filesystem(sb);
|
2012-01-10 23:11:27 +00:00
|
|
|
return !proc_parse_options(data, pid);
|
|
|
|
}
|
|
|
|
|
2010-07-26 09:12:54 +00:00
|
|
|
static struct dentry *proc_mount(struct file_system_type *fs_type,
|
|
|
|
int flags, const char *dev_name, void *data)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2007-10-19 06:40:08 +00:00
|
|
|
struct pid_namespace *ns;
|
|
|
|
|
2012-01-10 23:11:27 +00:00
|
|
|
if (flags & MS_KERNMOUNT) {
|
2016-06-09 20:32:10 +00:00
|
|
|
ns = data;
|
|
|
|
data = NULL;
|
2012-01-10 23:11:27 +00:00
|
|
|
} else {
|
2010-03-02 22:51:53 +00:00
|
|
|
ns = task_active_pid_ns(current);
|
2007-10-19 06:40:08 +00:00
|
|
|
}
|
|
|
|
|
2016-06-09 20:32:10 +00:00
|
|
|
return mount_ns(fs_type, flags, data, ns, ns->user_ns, proc_fill_super);
|
2007-10-19 06:40:08 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void proc_kill_sb(struct super_block *sb)
|
|
|
|
{
|
|
|
|
struct pid_namespace *ns;
|
|
|
|
|
|
|
|
ns = (struct pid_namespace *)sb->s_fs_info;
|
2013-03-29 23:27:05 +00:00
|
|
|
if (ns->proc_self)
|
|
|
|
dput(ns->proc_self);
|
2014-07-31 10:10:50 +00:00
|
|
|
if (ns->proc_thread_self)
|
|
|
|
dput(ns->proc_thread_self);
|
2007-10-19 06:40:08 +00:00
|
|
|
kill_anon_super(sb);
|
|
|
|
put_pid_ns(ns);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
proc: fix NULL ->i_fop oops
proc_kill_inodes() can clear ->i_fop in the middle of vfs_readdir resulting in
NULL dereference during "file->f_op->readdir(file, buf, filler)".
The solution is to remove proc_kill_inodes() completely:
a) we don't have tricky modules implementing their tricky readdir hooks which
could keeping this revoke from hell.
b) In a situation when module is gone but PDE still alive, standard
readdir will return only "." and "..", because pde->next was cleared by
remove_proc_entry().
c) the race proc_kill_inode() destined to prevent is not completely
fixed, just race window made smaller, because vfs_readdir() is run
without sb_lock held and without file_list_lock held. Effectively,
->i_fop is cleared at random moment, which can't fix properly anything.
BUG: unable to handle kernel NULL pointer dereference at virtual address 00000018
printing eip: c1061205 *pdpt = 0000000005b22001 *pde = 0000000000000000
Oops: 0000 [#1] PREEMPT SMP
Modules linked in: foo af_packet ipv6 cpufreq_ondemand loop serio_raw sr_mod k8temp cdrom hwmon amd_rng
Pid: 2033, comm: find Not tainted (2.6.24-rc1-b1d08ac064268d0ae2281e98bf5e82627e0f0c56 #2)
EIP: 0060:[<c1061205>] EFLAGS: 00010246 CPU: 0
EIP is at vfs_readdir+0x47/0x74
EAX: c6b6a780 EBX: 00000000 ECX: c1061040 EDX: c5decf94
ESI: c6b6a780 EDI: fffffffe EBP: c9797c54 ESP: c5decf78
DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
Process find (pid: 2033, ti=c5dec000 task=c64bba90 task.ti=c5dec000)
Stack: c5decf94 c1061040 fffffff7 0805ffbc 00000000 c6b6a780 c1061295 0805ffbc
00000000 00000400 00000000 00000004 0805ffbc 4588eff4 c5dec000 c10026ba
00000004 0805ffbc 00000400 0805ffbc 4588eff4 bfdc6c70 000000dc 0000007b
Call Trace:
[<c1061040>] filldir64+0x0/0xc5
[<c1061295>] sys_getdents64+0x63/0xa5
[<c10026ba>] sysenter_past_esp+0x5f/0x85
=======================
Code: 49 83 78 18 00 74 43 8d 6b 74 bf fe ff ff ff 89 e8 e8 b8 c0 12 00 f6 83 2c 01 00 00 10 75 22 8b 5e 10 8b 4c 24 04 89 f0 8b 14 24 <ff> 53 18 f6 46 1a 04 89 c7 75 0b 8b 56 0c 8b 46 08 e8 c8 66 00
EIP: [<c1061205>] vfs_readdir+0x47/0x74 SS:ESP 0068:c5decf78
hch: "Nice, getting rid of this is a very good step formwards.
