zig/lib/std/leb128.zig
2023-11-12 03:21:52 -05:00

438 lines
17 KiB
Zig

const std = @import("std");
const testing = std.testing;
/// Read a single unsigned LEB128 value from the given reader as type T,
/// or error.Overflow if the value cannot fit.
pub fn readULEB128(comptime T: type, reader: anytype) !T {
const U = if (@typeInfo(T).Int.bits < 8) u8 else T;
const ShiftT = std.math.Log2Int(U);
const max_group = (@typeInfo(U).Int.bits + 6) / 7;
var value: U = 0;
var group: ShiftT = 0;
while (group < max_group) : (group += 1) {
const byte = try reader.readByte();
const ov = @shlWithOverflow(@as(U, byte & 0x7f), group * 7);
if (ov[1] != 0) return error.Overflow;
value |= ov[0];
if (byte & 0x80 == 0) break;
} else {
return error.Overflow;
}
// only applies in the case that we extended to u8
if (U != T) {
if (value > std.math.maxInt(T)) return error.Overflow;
}
return @as(T, @truncate(value));
}
/// Write a single unsigned integer as unsigned LEB128 to the given writer.
pub fn writeULEB128(writer: anytype, uint_value: anytype) !void {
const T = @TypeOf(uint_value);
const U = if (@typeInfo(T).Int.bits < 8) u8 else T;
var value: U = @intCast(uint_value);
while (true) {
const byte: u8 = @truncate(value & 0x7f);
value >>= 7;
if (value == 0) {
try writer.writeByte(byte);
break;
} else {
try writer.writeByte(byte | 0x80);
}
}
}
/// Read a single signed LEB128 value from the given reader as type T,
/// or error.Overflow if the value cannot fit.
pub fn readILEB128(comptime T: type, reader: anytype) !T {
const S = if (@typeInfo(T).Int.bits < 8) i8 else T;
const U = std.meta.Int(.unsigned, @typeInfo(S).Int.bits);
const ShiftU = std.math.Log2Int(U);
const max_group = (@typeInfo(U).Int.bits + 6) / 7;
var value = @as(U, 0);
var group = @as(ShiftU, 0);
while (group < max_group) : (group += 1) {
const byte = try reader.readByte();
const shift = group * 7;
const ov = @shlWithOverflow(@as(U, byte & 0x7f), shift);
if (ov[1] != 0) {
// Overflow is ok so long as the sign bit is set and this is the last byte
if (byte & 0x80 != 0) return error.Overflow;
if (@as(S, @bitCast(ov[0])) >= 0) return error.Overflow;
// and all the overflowed bits are 1
const remaining_shift = @as(u3, @intCast(@typeInfo(U).Int.bits - @as(u16, shift)));
const remaining_bits = @as(i8, @bitCast(byte | 0x80)) >> remaining_shift;
if (remaining_bits != -1) return error.Overflow;
} else {
// If we don't overflow and this is the last byte and the number being decoded
// is negative, check that the remaining bits are 1
if ((byte & 0x80 == 0) and (@as(S, @bitCast(ov[0])) < 0)) {
const remaining_shift = @as(u3, @intCast(@typeInfo(U).Int.bits - @as(u16, shift)));
const remaining_bits = @as(i8, @bitCast(byte | 0x80)) >> remaining_shift;
if (remaining_bits != -1) return error.Overflow;
}
}
value |= ov[0];
if (byte & 0x80 == 0) {
const needs_sign_ext = group + 1 < max_group;
if (byte & 0x40 != 0 and needs_sign_ext) {
const ones = @as(S, -1);
value |= @as(U, @bitCast(ones)) << (shift + 7);
}
break;
}
} else {
return error.Overflow;
}
const result = @as(S, @bitCast(value));
// Only applies if we extended to i8
if (S != T) {
if (result > std.math.maxInt(T) or result < std.math.minInt(T)) return error.Overflow;
}
return @as(T, @truncate(result));
}
/// Write a single signed integer as signed LEB128 to the given writer.
pub fn writeILEB128(writer: anytype, int_value: anytype) !void {
const T = @TypeOf(int_value);
const S = if (@typeInfo(T).Int.bits < 8) i8 else T;
const U = std.meta.Int(.unsigned, @typeInfo(S).Int.bits);
var value: S = @intCast(int_value);
while (true) {
const uvalue: U = @bitCast(value);
const byte: u8 = @truncate(uvalue);
value >>= 6;
if (value == -1 or value == 0) {
try writer.writeByte(byte & 0x7F);
break;
} else {
value >>= 1;
try writer.writeByte(byte | 0x80);
}
}
}
/// This is an "advanced" function. It allows one to use a fixed amount of memory to store a
/// ULEB128. This defeats the entire purpose of using this data encoding; it will no longer use
/// fewer bytes to store smaller numbers. The advantage of using a fixed width is that it makes
/// fields have a predictable size and so depending on the use case this tradeoff can be worthwhile.
