zig/lib/std/build.zig
Jakub Konka 0376fd09bc macho: extend CodeSignature to accept entitlements
With this change, we can now bake in entitlements into the binary.
Additionally, I see this as the first step towards full code signature
support which includes baking in Apple issued certificates for
redistribution, etc.
2022-03-22 07:06:39 +01:00

3495 lines
131 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const io = std.io;
const fs = std.fs;
const mem = std.mem;
const debug = std.debug;
const panic = std.debug.panic;
const assert = debug.assert;
const warn = std.debug.print; // TODO use the log system instead of this
const ArrayList = std.ArrayList;
const StringHashMap = std.StringHashMap;
const Allocator = mem.Allocator;
const process = std.process;
const BufSet = std.BufSet;
const BufMap = std.BufMap;
const fmt_lib = std.fmt;
const File = std.fs.File;
const CrossTarget = std.zig.CrossTarget;
const NativeTargetInfo = std.zig.system.NativeTargetInfo;
const Sha256 = std.crypto.hash.sha2.Sha256;
pub const FmtStep = @import("build/FmtStep.zig");
pub const TranslateCStep = @import("build/TranslateCStep.zig");
pub const WriteFileStep = @import("build/WriteFileStep.zig");
pub const RunStep = @import("build/RunStep.zig");
pub const CheckFileStep = @import("build/CheckFileStep.zig");
pub const InstallRawStep = @import("build/InstallRawStep.zig");
pub const OptionsStep = @import("build/OptionsStep.zig");
pub const Builder = struct {
install_tls: TopLevelStep,
uninstall_tls: TopLevelStep,
allocator: Allocator,
user_input_options: UserInputOptionsMap,
available_options_map: AvailableOptionsMap,
available_options_list: ArrayList(AvailableOption),
verbose: bool,
verbose_link: bool,
verbose_cc: bool,
verbose_air: bool,
verbose_llvm_ir: bool,
verbose_cimport: bool,
verbose_llvm_cpu_features: bool,
/// The purpose of executing the command is for a human to read compile errors from the terminal
prominent_compile_errors: bool,
color: enum { auto, on, off } = .auto,
invalid_user_input: bool,
zig_exe: []const u8,
default_step: *Step,
env_map: *BufMap,
top_level_steps: ArrayList(*TopLevelStep),
install_prefix: []const u8,
dest_dir: ?[]const u8,
lib_dir: []const u8,
exe_dir: []const u8,
h_dir: []const u8,
install_path: []const u8,
sysroot: ?[]const u8 = null,
search_prefixes: ArrayList([]const u8),
libc_file: ?[]const u8 = null,
installed_files: ArrayList(InstalledFile),
build_root: []const u8,
cache_root: []const u8,
global_cache_root: []const u8,
release_mode: ?std.builtin.Mode,
is_release: bool,
override_lib_dir: ?[]const u8,
vcpkg_root: VcpkgRoot,
pkg_config_pkg_list: ?(PkgConfigError![]const PkgConfigPkg) = null,
args: ?[][]const u8 = null,
debug_log_scopes: []const []const u8 = &.{},
/// Experimental. Use system Darling installation to run cross compiled macOS build artifacts.
enable_darling: bool = false,
/// Use system QEMU installation to run cross compiled foreign architecture build artifacts.
enable_qemu: bool = false,
/// Darwin. Use Rosetta to run x86_64 macOS build artifacts on arm64 macOS.
enable_rosetta: bool = false,
/// Use system Wasmtime installation to run cross compiled wasm/wasi build artifacts.
enable_wasmtime: bool = false,
/// Use system Wine installation to run cross compiled Windows build artifacts.
enable_wine: bool = false,
/// After following the steps in https://github.com/ziglang/zig/wiki/Updating-libc#glibc,
/// this will be the directory $glibc-build-dir/install/glibcs
/// Given the example of the aarch64 target, this is the directory
/// that contains the path `aarch64-linux-gnu/lib/ld-linux-aarch64.so.1`.
glibc_runtimes_dir: ?[]const u8 = null,
/// Information about the native target. Computed before build() is invoked.
host: NativeTargetInfo,
pub const ExecError = error{
ReadFailure,
ExitCodeFailure,
ProcessTerminated,
ExecNotSupported,
} || std.ChildProcess.SpawnError;
pub const PkgConfigError = error{
PkgConfigCrashed,
PkgConfigFailed,
PkgConfigNotInstalled,
PkgConfigInvalidOutput,
};
pub const PkgConfigPkg = struct {
name: []const u8,
desc: []const u8,
};
pub const CStd = enum {
C89,
C99,
C11,
};
const UserInputOptionsMap = StringHashMap(UserInputOption);
const AvailableOptionsMap = StringHashMap(AvailableOption);
const AvailableOption = struct {
name: []const u8,
type_id: TypeId,
description: []const u8,
/// If the `type_id` is `enum` this provides the list of enum options
enum_options: ?[]const []const u8,
};
const UserInputOption = struct {
name: []const u8,
value: UserValue,
used: bool,
};
const UserValue = union(enum) {
flag: void,
scalar: []const u8,
list: ArrayList([]const u8),
};
const TypeId = enum {
bool,
int,
float,
@"enum",
string,
list,
};
const TopLevelStep = struct {
pub const base_id = .top_level;
step: Step,
description: []const u8,
};
pub const DirList = struct {
lib_dir: ?[]const u8 = null,
exe_dir: ?[]const u8 = null,
include_dir: ?[]const u8 = null,
};
pub fn create(
allocator: Allocator,
zig_exe: []const u8,
build_root: []const u8,
cache_root: []const u8,
global_cache_root: []const u8,
) !*Builder {
const env_map = try allocator.create(BufMap);
env_map.* = try process.getEnvMap(allocator);
const host = try NativeTargetInfo.detect(allocator, .{});
const self = try allocator.create(Builder);
self.* = Builder{
.zig_exe = zig_exe,
.build_root = build_root,
.cache_root = try fs.path.relative(allocator, build_root, cache_root),
.global_cache_root = global_cache_root,
.verbose = false,
.verbose_link = false,
.verbose_cc = false,
.verbose_air = false,
.verbose_llvm_ir = false,
.verbose_cimport = false,
.verbose_llvm_cpu_features = false,
.prominent_compile_errors = false,
.invalid_user_input = false,
.allocator = allocator,
.user_input_options = UserInputOptionsMap.init(allocator),
.available_options_map = AvailableOptionsMap.init(allocator),
.available_options_list = ArrayList(AvailableOption).init(allocator),
.top_level_steps = ArrayList(*TopLevelStep).init(allocator),
.default_step = undefined,
.env_map = env_map,
.search_prefixes = ArrayList([]const u8).init(allocator),
.install_prefix = undefined,
.lib_dir = undefined,
.exe_dir = undefined,
.h_dir = undefined,
.dest_dir = env_map.get("DESTDIR"),
.installed_files = ArrayList(InstalledFile).init(allocator),
.install_tls = TopLevelStep{
.step = Step.initNoOp(.top_level, "install", allocator),
.description = "Copy build artifacts to prefix path",
},
.uninstall_tls = TopLevelStep{
.step = Step.init(.top_level, "uninstall", allocator, makeUninstall),
.description = "Remove build artifacts from prefix path",
},
.release_mode = null,
.is_release = false,
.override_lib_dir = null,
.install_path = undefined,
.vcpkg_root = VcpkgRoot{ .unattempted = {} },
.args = null,
.host = host,
};
try self.top_level_steps.append(&self.install_tls);
try self.top_level_steps.append(&self.uninstall_tls);
self.default_step = &self.install_tls.step;
return self;
}
pub fn destroy(self: *Builder) void {
self.env_map.deinit();
self.top_level_steps.deinit();
self.allocator.destroy(self);
}
/// This function is intended to be called by std/special/build_runner.zig, not a build.zig file.