Unfortunately we have another copy of this junk in
security/selinux/selinuxfs.c:sel_remove_entries() which would need the
same treatment."
Signed-off-by: Alexey Dobriyan <adobriyan@sw.ru>
Acked-by: Christoph Hellwig <hch@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-29 00:21:23 +00:00
|
|
|
static struct file_system_type proc_fs_type = {
|
2005-04-16 22:20:36 +00:00
|
|
|
.name = "proc",
|
2010-07-26 09:12:54 +00:00
|
|
|
.mount = proc_mount,
|
2007-10-19 06:40:08 +00:00
|
|
|
.kill_sb = proc_kill_sb,
|
2016-06-09 21:06:06 +00:00
|
|
|
.fs_flags = FS_USERNS_MOUNT,
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
void __init proc_root_init(void)
|
|
|
|
{
|
2008-10-16 23:43:55 +00:00
|
|
|
int err;
|
|
|
|
|
|
|
|
proc_init_inodecache();
|
2016-12-13 00:45:32 +00:00
|
|
|
set_proc_pid_nlink();
|
2005-04-16 22:20:36 +00:00
|
|
|
err = register_filesystem(&proc_fs_type);
|
|
|
|
if (err)
|
|
|
|
return;
|
2007-10-19 06:40:08 +00:00
|
|
|
|
2010-07-10 21:52:49 +00:00
|
|
|
proc_self_init();
|
2014-07-31 10:10:50 +00:00
|
|
|
proc_thread_self_init();
|
2014-08-11 04:24:59 +00:00
|
|
|
proc_symlink("mounts", NULL, "self/mounts");
|
2007-09-12 10:01:34 +00:00
|
|
|
|
|
|
|
proc_net_init();
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_SYSVIPC
|
|
|
|
proc_mkdir("sysvipc", NULL);
|
|
|
|
#endif
|
2008-04-29 08:01:42 +00:00
|
|
|
proc_mkdir("fs", NULL);
|
2008-04-29 08:01:44 +00:00
|
|
|
proc_mkdir("driver", NULL);
|
2015-05-11 21:44:25 +00:00
|
|
|
proc_create_mount_point("fs/nfsd"); /* somewhere for the nfsd filesystem to be mounted */
|
2005-04-16 22:20:36 +00:00
|
|
|
#if defined(CONFIG_SUN_OPENPROMFS) || defined(CONFIG_SUN_OPENPROMFS_MODULE)
|
|
|
|
/* just give it a mountpoint */
|
2015-05-11 21:44:25 +00:00
|
|
|
proc_create_mount_point("openprom");
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
proc_tty_init();
|
2008-04-29 08:01:41 +00:00
|
|
|
proc_mkdir("bus", NULL);
|
2007-02-14 08:34:12 +00:00
|
|
|
proc_sys_init();
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.
The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode. This change is propagated to the vfs_getattr*()
function.
Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.
========
OVERVIEW
========
The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.
A number of requests were gathered for features to be included. The
following have been included:
(1) Make the fields a consistent size on all arches and make them large.
(2) Spare space, request flags and information flags are provided for
future expansion.