/// An example use case of this is in emitting DWARF info where one wants to make a ULEB128 field
/// "relocatable", meaning that it becomes possible to later go back and patch the number to be a
/// different value without shifting all the following code.
pub fn writeUnsignedFixed(comptime l: usize, ptr: *[l]u8, int: std.meta.Int(.unsigned, l * 7)) void {
const T = @TypeOf(int);
const U = if (@typeInfo(T).Int.bits < 8) u8 else T;
var value: U = @intCast(int);
comptime var i = 0;
inline while (i < (l - 1)) : (i += 1) {
const byte = @as(u8, @truncate(value)) | 0b1000_0000;
value >>= 7;
ptr[i] = byte;
}
ptr[i] = @truncate(value);
}
test writeUnsignedFixed {
{
var buf: [4]u8 = undefined;
writeUnsignedFixed(4, &buf, 0);
try testing.expect((try test_read_uleb128(u64, &buf)) == 0);
}
{
var buf: [4]u8 = undefined;
writeUnsignedFixed(4, &buf, 1);
try testing.expect((try test_read_uleb128(u64, &buf)) == 1);
}
{
var buf: [4]u8 = undefined;
writeUnsignedFixed(4, &buf, 1000);
try testing.expect((try test_read_uleb128(u64, &buf)) == 1000);
}
{
var buf: [4]u8 = undefined;
writeUnsignedFixed(4, &buf, 10000000);
try testing.expect((try test_read_uleb128(u64, &buf)) == 10000000);
}
}
/// This is an "advanced" function. It allows one to use a fixed amount of memory to store an
/// ILEB128. This defeats the entire purpose of using this data encoding; it will no longer use
/// fewer bytes to store smaller numbers. The advantage of using a fixed width is that it makes
/// fields have a predictable size and so depending on the use case this tradeoff can be worthwhile.
/// An example use case of this is in emitting DWARF info where one wants to make a ILEB128 field
/// "relocatable", meaning that it becomes possible to later go back and patch the number to be a
/// different value without shifting all the following code.
pub fn writeSignedFixed(comptime l: usize, ptr: *[l]u8, int: std.meta.Int(.signed, l * 7)) void {
const T = @TypeOf(int);
const U = if (@typeInfo(T).Int.bits < 8) u8 else T;
var value: U = @intCast(int);
comptime var i = 0;
inline while (i < (l - 1)) : (i += 1) {
const byte: u8 = @bitCast(@as(i8, @truncate(value)) | -0b1000_0000);
value >>= 7;
ptr[i] = byte;
}
ptr[i] = @as(u7, @bitCast(@as(i7, @truncate(value))));
}
test writeSignedFixed {
{
var buf: [4]u8 = undefined;
writeSignedFixed(4, &buf, 0);
try testing.expect((try test_read_ileb128(i64, &buf)) == 0);
}
{
var buf: [4]u8 = undefined;
writeSignedFixed(4, &buf, 1);
try testing.expect((try test_read_ileb128(i64, &buf)) == 1);
}
{
var buf: [4]u8 = undefined;
writeSignedFixed(4, &buf, -1);
try testing.expect((try test_read_ileb128(i64, &buf)) == -1);
}
{
var buf: [4]u8 = undefined;
writeSignedFixed(4, &buf, 1000);
try testing.expect((try test_read_ileb128(i64, &buf)) == 1000);
}
{
var buf: [4]u8 = undefined;
writeSignedFixed(4, &buf, -1000);
try testing.expect((try test_read_ileb128(i64, &buf)) == -1000);
}
{
var buf: [4]u8 = undefined;
writeSignedFixed(4, &buf, -10000000);
try testing.expect((try test_read_ileb128(i64, &buf)) == -10000000);
}
{
var buf: [4]u8 = undefined;
writeSignedFixed(4, &buf, 10000000);
try testing.expect((try test_read_ileb128(i64, &buf)) == 10000000);
}
}
// tests
fn test_read_stream_ileb128(comptime T: type, encoded: []const u8) !T {
var reader = std.io.fixedBufferStream(encoded);
return try readILEB128(T, reader.reader());
}
fn test_read_stream_uleb128(comptime T: type, encoded: []const u8) !T {
var reader = std.io.fixedBufferStream(encoded);
return try readULEB128(T, reader.reader());
}
fn test_read_ileb128(comptime T: type, encoded: []const u8) !T {
var reader = std.io.fixedBufferStream(encoded);
const v1 = try readILEB128(T, reader.reader());
return v1;
}
fn test_read_uleb128(comptime T: type, encoded: []const u8) !T {
var reader = std.io.fixedBufferStream(encoded);
const v1 = try readULEB128(T, reader.reader());
return v1;
}
fn test_read_ileb128_seq(comptime T: type, comptime N: usize, encoded: []const u8) !void {