pub fn resolveInstallPrefix(self: *Builder, install_prefix: ?[]const u8, dir_list: DirList) void {
if (self.dest_dir) |dest_dir| {
self.install_prefix = install_prefix orelse "/usr";
self.install_path = self.pathJoin(&.{ dest_dir, self.install_prefix });
} else {
self.install_prefix = install_prefix orelse
(self.pathJoin(&.{ self.build_root, "zig-out" }));
self.install_path = self.install_prefix;
}
var lib_list = [_][]const u8{ self.install_path, "lib" };
var exe_list = [_][]const u8{ self.install_path, "bin" };
var h_list = [_][]const u8{ self.install_path, "include" };
if (dir_list.lib_dir) |dir| {
if (std.fs.path.isAbsolute(dir)) lib_list[0] = self.dest_dir orelse "";
lib_list[1] = dir;
}
if (dir_list.exe_dir) |dir| {
if (std.fs.path.isAbsolute(dir)) exe_list[0] = self.dest_dir orelse "";
exe_list[1] = dir;
}
if (dir_list.include_dir) |dir| {
if (std.fs.path.isAbsolute(dir)) h_list[0] = self.dest_dir orelse "";
h_list[1] = dir;
}
self.lib_dir = self.pathJoin(&lib_list);
self.exe_dir = self.pathJoin(&exe_list);
self.h_dir = self.pathJoin(&h_list);
}
fn convertOptionalPathToFileSource(path: ?[]const u8) ?FileSource {
return if (path) |p|
FileSource{ .path = p }
else
null;
}
pub fn addExecutable(self: *Builder, name: []const u8, root_src: ?[]const u8) *LibExeObjStep {
return addExecutableSource(self, name, convertOptionalPathToFileSource(root_src));
}
pub fn addExecutableSource(builder: *Builder, name: []const u8, root_src: ?FileSource) *LibExeObjStep {
return LibExeObjStep.createExecutable(builder, name, root_src);
}
pub fn addOptions(self: *Builder) *OptionsStep {
return OptionsStep.create(self);
}
pub fn addObject(self: *Builder, name: []const u8, root_src: ?[]const u8) *LibExeObjStep {
return addObjectSource(self, name, convertOptionalPathToFileSource(root_src));
}
pub fn addObjectSource(builder: *Builder, name: []const u8, root_src: ?FileSource) *LibExeObjStep {
return LibExeObjStep.createObject(builder, name, root_src);
}
pub fn addSharedLibrary(
self: *Builder,
name: []const u8,
root_src: ?[]const u8,
kind: LibExeObjStep.SharedLibKind,
) *LibExeObjStep {
return addSharedLibrarySource(self, name, convertOptionalPathToFileSource(root_src), kind);
}
pub fn addSharedLibrarySource(
self: *Builder,
name: []const u8,
root_src: ?FileSource,
kind: LibExeObjStep.SharedLibKind,
) *LibExeObjStep {
return LibExeObjStep.createSharedLibrary(self, name, root_src, kind);
}
pub fn addStaticLibrary(self: *Builder, name: []const u8, root_src: ?[]const u8) *LibExeObjStep {
return addStaticLibrarySource(self, name, convertOptionalPathToFileSource(root_src));
}
pub fn addStaticLibrarySource(self: *Builder, name: []const u8, root_src: ?FileSource) *LibExeObjStep {
return LibExeObjStep.createStaticLibrary(self, name, root_src);
}
pub fn addTest(self: *Builder, root_src: []const u8) *LibExeObjStep {
return LibExeObjStep.createTest(self, "test", .{ .path = root_src });
}
pub fn addTestSource(self: *Builder, root_src: FileSource) *LibExeObjStep {
return LibExeObjStep.createTest(self, "test", root_src.dupe(self));
}
pub fn addTestExe(self: *Builder, name: []const u8, root_src: []const u8) *LibExeObjStep {
return LibExeObjStep.createTestExe(self, name, .{ .path = root_src });
}
pub fn addTestExeSource(self: *Builder, name: []const u8, root_src: FileSource) *LibExeObjStep {
return LibExeObjStep.createTestExe(self, name, root_src.dupe(self));
}
pub fn addAssemble(self: *Builder, name: []const u8, src: []const u8) *LibExeObjStep {
return addAssembleSource(self, name, .{ .path = src });
}
pub fn addAssembleSource(self: *Builder, name: []const u8, src: FileSource) *LibExeObjStep {
const obj_step = LibExeObjStep.createObject(self, name, null);
obj_step.addAssemblyFileSource(src.dupe(self));
return obj_step;
}
/// Initializes a RunStep with argv, which must at least have the path to the
/// executable. More command line arguments can be added with `addArg`,
/// `addArgs`, and `addArtifactArg`.
/// Be careful using this function, as it introduces a system dependency.
/// To run an executable built with zig build, see `LibExeObjStep.run`.
pub fn addSystemCommand(self: *Builder, argv: []const []const u8) *RunStep {
assert(argv.len >= 1);
const run_step = RunStep.create(self, self.fmt("run {s}", .{argv[0]}));
run_step.addArgs(argv);
return run_step;
}
/// Allocator.dupe without the need to handle out of memory.
pub fn dupe(self: *Builder, bytes: []const u8) []u8 {
return self.allocator.dupe(u8, bytes) catch unreachable;
}
/// Duplicates an array of strings without the need to handle out of memory.
pub fn dupeStrings(self: *Builder, strings: []const []const u8) [][]u8 {
const array = self.allocator.alloc([]u8, strings.len) catch unreachable;
for (strings) |s, i| {
array[i] = self.dupe(s);
}
return array;
}
/// Duplicates a path and converts all slashes to the OS's canonical path separator.
pub fn dupePath(self: *Builder, bytes: []const u8) []u8 {
const the_copy = self.dupe(bytes);
for (the_copy) |*byte| {
switch (byte.*) {
'/', '\\' => byte.* = fs.path.sep,
else => {},
}
}
return the_copy;
}
/// Duplicates a package recursively.
pub fn dupePkg(self: *Builder, package: Pkg) Pkg {
var the_copy = Pkg{
.name = self.dupe(package.name),
.path = package.path.dupe(self),
};
if (package.dependencies) |dependencies| {
const new_dependencies = self.allocator.alloc(Pkg, dependencies.len) catch unreachable;
the_copy.dependencies = new_dependencies;
for (dependencies) |dep_package, i| {
new_dependencies[i] = self.dupePkg(dep_package);
}
}
return the_copy;
}
pub fn addWriteFile(self: *Builder, file_path: []const u8, data: []const u8) *WriteFileStep {
const write_file_step = self.addWriteFiles();
write_file_step.add(file_path, data);
return write_file_step;
}
pub fn addWriteFiles(self: *Builder) *WriteFileStep {
const write_file_step = self.allocator.create(WriteFileStep) catch unreachable;
write_file_step.* = WriteFileStep.init(self);
return write_file_step;
}
pub fn addLog(self: *Builder, comptime format: []const u8, args: anytype) *LogStep {
const data = self.fmt(format, args);
const log_step = self.allocator.create(LogStep) catch unreachable;
log_step.* = LogStep.init(self, data);
return log_step;
}
pub fn addRemoveDirTree(self: *Builder, dir_path: []const u8) *RemoveDirStep {
const remove_dir_step = self.allocator.create(RemoveDirStep) catch unreachable;
remove_dir_step.* = RemoveDirStep.init(self, dir_path);
return remove_dir_step;
}
pub fn addFmt(self: *Builder, paths: []const []const u8) *FmtStep {
return FmtStep.create(self, paths);
}
pub fn addTranslateC(self: *Builder, source: FileSource) *TranslateCStep {
return TranslateCStep.create(self, source.dupe(self));
}
pub fn version(self: *const Builder, major: u32, minor: u32, patch: u32) LibExeObjStep.SharedLibKind {
_ = self;
return .{
.versioned = .{
.major = major,
.minor = minor,
.patch = patch,
},
};
}
pub fn make(self: *Builder, step_names: []const []const u8) !void {
try self.makePath(self.cache_root);
var wanted_steps = ArrayList(*Step).init(self.allocator);
defer wanted_steps.deinit();
if (step_names.len == 0) {
try wanted_steps.append(self.default_step);
} else {
for (step_names) |step_name| {
const s = try self.getTopLevelStepByName(step_name);
try wanted_steps.append(s);
}
}
for (wanted_steps.items) |s| {
try self.makeOneStep(s);
}
}
pub fn getInstallStep(self: *Builder) *Step {
return &self.install_tls.step;
}
pub fn getUninstallStep(self: *Builder) *Step {
return &self.uninstall_tls.step;
}
fn makeUninstall(uninstall_step: *Step) anyerror!void {
const uninstall_tls = @fieldParentPtr(TopLevelStep, "step", uninstall_step);
const self = @fieldParentPtr(Builder, "uninstall_tls", uninstall_tls);
for (self.installed_files.items) |installed_file| {
const full_path = self.getInstallPath(installed_file.dir, installed_file.path);
if (self.verbose) {
warn("rm {s}\n", .{full_path});
}
fs.cwd().deleteTree(full_path) catch {};
}
// TODO remove empty directories
}
fn makeOneStep(self: *Builder, s: *Step) anyerror!void {
if (s.loop_flag) {
warn("Dependency loop detected:\n {s}\n", .{s.name});
return error.DependencyLoopDetected;
}
s.loop_flag = true;
for (s.dependencies.items) |dep| {
self.makeOneStep(dep) catch |err| {
if (err == error.DependencyLoopDetected) {
warn(" {s}\n", .{s.name});
}
return err;
};
}
s.loop_flag = false;
try s.make();
}
fn getTopLevelStepByName(self: *Builder, name: []const u8) !*Step {
for (self.top_level_steps.items) |top_level_step| {
if (mem.eql(u8, top_level_step.step.name, name)) {
return &top_level_step.step;
}
}
warn("Cannot run step '{s}' because it does not exist\n", .{name});
return error.InvalidStepName;
}
pub fn option(self: *Builder, comptime T: type, name_raw: []const u8, description_raw: []const u8) ?T {
const name = self.dupe(name_raw);
const description = self.dupe(description_raw);
const type_id = comptime typeToEnum(T);
const enum_options = if (type_id == .@"enum") blk: {
const fields = comptime std.meta.fields(T);
var options = ArrayList([]const u8).initCapacity(self.allocator, fields.len) catch unreachable;
inline for (fields) |field| {
options.appendAssumeCapacity(field.name);
}
break :blk options.toOwnedSlice();
} else null;
const available_option = AvailableOption{
.name = name,
.type_id = type_id,
.description = description,
.enum_options = enum_options,
};
if ((self.available_options_map.fetchPut(name, available_option) catch unreachable) != null) {
panic("Option '{s}' declared twice", .{name});
}
self.available_options_list.append(available_option) catch unreachable;
const option_ptr = self.user_input_options.getPtr(name) orelse return null;
option_ptr.used = true;
switch (type_id) {
.bool => switch (option_ptr.value) {
.flag => return true,
.scalar => |s| {
if (mem.eql(u8, s, "true")) {
return true;
} else if (mem.eql(u8, s, "false")) {
return false;
} else {
warn("Expected -D{s} to be a boolean, but received '{s}'\n\n", .{ name, s });
self.markInvalidUserInput();
return null;
}
},
.list => {
warn("Expected -D{s} to be a boolean, but received a list.\n\n", .{name});
self.markInvalidUserInput();
return null;
},
},
.int => switch (option_ptr.value) {
.flag => {
warn("Expected -D{s} to be an integer, but received a boolean.\n\n", .{name});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
const n = std.fmt.parseInt(T, s, 10) catch |err| switch (err) {
error.Overflow => {
warn("-D{s} value {s} cannot fit into type {s}.\n\n", .{ name, s, @typeName(T) });
self.markInvalidUserInput();
return null;
},
else => {
warn("Expected -D{s} to be an integer of type {s}.\n\n", .{ name, @typeName(T) });
self.markInvalidUserInput();
return null;
},
};
return n;
},
.list => {
warn("Expected -D{s} to be an integer, but received a list.\n\n", .{name});
self.markInvalidUserInput();
return null;
},
},
.float => switch (option_ptr.value) {
.flag => {
warn("Expected -D{s} to be a float, but received a boolean.\n\n", .{name});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
const n = std.fmt.parseFloat(T, s) catch {
warn("Expected -D{s} to be a float of type {s}.\n\n", .{ name, @typeName(T) });
self.markInvalidUserInput();
return null;
};
return n;
},
.list => {
warn("Expected -D{s} to be a float, but received a list.\n\n", .{name});
self.markInvalidUserInput();
return null;
},
},
.@"enum" => switch (option_ptr.value) {
.flag => {
warn("Expected -D{s} to be a string, but received a boolean.\n\n", .{name});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
if (std.meta.stringToEnum(T, s)) |enum_lit| {
return enum_lit;
} else {
warn("Expected -D{s} to be of type {s}.\n\n", .{ name, @typeName(T) });
self.markInvalidUserInput();
return null;
}
},
.list => {
warn("Expected -D{s} to be a string, but received a list.\n\n", .{name});
self.markInvalidUserInput();
return null;
},
},
.string => switch (option_ptr.value) {
.flag => {
warn("Expected -D{s} to be a string, but received a boolean.\n\n", .{name});
self.markInvalidUserInput();
return null;
},
.list => {
warn("Expected -D{s} to be a string, but received a list.\n\n", .{name});
self.markInvalidUserInput();
return null;
},
.scalar => |s| return s,
},
.list => switch (option_ptr.value) {
.flag => {
warn("Expected -D{s} to be a list, but received a boolean.\n\n", .{name});
self.markInvalidUserInput();
return null;
},
.scalar => |s| {
return self.allocator.dupe([]const u8, &[_][]const u8{s}) catch unreachable;
},
.list => |lst| return lst.items,
},
}
}
pub fn step(self: *Builder, name: []const u8, description: []const u8) *Step {
const step_info = self.allocator.create(TopLevelStep) catch unreachable;
step_info.* = TopLevelStep{
.step = Step.initNoOp(.top_level, name, self.allocator),
.description = self.dupe(description),
};
self.top_level_steps.append(step_info) catch unreachable;
return &step_info.step;
}
/// This provides the -Drelease option to the build user and does not give them the choice.