(3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
__s64).
(4) Creation time: The SMB protocol carries the creation time, which could
be exported by Samba, which will in turn help CIFS make use of
FS-Cache as that can be used for coherency data (stx_btime).
This is also specified in NFSv4 as a recommended attribute and could
be exported by NFSD [Steve French].
(5) Lightweight stat: Ask for just those details of interest, and allow a
netfs (such as NFS) to approximate anything not of interest, possibly
without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
Dilger] (AT_STATX_DONT_SYNC).
(6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
its cached attributes are up to date [Trond Myklebust]
(AT_STATX_FORCE_SYNC).
And the following have been left out for future extension:
(7) Data version number: Could be used by userspace NFS servers [Aneesh
Kumar].
Can also be used to modify fill_post_wcc() in NFSD which retrieves
i_version directly, but has just called vfs_getattr(). It could get
it from the kstat struct if it used vfs_xgetattr() instead.
(There's disagreement on the exact semantics of a single field, since
not all filesystems do this the same way).
(8) BSD stat compatibility: Including more fields from the BSD stat such
as creation time (st_btime) and inode generation number (st_gen)
[Jeremy Allison, Bernd Schubert].
(9) Inode generation number: Useful for FUSE and userspace NFS servers
[Bernd Schubert].
(This was asked for but later deemed unnecessary with the
open-by-handle capability available and caused disagreement as to
whether it's a security hole or not).
(10) Extra coherency data may be useful in making backups [Andreas Dilger].
(No particular data were offered, but things like last backup
timestamp, the data version number and the DOS archive bit would come
into this category).
(11) Allow the filesystem to indicate what it can/cannot provide: A
filesystem can now say it doesn't support a standard stat feature if
that isn't available, so if, for instance, inode numbers or UIDs don't
exist or are fabricated locally...
(This requires a separate system call - I have an fsinfo() call idea
for this).
(12) Store a 16-byte volume ID in the superblock that can be returned in
struct xstat [Steve French].
(Deferred to fsinfo).
(13) Include granularity fields in the time data to indicate the
granularity of each of the times (NFSv4 time_delta) [Steve French].
(Deferred to fsinfo).
(14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags.
Note that the Linux IOC flags are a mess and filesystems such as Ext4
define flags that aren't in linux/fs.h, so translation in the kernel
may be a necessity (or, possibly, we provide the filesystem type too).
(Some attributes are made available in stx_attributes, but the general
feeling was that the IOC flags were to ext[234]-specific and shouldn't
be exposed through statx this way).
(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
Michael Kerrisk].
(Deferred, probably to fsinfo. Finding out if there's an ACL or
seclabal might require extra filesystem operations).
(16) Femtosecond-resolution timestamps [Dave Chinner].
(A __reserved field has been left in the statx_timestamp struct for
this - if there proves to be a need).
(17) A set multiple attributes syscall to go with this.
===============
NEW SYSTEM CALL
===============
The new system call is:
int ret = statx(int dfd,
const char *filename,
unsigned int flags,
unsigned int mask,
struct statx *buffer);
The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat(). There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.
Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):
(1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
respect.
(2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
its attributes with the server - which might require data writeback to
occur to get the timestamps correct.
(3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
network filesystem. The resulting values should be considered
approximate.
mask is a bitmask indicating the fields in struct statx that are of
interest to the caller. The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat(). It should be noted that asking for
more information may entail extra I/O operations.
buffer points to the destination for the data. This must be 256 bytes in
size.
