254 lines
6.3 KiB
C
254 lines
6.3 KiB
C
|
/*
|
||
|
* common.c - C code for kernel entry and exit
|
||
|
* Copyright (c) 2015 Andrew Lutomirski
|
||
|
* GPL v2
|
||
|
*
|
||
|
* Based on asm and ptrace code by many authors. The code here originated
|
||
|
* in ptrace.c and signal.c.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/ptrace.h>
|
||
|
#include <linux/tracehook.h>
|
||
|
#include <linux/audit.h>
|
||
|
#include <linux/seccomp.h>
|
||
|
#include <linux/signal.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/context_tracking.h>
|
||
|
#include <linux/user-return-notifier.h>
|
||
|
#include <linux/uprobes.h>
|
||
|
|
||
|
#include <asm/desc.h>
|
||
|
#include <asm/traps.h>
|
||
|
|
||
|
#define CREATE_TRACE_POINTS
|
||
|
#include <trace/events/syscalls.h>
|
||
|
|
||
|
static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
|
||
|
{
|
||
|
#ifdef CONFIG_X86_64
|
||
|
if (arch == AUDIT_ARCH_X86_64) {
|
||
|
audit_syscall_entry(regs->orig_ax, regs->di,
|
||
|
regs->si, regs->dx, regs->r10);
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
audit_syscall_entry(regs->orig_ax, regs->bx,
|
||
|
regs->cx, regs->dx, regs->si);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We can return 0 to resume the syscall or anything else to go to phase
|
||
|
* 2. If we resume the syscall, we need to put something appropriate in
|
||
|
* regs->orig_ax.
|
||
|
*
|
||
|
* NB: We don't have full pt_regs here, but regs->orig_ax and regs->ax
|
||
|
* are fully functional.
|
||
|
*
|
||
|
* For phase 2's benefit, our return value is:
|
||
|
* 0: resume the syscall
|
||
|
* 1: go to phase 2; no seccomp phase 2 needed
|
||
|
* anything else: go to phase 2; pass return value to seccomp
|
||
|
*/
|
||
|
unsigned long syscall_trace_enter_phase1(struct pt_regs *regs, u32 arch)
|
||
|
{
|
||
|
unsigned long ret = 0;
|
||
|
u32 work;
|
||
|
|
||
|
BUG_ON(regs != task_pt_regs(current));
|
||
|
|
||
|
work = ACCESS_ONCE(current_thread_info()->flags) &
|
||
|
_TIF_WORK_SYSCALL_ENTRY;
|
||
|
|
||
|
/*
|
||
|
* If TIF_NOHZ is set, we are required to call user_exit() before
|
||
|
* doing anything that could touch RCU.
|
||
|
*/
|
||
|
if (work & _TIF_NOHZ) {
|
||
|
user_exit();
|
||
|
work &= ~_TIF_NOHZ;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SECCOMP
|
||
|
/*
|
||
|
* Do seccomp first -- it should minimize exposure of other
|
||
|
* code, and keeping seccomp fast is probably more valuable
|
||
|
* than the rest of this.
|
||
|
*/
|
||
|
if (work & _TIF_SECCOMP) {
|
||
|
struct seccomp_data sd;
|
||
|
|
||
|
sd.arch = arch;
|
||
|
sd.nr = regs->orig_ax;
|
||
|
sd.instruction_pointer = regs->ip;
|
||
|
#ifdef CONFIG_X86_64
|
||
|
if (arch == AUDIT_ARCH_X86_64) {
|
||
|
sd.args[0] = regs->di;
|
||
|
sd.args[1] = regs->si;
|
||
|
sd.args[2] = regs->dx;
|
||
|
sd.args[3] = regs->r10;
|
||
|
sd.args[4] = regs->r8;
|
||
|
sd.args[5] = regs->r9;
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
sd.args[0] = regs->bx;
|
||
|
sd.args[1] = regs->cx;
|
||
|
sd.args[2] = regs->dx;
|
||
|
sd.args[3] = regs->si;
|
||
|
sd.args[4] = regs->di;
|
||
|
sd.args[5] = regs->bp;
|
||
|
}
|
||
|
|
||
|
BUILD_BUG_ON(SECCOMP_PHASE1_OK != 0);
|
||
|
BUILD_BUG_ON(SECCOMP_PHASE1_SKIP != 1);
|
||
|
|
||
|
ret = seccomp_phase1(&sd);
|
||
|
if (ret == SECCOMP_PHASE1_SKIP) {
|
||
|
regs->orig_ax = -1;
|
||
|
ret = 0;
|
||
|
} else if (ret != SECCOMP_PHASE1_OK) {
|
||
|
return ret; /* Go directly to phase 2 */
|
||
|
}
|
||
|
|
||
|
work &= ~_TIF_SECCOMP;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Do our best to finish without phase 2. */
|
||
|
if (work == 0)
|
||
|
return ret; /* seccomp and/or nohz only (ret == 0 here) */
|
||
|
|
||
|
#ifdef CONFIG_AUDITSYSCALL
|
||
|
if (work == _TIF_SYSCALL_AUDIT) {
|
||
|
/*
|
||
|
* If there is no more work to be done except auditing,
|
||
|
* then audit in phase 1. Phase 2 always audits, so, if
|
||
|
* we audit here, then we can't go on to phase 2.