pub fn setPreferredReleaseMode(self: *Builder, mode: std.builtin.Mode) void {
if (self.release_mode != null) {
@panic("setPreferredReleaseMode must be called before standardReleaseOptions and may not be called twice");
}
const description = self.fmt("Create a release build ({s})", .{@tagName(mode)});
self.is_release = self.option(bool, "release", description) orelse false;
self.release_mode = if (self.is_release) mode else std.builtin.Mode.Debug;
}
/// If you call this without first calling `setPreferredReleaseMode` then it gives the build user
/// the choice of what kind of release.
pub fn standardReleaseOptions(self: *Builder) std.builtin.Mode {
if (self.release_mode) |mode| return mode;
const release_safe = self.option(bool, "release-safe", "Optimizations on and safety on") orelse false;
const release_fast = self.option(bool, "release-fast", "Optimizations on and safety off") orelse false;
const release_small = self.option(bool, "release-small", "Size optimizations on and safety off") orelse false;
const mode = if (release_safe and !release_fast and !release_small)
std.builtin.Mode.ReleaseSafe
else if (release_fast and !release_safe and !release_small)
std.builtin.Mode.ReleaseFast
else if (release_small and !release_fast and !release_safe)
std.builtin.Mode.ReleaseSmall
else if (!release_fast and !release_safe and !release_small)
std.builtin.Mode.Debug
else x: {
warn("Multiple release modes (of -Drelease-safe, -Drelease-fast and -Drelease-small)\n\n", .{});
self.markInvalidUserInput();
break :x std.builtin.Mode.Debug;
};
self.is_release = mode != .Debug;
self.release_mode = mode;
return mode;
}
pub const StandardTargetOptionsArgs = struct {
whitelist: ?[]const CrossTarget = null,
default_target: CrossTarget = CrossTarget{},
};
/// Exposes standard `zig build` options for choosing a target.
pub fn standardTargetOptions(self: *Builder, args: StandardTargetOptionsArgs) CrossTarget {
const maybe_triple = self.option(
[]const u8,
"target",
"The CPU architecture, OS, and ABI to build for",
);
const mcpu = self.option([]const u8, "cpu", "Target CPU features to add or subtract");
if (maybe_triple == null and mcpu == null) {
return args.default_target;
}
const triple = maybe_triple orelse "native";
var diags: CrossTarget.ParseOptions.Diagnostics = .{};
const selected_target = CrossTarget.parse(.{
.arch_os_abi = triple,
.cpu_features = mcpu,
.diagnostics = &diags,
}) catch |err| switch (err) {
error.UnknownCpuModel => {
warn("Unknown CPU: '{s}'\nAvailable CPUs for architecture '{s}':\n", .{
diags.cpu_name.?,
@tagName(diags.arch.?),
});
for (diags.arch.?.allCpuModels()) |cpu| {
warn(" {s}\n", .{cpu.name});
}
warn("\n", .{});
self.markInvalidUserInput();
return args.default_target;
},
error.UnknownCpuFeature => {
warn(
\\Unknown CPU feature: '{s}'
\\Available CPU features for architecture '{s}':
\\
, .{
diags.unknown_feature_name,
@tagName(diags.arch.?),
});
for (diags.arch.?.allFeaturesList()) |feature| {
warn(" {s}: {s}\n", .{ feature.name, feature.description });
}
warn("\n", .{});
self.markInvalidUserInput();
return args.default_target;
},
error.UnknownOperatingSystem => {
warn(
\\Unknown OS: '{s}'
\\Available operating systems:
\\
, .{diags.os_name});
inline for (std.meta.fields(std.Target.Os.Tag)) |field| {
warn(" {s}\n", .{field.name});
}
warn("\n", .{});
self.markInvalidUserInput();
return args.default_target;
},
else => |e| {
warn("Unable to parse target '{s}': {s}\n\n", .{ triple, @errorName(e) });
self.markInvalidUserInput();
return args.default_target;
},
};
const selected_canonicalized_triple = selected_target.zigTriple(self.allocator) catch unreachable;
if (args.whitelist) |list| whitelist_check: {
// Make sure it's a match of one of the list.