======================
MAIN ATTRIBUTES RECORD
======================
The following structures are defined in which to return the main attribute
set:
struct statx_timestamp {
__s64 tv_sec;
__s32 tv_nsec;
__s32 __reserved;
};
struct statx {
__u32 stx_mask;
__u32 stx_blksize;
__u64 stx_attributes;
__u32 stx_nlink;
__u32 stx_uid;
__u32 stx_gid;
__u16 stx_mode;
__u16 __spare0[1];
__u64 stx_ino;
__u64 stx_size;
__u64 stx_blocks;
__u64 __spare1[1];
struct statx_timestamp stx_atime;
struct statx_timestamp stx_btime;
struct statx_timestamp stx_ctime;
struct statx_timestamp stx_mtime;
__u32 stx_rdev_major;
__u32 stx_rdev_minor;
__u32 stx_dev_major;
__u32 stx_dev_minor;
__u64 __spare2[14];
};
The defined bits in request_mask and stx_mask are:
STATX_TYPE Want/got stx_mode & S_IFMT
STATX_MODE Want/got stx_mode & ~S_IFMT
STATX_NLINK Want/got stx_nlink
STATX_UID Want/got stx_uid
STATX_GID Want/got stx_gid
STATX_ATIME Want/got stx_atime{,_ns}
STATX_MTIME Want/got stx_mtime{,_ns}
STATX_CTIME Want/got stx_ctime{,_ns}
STATX_INO Want/got stx_ino
STATX_SIZE Want/got stx_size
STATX_BLOCKS Want/got stx_blocks
STATX_BASIC_STATS [The stuff in the normal stat struct]
STATX_BTIME Want/got stx_btime{,_ns}
STATX_ALL [All currently available stuff]
stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.
Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution. Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.
The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does. The following
attributes map to FS_*_FL flags and are the same numerical value:
STATX_ATTR_COMPRESSED File is compressed by the fs
STATX_ATTR_IMMUTABLE File is marked immutable
STATX_ATTR_APPEND File is append-only
STATX_ATTR_NODUMP File is not to be dumped
STATX_ATTR_ENCRYPTED File requires key to decrypt in fs
Within the kernel, the supported flags are listed by:
KSTAT_ATTR_FS_IOC_FLAGS
[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]
New flags include:
STATX_ATTR_AUTOMOUNT Object is an automount trigger
These are for the use of GUI tools that might want to mark files specially,
depending on what they are.
Fields in struct statx come in a number of classes:
(0) stx_dev_*, stx_blksize.
These are local system information and are always available.
(1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
stx_size, stx_blocks.
These will be returned whether the caller asks for them or not. The
corresponding bits in stx_mask will be set to indicate whether they
actually have valid values.
If the caller didn't ask for them, then they may be approximated. For
example, NFS won't waste any time updating them from the server,
unless as a byproduct of updating something requested.
If the values don't actually exist for the underlying object (such as
UID or GID on a DOS file), then the bit won't be set in the stx_mask,
even if the caller asked for the value. In such a case, the returned
value will be a fabrication.
Note that there are instances where the type might not be valid, for
instance Windows reparse points.
(2) stx_rdev_*.
This will be set only if stx_mode indicates we're looking at a
blockdev or a chardev, otherwise will be 0.
(3) stx_btime.
Similar to (1), except this will be set to 0 if it doesn't exist.
=======
TESTING
=======
The following test program can be used to test the statx system call:
samples/statx/test-statx.c
Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.
Here's some example output. Firstly, an NFS directory that crosses to
another FSID. Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.
[root@andromeda ~]# /tmp/test-statx -A /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:26 Inode: 1703937 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)
Secondly, the result of automounting on that directory.
[root@andromeda ~]# /tmp/test-statx /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:27 Inode: 2 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-01-31 16:46:22 +00:00
|
|
|
static int proc_root_getattr(const struct path *path, struct kstat *stat,
|
|
|
|
u32 request_mask, unsigned int query_flags)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.
The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode. This change is propagated to the vfs_getattr*()
function.
Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.
========
OVERVIEW
========
The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.
A number of requests were gathered for features to be included. The
following have been included:
(1) Make the fields a consistent size on all arches and make them large.
(2) Spare space, request flags and information flags are provided for
future expansion.
(3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
__s64).
(4) Creation time: The SMB protocol carries the creation time, which could
be exported by Samba, which will in turn help CIFS make use of
FS-Cache as that can be used for coherency data (stx_btime).
This is also specified in NFSv4 as a recommended attribute and could
be exported by NFSD [Steve French].