var reader = std.io.fixedBufferStream(encoded);
var i: usize = 0;
while (i < N) : (i += 1) {
_ = try readILEB128(T, reader.reader());
}
}
fn test_read_uleb128_seq(comptime T: type, comptime N: usize, encoded: []const u8) !void {
var reader = std.io.fixedBufferStream(encoded);
var i: usize = 0;
while (i < N) : (i += 1) {
_ = try readULEB128(T, reader.reader());
}
}
test "deserialize signed LEB128" {
// Truncated
try testing.expectError(error.EndOfStream, test_read_stream_ileb128(i64, "\x80"));
// Overflow
try testing.expectError(error.Overflow, test_read_ileb128(i8, "\x80\x80\x40"));
try testing.expectError(error.Overflow, test_read_ileb128(i16, "\x80\x80\x80\x40"));
try testing.expectError(error.Overflow, test_read_ileb128(i32, "\x80\x80\x80\x80\x40"));
try testing.expectError(error.Overflow, test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x40"));
try testing.expectError(error.Overflow, test_read_ileb128(i8, "\xff\x7e"));
try testing.expectError(error.Overflow, test_read_ileb128(i32, "\x80\x80\x80\x80\x08"));
try testing.expectError(error.Overflow, test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x01"));
// Decode SLEB128
try testing.expect((try test_read_ileb128(i64, "\x00")) == 0);
try testing.expect((try test_read_ileb128(i64, "\x01")) == 1);
try testing.expect((try test_read_ileb128(i64, "\x3f")) == 63);
try testing.expect((try test_read_ileb128(i64, "\x40")) == -64);
try testing.expect((try test_read_ileb128(i64, "\x41")) == -63);
try testing.expect((try test_read_ileb128(i64, "\x7f")) == -1);
try testing.expect((try test_read_ileb128(i64, "\x80\x01")) == 128);
try testing.expect((try test_read_ileb128(i64, "\x81\x01")) == 129);
try testing.expect((try test_read_ileb128(i64, "\xff\x7e")) == -129);
try testing.expect((try test_read_ileb128(i64, "\x80\x7f")) == -128);
try testing.expect((try test_read_ileb128(i64, "\x81\x7f")) == -127);
try testing.expect((try test_read_ileb128(i64, "\xc0\x00")) == 64);
try testing.expect((try test_read_ileb128(i64, "\xc7\x9f\x7f")) == -12345);
try testing.expect((try test_read_ileb128(i8, "\xff\x7f")) == -1);
try testing.expect((try test_read_ileb128(i16, "\xff\xff\x7f")) == -1);
try testing.expect((try test_read_ileb128(i32, "\xff\xff\xff\xff\x7f")) == -1);
try testing.expect((try test_read_ileb128(i32, "\x80\x80\x80\x80\x78")) == -0x80000000);
try testing.expect((try test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x7f")) == @as(i64, @bitCast(@as(u64, @intCast(0x8000000000000000)))));
try testing.expect((try test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x40")) == -0x4000000000000000);
try testing.expect((try test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x7f")) == -0x8000000000000000);
// Decode unnormalized SLEB128 with extra padding bytes.
try testing.expect((try test_read_ileb128(i64, "\x80\x00")) == 0);
try testing.expect((try test_read_ileb128(i64, "\x80\x80\x00")) == 0);
try testing.expect((try test_read_ileb128(i64, "\xff\x00")) == 0x7f);
try testing.expect((try test_read_ileb128(i64, "\xff\x80\x00")) == 0x7f);
try testing.expect((try test_read_ileb128(i64, "\x80\x81\x00")) == 0x80);
try testing.expect((try test_read_ileb128(i64, "\x80\x81\x80\x00")) == 0x80);
// Decode sequence of SLEB128 values
try test_read_ileb128_seq(i64, 4, "\x81\x01\x3f\x80\x7f\x80\x80\x80\x00");
}
test "deserialize unsigned LEB128" {
// Truncated
try testing.expectError(error.EndOfStream, test_read_stream_uleb128(u64, "\x80"));
// Overflow
try testing.expectError(error.Overflow, test_read_uleb128(u8, "\x80\x02"));
try testing.expectError(error.Overflow, test_read_uleb128(u8, "\x80\x80\x40"));
try testing.expectError(error.Overflow, test_read_uleb128(u16, "\x80\x80\x84"));
try testing.expectError(error.Overflow, test_read_uleb128(u16, "\x80\x80\x80\x40"));
try testing.expectError(error.Overflow, test_read_uleb128(u32, "\x80\x80\x80\x80\x90"));
try testing.expectError(error.Overflow, test_read_uleb128(u32, "\x80\x80\x80\x80\x40"));