var mismatch_triple = true;
var mismatch_cpu_features = true;
var whitelist_item = CrossTarget{};
for (list) |t| {
mismatch_cpu_features = true;
mismatch_triple = true;
const t_triple = t.zigTriple(self.allocator) catch unreachable;
if (mem.eql(u8, t_triple, selected_canonicalized_triple)) {
mismatch_triple = false;
whitelist_item = t;
if (t.getCpuFeatures().isSuperSetOf(selected_target.getCpuFeatures())) {
mismatch_cpu_features = false;
break :whitelist_check;
} else {
break;
}
}
}
if (mismatch_triple) {
warn("Chosen target '{s}' does not match one of the supported targets:\n", .{
selected_canonicalized_triple,
});
for (list) |t| {
const t_triple = t.zigTriple(self.allocator) catch unreachable;
warn(" {s}\n", .{t_triple});
}
warn("\n", .{});
} else {
assert(mismatch_cpu_features);
const whitelist_cpu = whitelist_item.getCpu();
const selected_cpu = selected_target.getCpu();
warn("Chosen CPU model '{s}' does not match one of the supported targets:\n", .{
selected_cpu.model.name,
});
warn(" Supported feature Set: ", .{});
const all_features = whitelist_cpu.arch.allFeaturesList();
var populated_cpu_features = whitelist_cpu.model.features;
populated_cpu_features.populateDependencies(all_features);
for (all_features) |feature, i_usize| {
const i = @intCast(std.Target.Cpu.Feature.Set.Index, i_usize);
const in_cpu_set = populated_cpu_features.isEnabled(i);
if (in_cpu_set) {
warn("{s} ", .{feature.name});
}
}
warn("\n", .{});
warn(" Remove: ", .{});
for (all_features) |feature, i_usize| {
const i = @intCast(std.Target.Cpu.Feature.Set.Index, i_usize);
const in_cpu_set = populated_cpu_features.isEnabled(i);
const in_actual_set = selected_cpu.features.isEnabled(i);
if (in_actual_set and !in_cpu_set) {
warn("{s} ", .{feature.name});
}
}
warn("\n", .{});
}
self.markInvalidUserInput();
return args.default_target;
}
return selected_target;
}
pub fn addUserInputOption(self: *Builder, name_raw: []const u8, value_raw: []const u8) !bool {
const name = self.dupe(name_raw);
const value = self.dupe(value_raw);
const gop = try self.user_input_options.getOrPut(name);
if (!gop.found_existing) {
gop.value_ptr.* = UserInputOption{
.name = name,
.value = .{ .scalar = value },
.used = false,
};
return false;
}
// option already exists
switch (gop.value_ptr.value) {
.scalar => |s| {
// turn it into a list
var list = ArrayList([]const u8).init(self.allocator);
list.append(s) catch unreachable;
list.append(value) catch unreachable;
self.user_input_options.put(name, .{
.name = name,
.value = .{ .list = list },
.used = false,
}) catch unreachable;
},
.list => |*list| {
// append to the list
list.append(value) catch unreachable;
self.user_input_options.put(name, .{
.name = name,
.value = .{ .list = list.* },
.used = false,
}) catch unreachable;
},
.flag => {
warn("Option '-D{s}={s}' conflicts with flag '-D{s}'.\n", .{ name, value, name });
return true;
},
}
return false;
}
pub fn addUserInputFlag(self: *Builder, name_raw: []const u8) !bool {
const name = self.dupe(name_raw);
const gop = try self.user_input_options.getOrPut(name);
if (!gop.found_existing) {
gop.value_ptr.* = .{
.name = name,
.value = .{ .flag = {} },
.used = false,
};
return false;
}
// option already exists
switch (gop.value_ptr.value) {
.scalar => |s| {
warn("Flag '-D{s}' conflicts with option '-D{s}={s}'.\n", .{ name, name, s });
return true;
},
.list => {
warn("Flag '-D{s}' conflicts with multiple options of the same name.\n", .{name});
return true;
},
.flag => {},
}
return false;
}
fn typeToEnum(comptime T: type) TypeId {
return switch (@typeInfo(T)) {
.Int => .int,
.Float => .float,
.Bool => .bool,
.Enum => .@"enum",
else => switch (T) {
[]const u8 => .string,
[]const []const u8 => .list,
else => @compileError("Unsupported type: " ++ @typeName(T)),
},
};
}
fn markInvalidUserInput(self: *Builder) void {
self.invalid_user_input = true;
}
pub fn validateUserInputDidItFail(self: *Builder) bool {
// make sure all args are used
var it = self.user_input_options.iterator();
while (it.next()) |entry| {
if (!entry.value_ptr.used) {
warn("Invalid option: -D{s}\n\n", .{entry.key_ptr.*});
self.markInvalidUserInput();
}
}
return self.invalid_user_input;
}
pub fn spawnChild(self: *Builder, argv: []const []const u8) !void {
return self.spawnChildEnvMap(null, self.env_map, argv);
}
fn printCmd(cwd: ?[]const u8, argv: []const []const u8) void {
if (cwd) |yes_cwd| warn("cd {s} && ", .{yes_cwd});
for (argv) |arg| {
warn("{s} ", .{arg});
}
warn("\n", .{});
}
pub fn spawnChildEnvMap(self: *Builder, cwd: ?[]const u8, env_map: *const BufMap, argv: []const []const u8) !void {
if (self.verbose) {
printCmd(cwd, argv);
}
if (!std.process.can_spawn)
return error.ExecNotSupported;
const child = std.ChildProcess.init(argv, self.allocator) catch unreachable;
defer child.deinit();
child.cwd = cwd;
child.env_map = env_map;
const term = child.spawnAndWait() catch |err| {
warn("Unable to spawn {s}: {s}\n", .{ argv[0], @errorName(err) });
return err;
};
switch (term) {
.Exited => |code| {
if (code != 0) {
warn("The following command exited with error code {}:\n", .{code});
printCmd(cwd, argv);
return error.UncleanExit;
}
},
else => {
warn("The following command terminated unexpectedly:\n", .{});
printCmd(cwd, argv);
return error.UncleanExit;
},
}
}
pub fn makePath(self: *Builder, path: []const u8) !void {
fs.cwd().makePath(self.pathFromRoot(path)) catch |err| {
warn("Unable to create path {s}: {s}\n", .{ path, @errorName(err) });
return err;
};
}
pub fn installArtifact(self: *Builder, artifact: *LibExeObjStep) void {
self.getInstallStep().dependOn(&self.addInstallArtifact(artifact).step);
}
pub fn addInstallArtifact(self: *Builder, artifact: *LibExeObjStep) *InstallArtifactStep {
return InstallArtifactStep.create(self, artifact);
}
///`dest_rel_path` is relative to prefix path
pub fn installFile(self: *Builder, src_path: []const u8, dest_rel_path: []const u8) void {
self.getInstallStep().dependOn(&self.addInstallFileWithDir(.{ .path = src_path }, .prefix, dest_rel_path).step);
}
pub fn installDirectory(self: *Builder, options: InstallDirectoryOptions) void {
self.getInstallStep().dependOn(&self.addInstallDirectory(options).step);
}
///`dest_rel_path` is relative to bin path
pub fn installBinFile(self: *Builder, src_path: []const u8, dest_rel_path: []const u8) void {
self.getInstallStep().dependOn(&self.addInstallFileWithDir(.{ .path = src_path }, .bin, dest_rel_path).step);
}
///`dest_rel_path` is relative to lib path
pub fn installLibFile(self: *Builder, src_path: []const u8, dest_rel_path: []const u8) void {
self.getInstallStep().dependOn(&self.addInstallFileWithDir(.{ .path = src_path }, .lib, dest_rel_path).step);
}
/// Output format (BIN vs Intel HEX) determined by filename
pub fn installRaw(self: *Builder, artifact: *LibExeObjStep, dest_filename: []const u8, options: InstallRawStep.CreateOptions) *InstallRawStep {
const raw = self.addInstallRaw(artifact, dest_filename, options);
self.getInstallStep().dependOn(&raw.step);
return raw;
}
///`dest_rel_path` is relative to install prefix path
pub fn addInstallFile(self: *Builder, source: FileSource, dest_rel_path: []const u8) *InstallFileStep {
return self.addInstallFileWithDir(source.dupe(self), .prefix, dest_rel_path);
}
///`dest_rel_path` is relative to bin path
pub fn addInstallBinFile(self: *Builder, source: FileSource, dest_rel_path: []const u8) *InstallFileStep {
return self.addInstallFileWithDir(source.dupe(self), .bin, dest_rel_path);
}
///`dest_rel_path` is relative to lib path
pub fn addInstallLibFile(self: *Builder, source: FileSource, dest_rel_path: []const u8) *InstallFileStep {
return self.addInstallFileWithDir(source.dupe(self), .lib, dest_rel_path);
}
pub fn addInstallRaw(self: *Builder, artifact: *LibExeObjStep, dest_filename: []const u8, options: InstallRawStep.CreateOptions) *InstallRawStep {
return InstallRawStep.create(self, artifact, dest_filename, options);
}
pub fn addInstallFileWithDir(
self: *Builder,
source: FileSource,
install_dir: InstallDir,
dest_rel_path: []const u8,
) *InstallFileStep {
if (dest_rel_path.len == 0) {
panic("dest_rel_path must be non-empty", .{});
}
const install_step = self.allocator.create(InstallFileStep) catch unreachable;
install_step.* = InstallFileStep.init(self, source.dupe(self), install_dir, dest_rel_path);
return install_step;
}
pub fn addInstallDirectory(self: *Builder, options: InstallDirectoryOptions) *InstallDirStep {
const install_step = self.allocator.create(InstallDirStep) catch unreachable;
install_step.* = InstallDirStep.init(self, options);
return install_step;
}
pub fn pushInstalledFile(self: *Builder, dir: InstallDir, dest_rel_path: []const u8) void {
const file = InstalledFile{
.dir = dir,
.path = dest_rel_path,
};
self.installed_files.append(file.dupe(self)) catch unreachable;
}
pub fn updateFile(self: *Builder, source_path: []const u8, dest_path: []const u8) !void {
if (self.verbose) {
warn("cp {s} {s} ", .{ source_path, dest_path });
}
const cwd = fs.cwd();
const prev_status = try fs.Dir.updateFile(cwd, source_path, cwd, dest_path, .{});
if (self.verbose) switch (prev_status) {
.stale => warn("# installed\n", .{}),
.fresh => warn("# up-to-date\n", .{}),
};
}
pub fn truncateFile(self: *Builder, dest_path: []const u8) !void {
if (self.verbose) {
warn("truncate {s}\n", .{dest_path});
}
const cwd = fs.cwd();
var src_file = cwd.createFile(dest_path, .{}) catch |err| switch (err) {