(5) Lightweight stat: Ask for just those details of interest, and allow a
netfs (such as NFS) to approximate anything not of interest, possibly
without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
Dilger] (AT_STATX_DONT_SYNC).
(6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
its cached attributes are up to date [Trond Myklebust]
(AT_STATX_FORCE_SYNC).
And the following have been left out for future extension:
(7) Data version number: Could be used by userspace NFS servers [Aneesh
Kumar].
Can also be used to modify fill_post_wcc() in NFSD which retrieves
i_version directly, but has just called vfs_getattr(). It could get
it from the kstat struct if it used vfs_xgetattr() instead.
(There's disagreement on the exact semantics of a single field, since
not all filesystems do this the same way).
(8) BSD stat compatibility: Including more fields from the BSD stat such
as creation time (st_btime) and inode generation number (st_gen)
[Jeremy Allison, Bernd Schubert].
(9) Inode generation number: Useful for FUSE and userspace NFS servers
[Bernd Schubert].
(This was asked for but later deemed unnecessary with the
open-by-handle capability available and caused disagreement as to
whether it's a security hole or not).
(10) Extra coherency data may be useful in making backups [Andreas Dilger].
(No particular data were offered, but things like last backup
timestamp, the data version number and the DOS archive bit would come
into this category).
(11) Allow the filesystem to indicate what it can/cannot provide: A
filesystem can now say it doesn't support a standard stat feature if
that isn't available, so if, for instance, inode numbers or UIDs don't
exist or are fabricated locally...
(This requires a separate system call - I have an fsinfo() call idea
for this).
(12) Store a 16-byte volume ID in the superblock that can be returned in
struct xstat [Steve French].
(Deferred to fsinfo).
(13) Include granularity fields in the time data to indicate the
granularity of each of the times (NFSv4 time_delta) [Steve French].
(Deferred to fsinfo).
(14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags.
Note that the Linux IOC flags are a mess and filesystems such as Ext4
define flags that aren't in linux/fs.h, so translation in the kernel
may be a necessity (or, possibly, we provide the filesystem type too).
(Some attributes are made available in stx_attributes, but the general
feeling was that the IOC flags were to ext[234]-specific and shouldn't
be exposed through statx this way).
(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
Michael Kerrisk].
(Deferred, probably to fsinfo. Finding out if there's an ACL or
seclabal might require extra filesystem operations).
(16) Femtosecond-resolution timestamps [Dave Chinner].
(A __reserved field has been left in the statx_timestamp struct for
this - if there proves to be a need).
(17) A set multiple attributes syscall to go with this.
===============
NEW SYSTEM CALL
===============
The new system call is:
int ret = statx(int dfd,
const char *filename,
unsigned int flags,
unsigned int mask,
struct statx *buffer);
The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat(). There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.
Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):
(1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
respect.
(2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
its attributes with the server - which might require data writeback to
occur to get the timestamps correct.
(3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
network filesystem. The resulting values should be considered
approximate.
mask is a bitmask indicating the fields in struct statx that are of
interest to the caller. The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat(). It should be noted that asking for
more information may entail extra I/O operations.
buffer points to the destination for the data. This must be 256 bytes in
size.