try testing.expectError(error.Overflow, test_read_uleb128(u64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x40"));
// Decode ULEB128
try testing.expect((try test_read_uleb128(u64, "\x00")) == 0);
try testing.expect((try test_read_uleb128(u64, "\x01")) == 1);
try testing.expect((try test_read_uleb128(u64, "\x3f")) == 63);
try testing.expect((try test_read_uleb128(u64, "\x40")) == 64);
try testing.expect((try test_read_uleb128(u64, "\x7f")) == 0x7f);
try testing.expect((try test_read_uleb128(u64, "\x80\x01")) == 0x80);
try testing.expect((try test_read_uleb128(u64, "\x81\x01")) == 0x81);
try testing.expect((try test_read_uleb128(u64, "\x90\x01")) == 0x90);
try testing.expect((try test_read_uleb128(u64, "\xff\x01")) == 0xff);
try testing.expect((try test_read_uleb128(u64, "\x80\x02")) == 0x100);
try testing.expect((try test_read_uleb128(u64, "\x81\x02")) == 0x101);
try testing.expect((try test_read_uleb128(u64, "\x80\xc1\x80\x80\x10")) == 4294975616);
try testing.expect((try test_read_uleb128(u64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x01")) == 0x8000000000000000);
// Decode ULEB128 with extra padding bytes
try testing.expect((try test_read_uleb128(u64, "\x80\x00")) == 0);
try testing.expect((try test_read_uleb128(u64, "\x80\x80\x00")) == 0);
try testing.expect((try test_read_uleb128(u64, "\xff\x00")) == 0x7f);
try testing.expect((try test_read_uleb128(u64, "\xff\x80\x00")) == 0x7f);
try testing.expect((try test_read_uleb128(u64, "\x80\x81\x00")) == 0x80);
try testing.expect((try test_read_uleb128(u64, "\x80\x81\x80\x00")) == 0x80);
// Decode sequence of ULEB128 values
try test_read_uleb128_seq(u64, 4, "\x81\x01\x3f\x80\x7f\x80\x80\x80\x00");
}
fn test_write_leb128(value: anytype) !void {
const T = @TypeOf(value);
const signedness = @typeInfo(T).Int.signedness;
const t_signed = signedness == .signed;
const writeStream = if (t_signed) writeILEB128 else writeULEB128;
const readStream = if (t_signed) readILEB128 else readULEB128;
// decode to a larger bit size too, to ensure sign extension
// is working as expected
const larger_type_bits = ((@typeInfo(T).Int.bits + 8) / 8) * 8;
const B = std.meta.Int(signedness, larger_type_bits);
const bytes_needed = bn: {
if (@typeInfo(T).Int.bits <= 7) break :bn @as(u16, 1);
const unused_bits = if (value < 0) @clz(~value) else @clz(value);
const used_bits: u16 = (@typeInfo(T).Int.bits - unused_bits) + @intFromBool(t_signed);
if (used_bits <= 7) break :bn @as(u16, 1);
break :bn ((used_bits + 6) / 7);
};
const max_groups = if (@typeInfo(T).Int.bits == 0) 1 else (@typeInfo(T).Int.bits + 6) / 7;
var buf: [max_groups]u8 = undefined;
var fbs = std.io.fixedBufferStream(&buf);
// stream write
try writeStream(fbs.writer(), value);
const w1_pos = fbs.pos;
try testing.expect(w1_pos == bytes_needed);
// stream read
fbs.pos = 0;
const sr = try readStream(T, fbs.reader());
try testing.expect(fbs.pos == w1_pos);
try testing.expect(sr == value);
// bigger type stream read
fbs.pos = 0;
const bsr = try readStream(B, fbs.reader());
try testing.expect(fbs.pos == w1_pos);
try testing.expect(bsr == value);
}
test "serialize unsigned LEB128" {
const max_bits = 18;
comptime var t = 0;
inline while (t <= max_bits) : (t += 1) {
const T = std.meta.Int(.unsigned, t);
const min = std.math.minInt(T);
const max = std.math.maxInt(T);
var i = @as(std.meta.Int(.unsigned, @typeInfo(T).Int.bits + 1), min);
while (i <= max) : (i += 1) try test_write_leb128(@as(T, @intCast(i)));
}
}
test "serialize signed LEB128" {
// explicitly test i0 because starting `t` at 0
// will break the while loop
try test_write_leb128(@as(i0, 0));
const max_bits = 18;
comptime var t = 1;
inline while (t <= max_bits) : (t += 1) {
const T = std.meta.Int(.signed, t);
const min = std.math.minInt(T);
const max = std.math.maxInt(T);
var i = @as(std.meta.Int(.signed, @typeInfo(T).Int.bits + 1), min);
while (i <= max) : (i += 1) try test_write_leb128(@as(T, @intCast(i)));
}
}