error.FileNotFound => blk: {
if (fs.path.dirname(dest_path)) |dirname| {
try cwd.makePath(dirname);
}
break :blk try cwd.createFile(dest_path, .{});
},
else => |e| return e,
};
src_file.close();
}
pub fn pathFromRoot(self: *Builder, rel_path: []const u8) []u8 {
return fs.path.resolve(self.allocator, &[_][]const u8{ self.build_root, rel_path }) catch unreachable;
}
/// Shorthand for `std.fs.path.join(builder.allocator, paths) catch unreachable`
pub fn pathJoin(self: *Builder, paths: []const []const u8) []u8 {
return fs.path.join(self.allocator, paths) catch unreachable;
}
pub fn fmt(self: *Builder, comptime format: []const u8, args: anytype) []u8 {
return fmt_lib.allocPrint(self.allocator, format, args) catch unreachable;
}
pub fn findProgram(self: *Builder, names: []const []const u8, paths: []const []const u8) ![]const u8 {
// TODO report error for ambiguous situations
const exe_extension = @as(CrossTarget, .{}).exeFileExt();
for (self.search_prefixes.items) |search_prefix| {
for (names) |name| {
if (fs.path.isAbsolute(name)) {
return name;
}
const full_path = self.pathJoin(&.{
search_prefix,
"bin",
self.fmt("{s}{s}", .{ name, exe_extension }),
});
return fs.realpathAlloc(self.allocator, full_path) catch continue;
}
}
if (self.env_map.get("PATH")) |PATH| {
for (names) |name| {
if (fs.path.isAbsolute(name)) {
return name;
}
var it = mem.tokenize(u8, PATH, &[_]u8{fs.path.delimiter});
while (it.next()) |path| {
const full_path = self.pathJoin(&.{
path,
self.fmt("{s}{s}", .{ name, exe_extension }),
});
return fs.realpathAlloc(self.allocator, full_path) catch continue;
}
}
}
for (names) |name| {
if (fs.path.isAbsolute(name)) {
return name;
}
for (paths) |path| {
const full_path = self.pathJoin(&.{
path,
self.fmt("{s}{s}", .{ name, exe_extension }),
});
return fs.realpathAlloc(self.allocator, full_path) catch continue;
}
}
return error.FileNotFound;
}
pub fn execAllowFail(
self: *Builder,
argv: []const []const u8,
out_code: *u8,
stderr_behavior: std.ChildProcess.StdIo,
) ExecError![]u8 {
assert(argv.len != 0);
if (!std.process.can_spawn)
return error.ExecNotSupported;
const max_output_size = 400 * 1024;
const child = try std.ChildProcess.init(argv, self.allocator);
defer child.deinit();
child.stdin_behavior = .Ignore;
child.stdout_behavior = .Pipe;
child.stderr_behavior = stderr_behavior;
child.env_map = self.env_map;
try child.spawn();
const stdout = child.stdout.?.reader().readAllAlloc(self.allocator, max_output_size) catch {
return error.ReadFailure;
};
errdefer self.allocator.free(stdout);
const term = try child.wait();
switch (term) {
.Exited => |code| {
if (code != 0) {
out_code.* = @truncate(u8, code);
return error.ExitCodeFailure;
}
return stdout;
},
.Signal, .Stopped, .Unknown => |code| {
out_code.* = @truncate(u8, code);
return error.ProcessTerminated;
},
}
}
pub fn execFromStep(self: *Builder, argv: []const []const u8, src_step: ?*Step) ![]u8 {
assert(argv.len != 0);
if (self.verbose) {
printCmd(null, argv);
}
if (!std.process.can_spawn) {
if (src_step) |s| warn("{s}...", .{s.name});
warn("Unable to spawn the following command: cannot spawn child process\n", .{});
printCmd(null, argv);
std.os.abort();
}
var code: u8 = undefined;
return self.execAllowFail(argv, &code, .Inherit) catch |err| switch (err) {
error.ExecNotSupported => {
if (src_step) |s| warn("{s}...", .{s.name});
warn("Unable to spawn the following command: cannot spawn child process\n", .{});
printCmd(null, argv);
std.os.abort();
},
error.FileNotFound => {
if (src_step) |s| warn("{s}...", .{s.name});
warn("Unable to spawn the following command: file not found\n", .{});
printCmd(null, argv);
std.os.exit(@truncate(u8, code));
},
error.ExitCodeFailure => {
if (src_step) |s| warn("{s}...", .{s.name});
if (self.prominent_compile_errors) {
warn("The step exited with error code {d}\n", .{code});
} else {
warn("The following command exited with error code {d}:\n", .{code});
printCmd(null, argv);
}
std.os.exit(@truncate(u8, code));
},
error.ProcessTerminated => {
if (src_step) |s| warn("{s}...", .{s.name});
warn("The following command terminated unexpectedly:\n", .{});
printCmd(null, argv);
std.os.exit(@truncate(u8, code));
},
else => |e| return e,
};
}
pub fn exec(self: *Builder, argv: []const []const u8) ![]u8 {
return self.execFromStep(argv, null);
}
pub fn addSearchPrefix(self: *Builder, search_prefix: []const u8) void {
self.search_prefixes.append(self.dupePath(search_prefix)) catch unreachable;
}
pub fn getInstallPath(self: *Builder, dir: InstallDir, dest_rel_path: []const u8) []const u8 {
assert(!fs.path.isAbsolute(dest_rel_path)); // Install paths must be relative to the prefix
const base_dir = switch (dir) {
.prefix => self.install_path,
.bin => self.exe_dir,
.lib => self.lib_dir,
.header => self.h_dir,
.custom => |path| self.pathJoin(&.{ self.install_path, path }),
};
return fs.path.resolve(
self.allocator,
&[_][]const u8{ base_dir, dest_rel_path },
) catch unreachable;
}
fn execPkgConfigList(self: *Builder, out_code: *u8) (PkgConfigError || ExecError)![]const PkgConfigPkg {
const stdout = try self.execAllowFail(&[_][]const u8{ "pkg-config", "--list-all" }, out_code, .Ignore);
var list = ArrayList(PkgConfigPkg).init(self.allocator);
errdefer list.deinit();
var line_it = mem.tokenize(u8, stdout, "\r\n");
while (line_it.next()) |line| {
if (mem.trim(u8, line, " \t").len == 0) continue;
var tok_it = mem.tokenize(u8, line, " \t");
try list.append(PkgConfigPkg{
.name = tok_it.next() orelse return error.PkgConfigInvalidOutput,
.desc = tok_it.rest(),
});
}
return list.toOwnedSlice();
}
fn getPkgConfigList(self: *Builder) ![]const PkgConfigPkg {
if (self.pkg_config_pkg_list) |res| {
return res;
}
var code: u8 = undefined;
if (self.execPkgConfigList(&code)) |list| {
self.pkg_config_pkg_list = list;
return list;
} else |err| {
const result = switch (err) {
error.ProcessTerminated => error.PkgConfigCrashed,
error.ExecNotSupported => error.PkgConfigFailed,
error.ExitCodeFailure => error.PkgConfigFailed,
error.FileNotFound => error.PkgConfigNotInstalled,
error.InvalidName => error.PkgConfigNotInstalled,
error.PkgConfigInvalidOutput => error.PkgConfigInvalidOutput,
error.ChildExecFailed => error.PkgConfigFailed,
else => return err,
};
self.pkg_config_pkg_list = result;
return result;
}
}
};
test "builder.findProgram compiles" {
if (builtin.os.tag == .wasi) return error.SkipZigTest;
var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
defer arena.deinit();
const builder = try Builder.create(
arena.allocator(),
"zig",
"zig-cache",
"zig-cache",
"zig-cache",
);
defer builder.destroy();
_ = builder.findProgram(&[_][]const u8{}, &[_][]const u8{}) catch null;
}
/// TODO: propose some kind of `@deprecate` builtin so that we can deprecate
/// this while still having somewhat non-lazy decls. In this file we wanted to do
/// refAllDecls for example which makes it trigger `@compileError` if you try
/// to use that strategy.
pub const Version = @compileError("deprecated; Use `std.builtin.Version`");
pub const Target = @compileError("deprecated; Use `std.zig.CrossTarget`");
pub const Pkg = struct {
name: []const u8,
path: FileSource,
dependencies: ?[]const Pkg = null,
};
pub const CSourceFile = struct {
source: FileSource,
args: []const []const u8,
fn dupe(self: CSourceFile, b: *Builder) CSourceFile {
return .{
.source = self.source.dupe(b),
.args = b.dupeStrings(self.args),
};
}
};
const CSourceFiles = struct {
files: []const []const u8,
flags: []const []const u8,
};
fn isLibCLibrary(name: []const u8) bool {
const libc_libraries = [_][]const u8{ "c", "m", "dl", "rt", "pthread" };
for (libc_libraries) |libc_lib_name| {
if (mem.eql(u8, name, libc_lib_name))
return true;
}
return false;
}
fn isLibCppLibrary(name: []const u8) bool {
const libcpp_libraries = [_][]const u8{ "c++", "stdc++" };
for (libcpp_libraries) |libcpp_lib_name| {
if (mem.eql(u8, name, libcpp_lib_name))
return true;
}
return false;
}
/// A file that is generated by a build step.
/// This struct is an interface that is meant to be used with `@fieldParentPtr` to implement the actual path logic.
pub const GeneratedFile = struct {
/// The step that generates the file
step: *Step,
/// The path to the generated file. Must be either absolute or relative to the build root.
/// This value must be set in the `fn make()` of the `step` and must not be `null` afterwards.
path: ?[]const u8 = null,
pub fn getPath(self: GeneratedFile) []const u8 {
return self.path orelse std.debug.panic(
"getPath() was called on a GeneratedFile that wasn't build yet. Is there a missing Step dependency on step '{s}'?",
.{self.step.name},
);
}
};
/// A file source is a reference to an existing or future file.
///
pub const FileSource = union(enum) {
/// A plain file path, relative to build root or absolute.
path: []const u8,
/// A file that is generated by an interface. Those files usually are
/// not available until built by a build step.
generated: *const GeneratedFile,
/// Returns a new file source that will have a relative path to the build root guaranteed.
/// This should be preferred over setting `.path` directly as it documents that the files are in the project directory.
pub fn relative(path: []const u8) FileSource {
std.debug.assert(!std.fs.path.isAbsolute(path));
return FileSource{ .path = path };
}
/// Returns a string that can be shown to represent the file source.