======================
MAIN ATTRIBUTES RECORD
======================
The following structures are defined in which to return the main attribute
set:
struct statx_timestamp {
__s64 tv_sec;
__s32 tv_nsec;
__s32 __reserved;
};
struct statx {
__u32 stx_mask;
__u32 stx_blksize;
__u64 stx_attributes;
__u32 stx_nlink;
__u32 stx_uid;
__u32 stx_gid;
__u16 stx_mode;
__u16 __spare0[1];
__u64 stx_ino;
__u64 stx_size;
__u64 stx_blocks;
__u64 __spare1[1];
struct statx_timestamp stx_atime;
struct statx_timestamp stx_btime;
struct statx_timestamp stx_ctime;
struct statx_timestamp stx_mtime;
__u32 stx_rdev_major;
__u32 stx_rdev_minor;
__u32 stx_dev_major;
__u32 stx_dev_minor;
__u64 __spare2[14];
};
The defined bits in request_mask and stx_mask are:
STATX_TYPE Want/got stx_mode & S_IFMT
STATX_MODE Want/got stx_mode & ~S_IFMT
STATX_NLINK Want/got stx_nlink
STATX_UID Want/got stx_uid
STATX_GID Want/got stx_gid
STATX_ATIME Want/got stx_atime{,_ns}
STATX_MTIME Want/got stx_mtime{,_ns}
STATX_CTIME Want/got stx_ctime{,_ns}
STATX_INO Want/got stx_ino
STATX_SIZE Want/got stx_size
STATX_BLOCKS Want/got stx_blocks
STATX_BASIC_STATS [The stuff in the normal stat struct]
STATX_BTIME Want/got stx_btime{,_ns}
STATX_ALL [All currently available stuff]
stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.
Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution. Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.
The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does. The following
attributes map to FS_*_FL flags and are the same numerical value:
STATX_ATTR_COMPRESSED File is compressed by the fs
STATX_ATTR_IMMUTABLE File is marked immutable
STATX_ATTR_APPEND File is append-only
STATX_ATTR_NODUMP File is not to be dumped
STATX_ATTR_ENCRYPTED File requires key to decrypt in fs
Within the kernel, the supported flags are listed by:
KSTAT_ATTR_FS_IOC_FLAGS
[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]
New flags include:
STATX_ATTR_AUTOMOUNT Object is an automount trigger
These are for the use of GUI tools that might want to mark files specially,
depending on what they are.
Fields in struct statx come in a number of classes:
(0) stx_dev_*, stx_blksize.
These are local system information and are always available.
(1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
stx_size, stx_blocks.
These will be returned whether the caller asks for them or not. The
corresponding bits in stx_mask will be set to indicate whether they
actually have valid values.
If the caller didn't ask for them, then they may be approximated. For
example, NFS won't waste any time updating them from the server,
unless as a byproduct of updating something requested.
If the values don't actually exist for the underlying object (such as
UID or GID on a DOS file), then the bit won't be set in the stx_mask,
even if the caller asked for the value. In such a case, the returned
value will be a fabrication.
Note that there are instances where the type might not be valid, for
instance Windows reparse points.
(2) stx_rdev_*.
This will be set only if stx_mode indicates we're looking at a
blockdev or a chardev, otherwise will be 0.
(3) stx_btime.
Similar to (1), except this will be set to 0 if it doesn't exist.
=======
TESTING
=======
The following test program can be used to test the statx system call:
samples/statx/test-statx.c
Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.
Here's some example output. Firstly, an NFS directory that crosses to
another FSID. Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.
[root@andromeda ~]# /tmp/test-statx -A /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:26 Inode: 1703937 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)
Secondly, the result of automounting on that directory.
[root@andromeda ~]# /tmp/test-statx /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:27 Inode: 2 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-01-31 16:46:22 +00:00
|
|
|
generic_fillattr(d_inode(path->dentry), stat);
|
2006-02-08 19:37:40 +00:00
|
|
|
stat->nlink = proc_root.nlink + nr_processes();
|
|
|
|
return 0;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2012-06-10 21:13:09 +00:00
|
|
|
static struct dentry *proc_root_lookup(struct inode * dir, struct dentry * dentry, unsigned int flags)
|
2006-02-08 19:37:40 +00:00
|
|
|
{
|
2014-08-08 21:21:27 +00:00
|
|
|
if (!proc_pid_lookup(dir, dentry, flags))
|
2005-04-16 22:20:36 +00:00
|
|
|
return NULL;
|
|
|
|
|
2014-08-08 21:21:27 +00:00
|
|
|
return proc_lookup(dir, dentry, flags);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2013-05-16 16:07:31 +00:00
|
|
|
static int proc_root_readdir(struct file *file, struct dir_context *ctx)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2013-05-16 16:07:31 +00:00
|
|
|
if (ctx->pos < FIRST_PROCESS_ENTRY) {
|
2013-08-19 16:30:31 +00:00
|
|
|
int error = proc_readdir(file, ctx);
|
|
|
|
if (unlikely(error <= 0))
|
|
|
|
return error;
|
2013-05-16 16:07:31 +00:00
|
|
|
ctx->pos = FIRST_PROCESS_ENTRY;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2013-05-16 16:07:31 +00:00
|
|
|
return proc_pid_readdir(file, ctx);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The root /proc directory is special, as it has the
|
|
|
|
* <pid> directories. Thus we don't use the generic
|
|
|
|
* directory handling functions for that..