|
||
|
*/
|
||
|
do_audit_syscall_entry(regs, arch);
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
return 1; /* Something is enabled that we can't handle in phase 1 */
|
||
|
}
|
||
|
|
||
|
/* Returns the syscall nr to run (which should match regs->orig_ax). */
|
||
|
long syscall_trace_enter_phase2(struct pt_regs *regs, u32 arch,
|
||
|
unsigned long phase1_result)
|
||
|
{
|
||
|
long ret = 0;
|
||
|
u32 work = ACCESS_ONCE(current_thread_info()->flags) &
|
||
|
_TIF_WORK_SYSCALL_ENTRY;
|
||
|
|
||
|
BUG_ON(regs != task_pt_regs(current));
|
||
|
|
||
|
/*
|
||
|
* If we stepped into a sysenter/syscall insn, it trapped in
|
||
|
* kernel mode; do_debug() cleared TF and set TIF_SINGLESTEP.
|
||
|
* If user-mode had set TF itself, then it's still clear from
|
||
|
* do_debug() and we need to set it again to restore the user
|
||
|
* state. If we entered on the slow path, TF was already set.
|
||
|
*/
|
||
|
if (work & _TIF_SINGLESTEP)
|
||
|
regs->flags |= X86_EFLAGS_TF;
|
||
|
|
||
|
#ifdef CONFIG_SECCOMP
|
||
|
/*
|
||
|
* Call seccomp_phase2 before running the other hooks so that
|
||
|
* they can see any changes made by a seccomp tracer.
|
||
|
*/
|
||
|
if (phase1_result > 1 && seccomp_phase2(phase1_result)) {
|
||
|
/* seccomp failures shouldn't expose any additional code. */
|
||
|
return -1;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (unlikely(work & _TIF_SYSCALL_EMU))
|
||
|
ret = -1L;
|
||
|
|
||
|
if ((ret || test_thread_flag(TIF_SYSCALL_TRACE)) &&
|
||
|
tracehook_report_syscall_entry(regs))
|
||
|
ret = -1L;
|
||
|
|
||
|
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
|
||
|
trace_sys_enter(regs, regs->orig_ax);
|
||
|
|
||
|
do_audit_syscall_entry(regs, arch);
|
||
|
|
||
|
return ret ?: regs->orig_ax;
|
||
|
}
|
||
|
|
||
|
long syscall_trace_enter(struct pt_regs *regs)
|
||
|
{
|
||
|
u32 arch = is_ia32_task() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
|
||
|
unsigned long phase1_result = syscall_trace_enter_phase1(regs, arch);
|
||
|
|
||
|
if (phase1_result == 0)
|
||
|
return regs->orig_ax;
|
||
|
else
|
||
|
return syscall_trace_enter_phase2(regs, arch, phase1_result);
|
||
|
}
|
||
|
|
||
|
void syscall_trace_leave(struct pt_regs *regs)
|
||
|
{
|
||
|
bool step;
|
||
|
|
||
|
/*
|
||
|
* We may come here right after calling schedule_user()
|
||
|
* or do_notify_resume(), in which case we can be in RCU
|
||
|
* user mode.
|
||
|
*/
|
||
|
user_exit();
|
||
|
|
||
|
audit_syscall_exit(regs);
|
||
|
|
||
|
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
|
||
|
trace_sys_exit(regs, regs->ax);
|
||
|
|
||
|
/*
|
||
|
* If TIF_SYSCALL_EMU is set, we only get here because of
|
||
|
* TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
|
||
|
* We already reported this syscall instruction in
|
||
|
* syscall_trace_enter().
|
||
|
*/
|
||
|
step = unlikely(test_thread_flag(TIF_SINGLESTEP)) &&
|
||
|
!test_thread_flag(TIF_SYSCALL_EMU);
|
||
|
if (step || test_thread_flag(TIF_SYSCALL_TRACE))
|
||
|
tracehook_report_syscall_exit(regs, step);
|
||
|
|
||
|
user_enter();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* notification of userspace execution resumption
|
||
|
* - triggered by the TIF_WORK_MASK flags
|
||
|
*/
|
||
|
__visible void
|
||
|
do_notify_resume(struct pt_regs *regs, void *unused, __u32 thread_info_flags)
|
||
|
{
|
||
|
user_exit();
|
||
|
|
||
|
if (thread_info_flags & _TIF_UPROBE)
|
||
|
uprobe_notify_resume(regs);
|
||
|
|
||
|
/* deal with pending signal delivery */
|
||
|
if (thread_info_flags & _TIF_SIGPENDING)
|
||
|
do_signal(regs);
|
||
|
|
||
|
if (thread_info_flags & _TIF_NOTIFY_RESUME) {
|
||
|
clear_thread_flag(TIF_NOTIFY_RESUME);
|
||
|
tracehook_notify_resume(regs);
|
||
|
}
|
||
|
if (thread_info_flags & _TIF_USER_RETURN_NOTIFY)
|
||
|
fire_user_return_notifiers();
|
||
|
|
||
|
user_enter();
|
||
|
}
|