/// Either returns the path or `"generated"`.
pub fn getDisplayName(self: FileSource) []const u8 {
return switch (self) {
.path => self.path,
.generated => "generated",
};
}
/// Adds dependencies this file source implies to the given step.
pub fn addStepDependencies(self: FileSource, step: *Step) void {
switch (self) {
.path => {},
.generated => |gen| step.dependOn(gen.step),
}
}
/// Should only be called during make(), returns a path relative to the build root or absolute.
pub fn getPath(self: FileSource, builder: *Builder) []const u8 {
const path = switch (self) {
.path => |p| builder.pathFromRoot(p),
.generated => |gen| gen.getPath(),
};
return path;
}
/// Duplicates the file source for a given builder.
pub fn dupe(self: FileSource, b: *Builder) FileSource {
return switch (self) {
.path => |p| .{ .path = b.dupePath(p) },
.generated => |gen| .{ .generated = gen },
};
}
};
pub const LibExeObjStep = struct {
pub const base_id = .lib_exe_obj;
step: Step,
builder: *Builder,
name: []const u8,
target: CrossTarget = CrossTarget{},
target_info: NativeTargetInfo,
linker_script: ?FileSource = null,
version_script: ?[]const u8 = null,
out_filename: []const u8,
linkage: ?Linkage = null,
version: ?std.builtin.Version,
build_mode: std.builtin.Mode,
kind: Kind,
major_only_filename: ?[]const u8,
name_only_filename: ?[]const u8,
strip: bool,
lib_paths: ArrayList([]const u8),
rpaths: ArrayList([]const u8),
framework_dirs: ArrayList([]const u8),
frameworks: BufSet,
verbose_link: bool,
verbose_cc: bool,
emit_analysis: EmitOption = .default,
emit_asm: EmitOption = .default,
emit_bin: EmitOption = .default,
emit_docs: EmitOption = .default,
emit_implib: EmitOption = .default,
emit_llvm_bc: EmitOption = .default,
emit_llvm_ir: EmitOption = .default,
// Lots of things depend on emit_h having a consistent path,
// so it is not an EmitOption for now.
emit_h: bool = false,
bundle_compiler_rt: ?bool = null,
single_threaded: ?bool = null,
disable_stack_probing: bool,
disable_sanitize_c: bool,
sanitize_thread: bool,
rdynamic: bool,
import_memory: bool = false,
import_table: bool = false,
export_table: bool = false,
initial_memory: ?u64 = null,
max_memory: ?u64 = null,
shared_memory: bool = false,
global_base: ?u64 = null,
c_std: Builder.CStd,
override_lib_dir: ?[]const u8,
main_pkg_path: ?[]const u8,
exec_cmd_args: ?[]const ?[]const u8,
name_prefix: []const u8,
filter: ?[]const u8,
test_evented_io: bool = false,
code_model: std.builtin.CodeModel = .default,
wasi_exec_model: ?std.builtin.WasiExecModel = null,
/// Symbols to be exported when compiling to wasm
export_symbol_names: []const []const u8 = &.{},
root_src: ?FileSource,
out_h_filename: []const u8,
out_lib_filename: []const u8,
out_pdb_filename: []const u8,
packages: ArrayList(Pkg),
object_src: []const u8,
link_objects: ArrayList(LinkObject),
include_dirs: ArrayList(IncludeDir),
c_macros: ArrayList([]const u8),
output_dir: ?[]const u8,
is_linking_libc: bool = false,
is_linking_libcpp: bool = false,
vcpkg_bin_path: ?[]const u8 = null,
/// This may be set in order to override the default install directory
override_dest_dir: ?InstallDir,
installed_path: ?[]const u8,
install_step: ?*InstallArtifactStep,
/// Base address for an executable image.
image_base: ?u64 = null,
libc_file: ?FileSource = null,
valgrind_support: ?bool = null,
each_lib_rpath: ?bool = null,
/// Create a .eh_frame_hdr section and a PT_GNU_EH_FRAME segment in the ELF
/// file.
link_eh_frame_hdr: bool = false,
link_emit_relocs: bool = false,
/// Place every function in its own section so that unused ones may be
/// safely garbage-collected during the linking phase.
link_function_sections: bool = false,
linker_allow_shlib_undefined: ?bool = null,
/// Permit read-only relocations in read-only segments. Disallowed by default.
link_z_notext: bool = false,
/// (Darwin) Install name for the dylib
install_name: ?[]const u8 = null,
/// (Darwin) Path to entitlements file
entitlements: ?[]const u8 = null,
/// Position Independent Code
force_pic: ?bool = null,
/// Position Independent Executable
pie: ?bool = null,
red_zone: ?bool = null,
omit_frame_pointer: ?bool = null,
subsystem: ?std.Target.SubSystem = null,
entry_symbol_name: ?[]const u8 = null,
/// Overrides the default stack size
stack_size: ?u64 = null,
want_lto: ?bool = null,
output_path_source: GeneratedFile,
output_lib_path_source: GeneratedFile,
output_h_path_source: GeneratedFile,
output_pdb_path_source: GeneratedFile,
pub const LinkObject = union(enum) {
static_path: FileSource,
other_step: *LibExeObjStep,
system_lib: []const u8,
assembly_file: FileSource,
c_source_file: *CSourceFile,
c_source_files: *CSourceFiles,
};
pub const IncludeDir = union(enum) {
raw_path: []const u8,
raw_path_system: []const u8,
other_step: *LibExeObjStep,
};
pub const Kind = enum {
exe,
lib,
obj,
@"test",
test_exe,
};
pub const SharedLibKind = union(enum) {
versioned: std.builtin.Version,
unversioned: void,
};
pub const Linkage = enum { dynamic, static };
pub const EmitOption = union(enum) {
default: void,
no_emit: void,
emit: void,
emit_to: []const u8,
fn getArg(self: @This(), b: *Builder, arg_name: []const u8) ?[]const u8 {
return switch (self) {
.no_emit => b.fmt("-fno-{s}", .{arg_name}),
.default => null,
.emit => b.fmt("-f{s}", .{arg_name}),
.emit_to => |path| b.fmt("-f{s}={s}", .{ arg_name, path }),
};
}
};
pub fn createSharedLibrary(builder: *Builder, name: []const u8, root_src: ?FileSource, kind: SharedLibKind) *LibExeObjStep {
return initExtraArgs(builder, name, root_src, .lib, .dynamic, switch (kind) {
.versioned => |ver| ver,
.unversioned => null,
});
}
pub fn createStaticLibrary(builder: *Builder, name: []const u8, root_src: ?FileSource) *LibExeObjStep {
return initExtraArgs(builder, name, root_src, .lib, .static, null);
}
pub fn createObject(builder: *Builder, name: []const u8, root_src: ?FileSource) *LibExeObjStep {
return initExtraArgs(builder, name, root_src, .obj, null, null);
}
pub fn createExecutable(builder: *Builder, name: []const u8, root_src: ?FileSource) *LibExeObjStep {
return initExtraArgs(builder, name, root_src, .exe, null, null);
}
pub fn createTest(builder: *Builder, name: []const u8, root_src: FileSource) *LibExeObjStep {
return initExtraArgs(builder, name, root_src, .@"test", null, null);
}
pub fn createTestExe(builder: *Builder, name: []const u8, root_src: FileSource) *LibExeObjStep {
return initExtraArgs(builder, name, root_src, .test_exe, null, null);
}
fn initExtraArgs(
builder: *Builder,
name_raw: []const u8,
root_src_raw: ?FileSource,
kind: Kind,
linkage: ?Linkage,
ver: ?std.builtin.Version,
) *LibExeObjStep {
const name = builder.dupe(name_raw);
const root_src: ?FileSource = if (root_src_raw) |rsrc| rsrc.dupe(builder) else null;
if (mem.indexOf(u8, name, "/") != null or mem.indexOf(u8, name, "\\") != null) {
panic("invalid name: '{s}'. It looks like a file path, but it is supposed to be the library or application name.", .{name});
}
const self = builder.allocator.create(LibExeObjStep) catch unreachable;
self.* = LibExeObjStep{
.strip = false,
.builder = builder,
.verbose_link = false,
.verbose_cc = false,
.build_mode = std.builtin.Mode.Debug,
.linkage = linkage,
.kind = kind,
.root_src = root_src,
.name = name,
.frameworks = BufSet.init(builder.allocator),
.step = Step.init(base_id, name, builder.allocator, make),
.version = ver,
.out_filename = undefined,
.out_h_filename = builder.fmt("{s}.h", .{name}),
.out_lib_filename = undefined,
.out_pdb_filename = builder.fmt("{s}.pdb", .{name}),
.major_only_filename = null,
.name_only_filename = null,
.packages = ArrayList(Pkg).init(builder.allocator),
.include_dirs = ArrayList(IncludeDir).init(builder.allocator),
.link_objects = ArrayList(LinkObject).init(builder.allocator),
.c_macros = ArrayList([]const u8).init(builder.allocator),
.lib_paths = ArrayList([]const u8).init(builder.allocator),
.rpaths = ArrayList([]const u8).init(builder.allocator),
.framework_dirs = ArrayList([]const u8).init(builder.allocator),
.object_src = undefined,
.c_std = Builder.CStd.C99,
.override_lib_dir = null,
.main_pkg_path = null,
.exec_cmd_args = null,
.name_prefix = "",
.filter = null,
.disable_stack_probing = false,
.disable_sanitize_c = false,
.sanitize_thread = false,
.rdynamic = false,
.output_dir = null,
.override_dest_dir = null,
.installed_path = null,
.install_step = null,
.output_path_source = GeneratedFile{ .step = &self.step },
.output_lib_path_source = GeneratedFile{ .step = &self.step },
.output_h_path_source = GeneratedFile{ .step = &self.step },
.output_pdb_path_source = GeneratedFile{ .step = &self.step },
.target_info = undefined, // populated in computeOutFileNames
};
self.computeOutFileNames();
if (root_src) |rs| rs.addStepDependencies(&self.step);
return self;
}
fn computeOutFileNames(self: *LibExeObjStep) void {
self.target_info = NativeTargetInfo.detect(self.builder.allocator, self.target) catch
unreachable;
const target = self.target_info.target;
self.out_filename = std.zig.binNameAlloc(self.builder.allocator, .{
.root_name = self.name,
.target = target,
.output_mode = switch (self.kind) {
.lib => .Lib,
.obj => .Obj,
.exe, .@"test", .test_exe => .Exe,
},
.link_mode = if (self.linkage) |some| @as(std.builtin.LinkMode, switch (some) {
.dynamic => .Dynamic,
.static => .Static,
}) else null,
.version = self.version,
}) catch unreachable;
if (self.kind == .lib) {
if (self.linkage != null and self.linkage.? == .static) {
self.out_lib_filename = self.out_filename;
} else if (self.version) |version| {
if (target.isDarwin()) {
self.major_only_filename = self.builder.fmt("lib{s}.{d}.dylib", .{
self.name,
version.major,
});
self.name_only_filename = self.builder.fmt("lib{s}.dylib", .{self.name});
self.out_lib_filename = self.out_filename;
} else if (target.os.tag == .windows) {
self.out_lib_filename = self.builder.fmt("{s}.lib", .{self.name});
} else {
self.major_only_filename = self.builder.fmt("lib{s}.so.{d}", .{ self.name, version.major });
self.name_only_filename = self.builder.fmt("lib{s}.so", .{self.name});
self.out_lib_filename = self.out_filename;
}
} else {
if (target.isDarwin()) {
self.out_lib_filename = self.out_filename;
} else if (target.os.tag == .windows) {
self.out_lib_filename = self.builder.fmt("{s}.lib", .{self.name});
} else {
self.out_lib_filename = self.out_filename;
}
}
if (self.output_dir != null) {
self.output_lib_path_source.path = self.builder.pathJoin(
&.{ self.output_dir.?, self.out_lib_filename },
);
}
}
}
pub fn setTarget(self: *LibExeObjStep, target: CrossTarget) void {
self.target = target;
self.computeOutFileNames();
}
pub fn setOutputDir(self: *LibExeObjStep, dir: []const u8) void {
self.output_dir = self.builder.dupePath(dir);
}
pub fn install(self: *LibExeObjStep) void {
self.builder.installArtifact(self);
}
pub fn installRaw(self: *LibExeObjStep, dest_filename: []const u8, options: InstallRawStep.CreateOptions) *InstallRawStep {
return self.builder.installRaw(self, dest_filename, options);
}
/// Creates a `RunStep` with an executable built with `addExecutable`.