|
|
|
|
*/
|
2007-02-12 08:55:34 +00:00
|
|
|
static const struct file_operations proc_root_operations = {
|
2005-04-16 22:20:36 +00:00
|
|
|
.read = generic_read_dir,
|
2016-04-20 21:13:54 +00:00
|
|
|
.iterate_shared = proc_root_readdir,
|
|
|
|
.llseek = generic_file_llseek,
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* proc root can do almost nothing..
|
|
|
|
*/
|
2007-02-12 08:55:40 +00:00
|
|
|
static const struct inode_operations proc_root_inode_operations = {
|
2005-04-16 22:20:36 +00:00
|
|
|
.lookup = proc_root_lookup,
|
2006-02-08 19:37:40 +00:00
|
|
|
.getattr = proc_root_getattr,
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the root "inode" in the /proc tree..
|
|
|
|
*/
|
|
|
|
struct proc_dir_entry proc_root = {
|
|
|
|
.low_ino = PROC_ROOT_INO,
|
|
|
|
.namelen = 5,
|
|
|
|
.mode = S_IFDIR | S_IRUGO | S_IXUGO,
|
|
|
|
.nlink = 2,
|
proc: fix proc_dir_entry refcounting
Creating PDEs with refcount 0 and "deleted" flag has problems (see below).
Switch to usual scheme:
* PDE is created with refcount 1
* every de_get does +1
* every de_put() and remove_proc_entry() do -1
* once refcount reaches 0, PDE is freed.
This elegantly fixes at least two following races (both observed) without
introducing new locks, without abusing old locks, without spreading
lock_kernel():
1) PDE leak
remove_proc_entry de_put
----------------- ------
[refcnt = 1]
if (atomic_read(&de->count) == 0)
if (atomic_dec_and_test(&de->count))
if (de->deleted)
/* also not taken! */
free_proc_entry(de);
else
de->deleted = 1;
[refcount=0, deleted=1]
2) use after free
remove_proc_entry de_put
----------------- ------
[refcnt = 1]
if (atomic_dec_and_test(&de->count))
if (atomic_read(&de->count) == 0)
free_proc_entry(de);
/* boom! */
if (de->deleted)
free_proc_entry(de);
BUG: unable to handle kernel paging request at virtual address 6b6b6b6b
printing eip: c10acdda *pdpt = 00000000338f8001 *pde = 0000000000000000
Oops: 0000 [#1] PREEMPT SMP
Modules linked in: af_packet ipv6 cpufreq_ondemand loop serio_raw psmouse k8temp hwmon sr_mod cdrom
Pid: 23161, comm: cat Not tainted (2.6.24-rc2-8c0863403f109a43d7000b4646da4818220d501f #4)
EIP: 0060:[<c10acdda>] EFLAGS: 00210097 CPU: 1
EIP is at strnlen+0x6/0x18
EAX: 6b6b6b6b EBX: 6b6b6b6b ECX: 6b6b6b6b EDX: fffffffe
ESI: c128fa3b EDI: f380bf34 EBP: ffffffff ESP: f380be44
DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
Process cat (pid: 23161, ti=f380b000 task=f38f2570 task.ti=f380b000)
Stack: c10ac4f0 00000278 c12ce000 f43cd2a8 00000163 00000000 7da86067 00000400