/// Add command line arguments with `addArg`.
pub fn run(exe: *LibExeObjStep) *RunStep {
assert(exe.kind == .exe or exe.kind == .test_exe);
// It doesn't have to be native. We catch that if you actually try to run it.
// Consider that this is declarative; the run step may not be run unless a user
// option is supplied.
const run_step = RunStep.create(exe.builder, exe.builder.fmt("run {s}", .{exe.step.name}));
run_step.addArtifactArg(exe);
if (exe.kind == .test_exe) {
run_step.addArg(exe.builder.zig_exe);
}
if (exe.vcpkg_bin_path) |path| {
run_step.addPathDir(path);
}
return run_step;
}
pub fn setLinkerScriptPath(self: *LibExeObjStep, source: FileSource) void {
self.linker_script = source.dupe(self.builder);
source.addStepDependencies(&self.step);
}
pub fn linkFramework(self: *LibExeObjStep, framework_name: []const u8) void {
// Note: No need to dupe because frameworks dupes internally.
self.frameworks.insert(framework_name) catch unreachable;
}
/// Returns whether the library, executable, or object depends on a particular system library.
pub fn dependsOnSystemLibrary(self: LibExeObjStep, name: []const u8) bool {
if (isLibCLibrary(name)) {
return self.is_linking_libc;
}
if (isLibCppLibrary(name)) {
return self.is_linking_libcpp;
}
for (self.link_objects.items) |link_object| {
switch (link_object) {
.system_lib => |n| if (mem.eql(u8, n, name)) return true,
else => continue,
}
}
return false;
}
pub fn linkLibrary(self: *LibExeObjStep, lib: *LibExeObjStep) void {
assert(lib.kind == .lib);
self.linkLibraryOrObject(lib);
}
pub fn isDynamicLibrary(self: *LibExeObjStep) bool {
return self.kind == .lib and self.linkage != null and self.linkage.? == .dynamic;
}
pub fn producesPdbFile(self: *LibExeObjStep) bool {
if (!self.target.isWindows() and !self.target.isUefi()) return false;
if (self.strip) return false;
return self.isDynamicLibrary() or self.kind == .exe or self.kind == .test_exe;
}
pub fn linkLibC(self: *LibExeObjStep) void {
if (!self.is_linking_libc) {
self.is_linking_libc = true;
self.link_objects.append(.{ .system_lib = "c" }) catch unreachable;
}
}
pub fn linkLibCpp(self: *LibExeObjStep) void {
if (!self.is_linking_libcpp) {
self.is_linking_libcpp = true;
self.link_objects.append(.{ .system_lib = "c++" }) catch unreachable;
}
}
/// If the value is omitted, it is set to 1.
/// `name` and `value` need not live longer than the function call.
pub fn defineCMacro(self: *LibExeObjStep, name: []const u8, value: ?[]const u8) void {
const macro = constructCMacro(self.builder.allocator, name, value);
self.c_macros.append(macro) catch unreachable;
}
/// name_and_value looks like [name]=[value]. If the value is omitted, it is set to 1.
pub fn defineCMacroRaw(self: *LibExeObjStep, name_and_value: []const u8) void {
self.c_macros.append(self.builder.dupe(name_and_value)) catch unreachable;
}
/// This one has no integration with anything, it just puts -lname on the command line.
/// Prefer to use `linkSystemLibrary` instead.
pub fn linkSystemLibraryName(self: *LibExeObjStep, name: []const u8) void {
self.link_objects.append(.{ .system_lib = self.builder.dupe(name) }) catch unreachable;
}
/// This links against a system library, exclusively using pkg-config to find the library.
/// Prefer to use `linkSystemLibrary` instead.
pub fn linkSystemLibraryPkgConfigOnly(self: *LibExeObjStep, lib_name: []const u8) !void {
const pkg_name = match: {
// First we have to map the library name to pkg config name. Unfortunately,
// there are several examples where this is not straightforward:
// -lSDL2 -> pkg-config sdl2
// -lgdk-3 -> pkg-config gdk-3.0
// -latk-1.0 -> pkg-config atk
const pkgs = try self.builder.getPkgConfigList();
// Exact match means instant winner.
for (pkgs) |pkg| {
if (mem.eql(u8, pkg.name, lib_name)) {
break :match pkg.name;
}
}
// Next we'll try ignoring case.
for (pkgs) |pkg| {
if (std.ascii.eqlIgnoreCase(pkg.name, lib_name)) {
break :match pkg.name;
}
}
// Now try appending ".0".
for (pkgs) |pkg| {
if (std.ascii.indexOfIgnoreCase(pkg.name, lib_name)) |pos| {
if (pos != 0) continue;
if (mem.eql(u8, pkg.name[lib_name.len..], ".0")) {
break :match pkg.name;
}
}
}
// Trimming "-1.0".
if (mem.endsWith(u8, lib_name, "-1.0")) {
const trimmed_lib_name = lib_name[0 .. lib_name.len - "-1.0".len];
for (pkgs) |pkg| {
if (std.ascii.eqlIgnoreCase(pkg.name, trimmed_lib_name)) {
break :match pkg.name;
}
}
}
return error.PackageNotFound;
};
var code: u8 = undefined;
const stdout = if (self.builder.execAllowFail(&[_][]const u8{
"pkg-config",
pkg_name,
"--cflags",
"--libs",
}, &code, .Ignore)) |stdout| stdout else |err| switch (err) {
error.ProcessTerminated => return error.PkgConfigCrashed,
error.ExecNotSupported => return error.PkgConfigFailed,
error.ExitCodeFailure => return error.PkgConfigFailed,
error.FileNotFound => return error.PkgConfigNotInstalled,
error.ChildExecFailed => return error.PkgConfigFailed,
else => return err,
};
var it = mem.tokenize(u8, stdout, " \r\n\t");
while (it.next()) |tok| {
if (mem.eql(u8, tok, "-I")) {
const dir = it.next() orelse return error.PkgConfigInvalidOutput;
self.addIncludePath(dir);
} else if (mem.startsWith(u8, tok, "-I")) {
self.addIncludePath(tok["-I".len..]);
} else if (mem.eql(u8, tok, "-L")) {
const dir = it.next() orelse return error.PkgConfigInvalidOutput;
self.addLibraryPath(dir);
} else if (mem.startsWith(u8, tok, "-L")) {
self.addLibraryPath(tok["-L".len..]);
} else if (mem.eql(u8, tok, "-l")) {
const lib = it.next() orelse return error.PkgConfigInvalidOutput;
self.linkSystemLibraryName(lib);
} else if (mem.startsWith(u8, tok, "-l")) {
self.linkSystemLibraryName(tok["-l".len..]);
} else if (mem.eql(u8, tok, "-D")) {
const macro = it.next() orelse return error.PkgConfigInvalidOutput;
self.defineCMacroRaw(macro);
} else if (mem.startsWith(u8, tok, "-D")) {
self.defineCMacroRaw(tok["-D".len..]);
} else if (mem.eql(u8, tok, "-pthread")) {
self.linkLibC();
} else if (self.builder.verbose) {
warn("Ignoring pkg-config flag '{s}'\n", .{tok});
}
}
}
pub fn linkSystemLibrary(self: *LibExeObjStep, name: []const u8) void {
if (isLibCLibrary(name)) {
self.linkLibC();
return;
}
if (isLibCppLibrary(name)) {
self.linkLibCpp();
return;
}
if (self.linkSystemLibraryPkgConfigOnly(name)) |_| {
// pkg-config worked, so nothing further needed to do.