c128fa20 00896b18 f38325a8 c128fe20 ffffffff 00000000 c11f291e 00000400
f75be300 c128fa20 f769c9a0 c10ac779 f380bf34 f7bfee70 c1018e6b f380bf34
Call Trace:
[<c10ac4f0>] vsnprintf+0x2ad/0x49b
[<c10ac779>] vscnprintf+0x14/0x1f
[<c1018e6b>] vprintk+0xc5/0x2f9
[<c10379f1>] handle_fasteoi_irq+0x0/0xab
[<c1004f44>] do_IRQ+0x9f/0xb7
[<c117db3b>] preempt_schedule_irq+0x3f/0x5b
[<c100264e>] need_resched+0x1f/0x21
[<c10190ba>] printk+0x1b/0x1f
[<c107c8ad>] de_put+0x3d/0x50
[<c107c8f8>] proc_delete_inode+0x38/0x41
[<c107c8c0>] proc_delete_inode+0x0/0x41
[<c1066298>] generic_delete_inode+0x5e/0xc6
[<c1065aa9>] iput+0x60/0x62
[<c1063c8e>] d_kill+0x2d/0x46
[<c1063fa9>] dput+0xdc/0xe4
[<c10571a1>] __fput+0xb0/0xcd
[<c1054e49>] filp_close+0x48/0x4f
[<c1055ee9>] sys_close+0x67/0xa5
[<c10026b6>] sysenter_past_esp+0x5f/0x85
=======================
Code: c9 74 0c f2 ae 74 05 bf 01 00 00 00 4f 89 fa 5f 89 d0 c3 85 c9 57 89 c7 89 d0 74 05 f2 ae 75 01 4f 89 f8 5f c3 89 c1 89 c8 eb 06 <80> 38 00 74 07 40 4a 83 fa ff 75 f4 29 c8 c3 90 90 90 57 83 c9
EIP: [<c10acdda>] strnlen+0x6/0x18 SS:ESP 0068:f380be44
Also, remove broken usage of ->deleted from reiserfs: if sget() succeeds,
module is already pinned and remove_proc_entry() can't happen => nobody
can mark PDE deleted.
Dummy proc root in netns code is not marked with refcount 1. AFAICS, we
never get it, it's just for proper /proc/net removal. I double checked
CLONE_NETNS continues to work.
Patch survives many hours of modprobe/rmmod/cat loops without new bugs
which can be attributed to refcounting.
Signed-off-by: Alexey Dobriyan <adobriyan@sw.ru>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-05 07:45:28 +00:00
|
|
|
.count = ATOMIC_INIT(1),
|
2005-04-16 22:20:36 +00:00
|
|
|
.proc_iops = &proc_root_inode_operations,
|
|
|
|
.proc_fops = &proc_root_operations,
|
|
|
|
.parent = &proc_root,
|
2017-09-08 23:15:15 +00:00
|
|
|
.subdir = RB_ROOT_CACHED,
|
2011-07-27 18:47:03 +00:00
|
|
|
.name = "/proc",
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2007-10-19 06:40:11 +00:00
|
|
|
int pid_ns_prepare_proc(struct pid_namespace *ns)
|
|
|
|
{
|
|
|
|
struct vfsmount *mnt;
|
|
|
|
|
|
|
|
mnt = kern_mount_data(&proc_fs_type, ns);
|
|
|
|
if (IS_ERR(mnt))
|
|
|
|
return PTR_ERR(mnt);
|
|
|
|
|
2010-07-26 09:09:36 +00:00
|
|
|
ns->proc_mnt = mnt;
|
2007-10-19 06:40:11 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void pid_ns_release_proc(struct pid_namespace *ns)
|
|
|
|
{
|
2011-12-09 04:20:45 +00:00
|
|
|
kern_unmount(ns->proc_mnt);
|
2007-10-19 06:40:11 +00:00
|
|
|
}
|