return;
} else |err| switch (err) {
error.PkgConfigInvalidOutput,
error.PkgConfigCrashed,
error.PkgConfigFailed,
error.PkgConfigNotInstalled,
error.PackageNotFound,
=> {},
else => unreachable,
}
self.linkSystemLibraryName(name);
}
pub fn setNamePrefix(self: *LibExeObjStep, text: []const u8) void {
assert(self.kind == .@"test" or self.kind == .test_exe);
self.name_prefix = self.builder.dupe(text);
}
pub fn setFilter(self: *LibExeObjStep, text: ?[]const u8) void {
assert(self.kind == .@"test" or self.kind == .test_exe);
self.filter = if (text) |t| self.builder.dupe(t) else null;
}
/// Handy when you have many C/C++ source files and want them all to have the same flags.
pub fn addCSourceFiles(self: *LibExeObjStep, files: []const []const u8, flags: []const []const u8) void {
const c_source_files = self.builder.allocator.create(CSourceFiles) catch unreachable;
const files_copy = self.builder.dupeStrings(files);
const flags_copy = self.builder.dupeStrings(flags);
c_source_files.* = .{
.files = files_copy,
.flags = flags_copy,
};
self.link_objects.append(.{ .c_source_files = c_source_files }) catch unreachable;
}
pub fn addCSourceFile(self: *LibExeObjStep, file: []const u8, flags: []const []const u8) void {
self.addCSourceFileSource(.{
.args = flags,
.source = .{ .path = file },
});
}
pub fn addCSourceFileSource(self: *LibExeObjStep, source: CSourceFile) void {
const c_source_file = self.builder.allocator.create(CSourceFile) catch unreachable;
c_source_file.* = source.dupe(self.builder);
self.link_objects.append(.{ .c_source_file = c_source_file }) catch unreachable;
source.source.addStepDependencies(&self.step);
}
pub fn setVerboseLink(self: *LibExeObjStep, value: bool) void {
self.verbose_link = value;
}
pub fn setVerboseCC(self: *LibExeObjStep, value: bool) void {
self.verbose_cc = value;
}
pub fn setBuildMode(self: *LibExeObjStep, mode: std.builtin.Mode) void {
self.build_mode = mode;
}
pub fn overrideZigLibDir(self: *LibExeObjStep, dir_path: []const u8) void {
self.override_lib_dir = self.builder.dupePath(dir_path);
}
pub fn setMainPkgPath(self: *LibExeObjStep, dir_path: []const u8) void {
self.main_pkg_path = self.builder.dupePath(dir_path);
}
pub fn setLibCFile(self: *LibExeObjStep, libc_file: ?FileSource) void {
self.libc_file = if (libc_file) |f| f.dupe(self.builder) else null;
}
/// Returns the generated executable, library or object file.
/// To run an executable built with zig build, use `run`, or create an install step and invoke it.
pub fn getOutputSource(self: *LibExeObjStep) FileSource {
return FileSource{ .generated = &self.output_path_source };
}
/// Returns the generated import library. This function can only be called for libraries.
pub fn getOutputLibSource(self: *LibExeObjStep) FileSource {
assert(self.kind == .lib);
return FileSource{ .generated = &self.output_lib_path_source };
}
/// Returns the generated header file.
/// This function can only be called for libraries or object files which have `emit_h` set.
pub fn getOutputHSource(self: *LibExeObjStep) FileSource {
assert(self.kind != .exe and self.kind != .test_exe and self.kind != .@"test");
assert(self.emit_h);
return FileSource{ .generated = &self.output_h_path_source };
}
/// Returns the generated PDB file. This function can only be called for Windows and UEFI.
pub fn getOutputPdbSource(self: *LibExeObjStep) FileSource {
// TODO: Is this right? Isn't PDB for *any* PE/COFF file?
assert(self.target.isWindows() or self.target.isUefi());
return FileSource{ .generated = &self.output_pdb_path_source };
}
pub fn addAssemblyFile(self: *LibExeObjStep, path: []const u8) void {
self.link_objects.append(.{
.assembly_file = .{ .path = self.builder.dupe(path) },
}) catch unreachable;
}
pub fn addAssemblyFileSource(self: *LibExeObjStep, source: FileSource) void {
const source_duped = source.dupe(self.builder);
self.link_objects.append(.{ .assembly_file = source_duped }) catch unreachable;
source_duped.addStepDependencies(&self.step);
}
pub fn addObjectFile(self: *LibExeObjStep, source_file: []const u8) void {
self.addObjectFileSource(.{ .path = source_file });
}
pub fn addObjectFileSource(self: *LibExeObjStep, source: FileSource) void {
self.link_objects.append(.{ .static_path = source.dupe(self.builder) }) catch unreachable;
source.addStepDependencies(&self.step);
}
pub fn addObject(self: *LibExeObjStep, obj: *LibExeObjStep) void {
assert(obj.kind == .obj);
self.linkLibraryOrObject(obj);
}
/// TODO deprecated, use `addSystemIncludePath`.
pub fn addSystemIncludeDir(self: *LibExeObjStep, path: []const u8) void {
self.addSystemIncludePath(path);
}
pub fn addSystemIncludePath(self: *LibExeObjStep, path: []const u8) void {
self.include_dirs.append(IncludeDir{ .raw_path_system = self.builder.dupe(path) }) catch unreachable;
}
/// TODO deprecated, use `addIncludePath`.
pub fn addIncludeDir(self: *LibExeObjStep, path: []const u8) void {
self.addIncludePath(path);
}
pub fn addIncludePath(self: *LibExeObjStep, path: []const u8) void {
self.include_dirs.append(IncludeDir{ .raw_path = self.builder.dupe(path) }) catch unreachable;
}
/// TODO deprecated, use `addLibraryPath`.
pub fn addLibPath(self: *LibExeObjStep, path: []const u8) void {
self.addLibraryPath(path);
}
pub fn addLibraryPath(self: *LibExeObjStep, path: []const u8) void {
self.lib_paths.append(self.builder.dupe(path)) catch unreachable;
}
pub fn addRPath(self: *LibExeObjStep, path: []const u8) void {
self.rpaths.append(self.builder.dupe(path)) catch unreachable;
}
/// TODO deprecated, use `addFrameworkPath`.
pub fn addFrameworkDir(self: *LibExeObjStep, dir_path: []const u8) void {
self.addFrameworkPath(dir_path);
}
pub fn addFrameworkPath(self: *LibExeObjStep, dir_path: []const u8) void {
self.framework_dirs.append(self.builder.dupe(dir_path)) catch unreachable;
}
pub fn addPackage(self: *LibExeObjStep, package: Pkg) void {
self.packages.append(self.builder.dupePkg(package)) catch unreachable;
self.addRecursiveBuildDeps(package);
}
pub fn addOptions(self: *LibExeObjStep, package_name: []const u8, options: *OptionsStep) void {
self.addPackage(options.getPackage(package_name));
}
fn addRecursiveBuildDeps(self: *LibExeObjStep, package: Pkg) void {
package.path.addStepDependencies(&self.step);
if (package.dependencies) |deps| {
for (deps) |dep| {
self.addRecursiveBuildDeps(dep);
}
}
}
pub fn addPackagePath(self: *LibExeObjStep, name: []const u8, pkg_index_path: []const u8) void {
self.addPackage(Pkg{
.name = self.builder.dupe(name),
.path = .{ .path = self.builder.dupe(pkg_index_path) },
});
}
/// If Vcpkg was found on the system, it will be added to include and lib
/// paths for the specified target.
pub fn addVcpkgPaths(self: *LibExeObjStep, linkage: LibExeObjStep.Linkage) !void {
// Ideally in the Unattempted case we would call the function recursively
// after findVcpkgRoot and have only one switch statement, but the compiler
// cannot resolve the error set.
switch (self.builder.vcpkg_root) {
.unattempted => {
self.builder.vcpkg_root = if (try findVcpkgRoot(self.builder.allocator)) |root|
VcpkgRoot{ .found = root }
else
.not_found;
},
.not_found => return error.VcpkgNotFound,
.found => {},
}
switch (self.builder.vcpkg_root) {
.unattempted => unreachable,
.not_found => return error.VcpkgNotFound,
.found => |root| {
const allocator = self.builder.allocator;
const triplet = try self.target.vcpkgTriplet(allocator, if (linkage == .static) .Static else .Dynamic);
defer self.builder.allocator.free(triplet);
const include_path = self.builder.pathJoin(&.{ root, "installed", triplet, "include" });
errdefer allocator.free(include_path);
try self.include_dirs.append(IncludeDir{ .raw_path = include_path });
const lib_path = self.builder.pathJoin(&.{ root, "installed", triplet, "lib" });
try self.lib_paths.append(lib_path);
self.vcpkg_bin_path = self.builder.pathJoin(&.{ root, "installed", triplet, "bin" });
},
}
}
pub fn setExecCmd(self: *LibExeObjStep, args: []const ?[]const u8) void {
assert(self.kind == .@"test");
const duped_args = self.builder.allocator.alloc(?[]u8, args.len) catch unreachable;
for (args) |arg, i| {
duped_args[i] = if (arg) |a| self.builder.dupe(a) else null;
}
self.exec_cmd_args = duped_args;
}
fn linkLibraryOrObject(self: *LibExeObjStep, other: *LibExeObjStep) void {
self.step.dependOn(&other.step);
self.link_objects.append(.{ .other_step = other }) catch unreachable;
self.include_dirs.append(.{ .other_step = other }) catch unreachable;
}
fn makePackageCmd(self: *LibExeObjStep, pkg: Pkg, zig_args: *ArrayList([]const u8)) error{OutOfMemory}!void {
const builder = self.builder;
try zig_args.append("--pkg-begin");
try zig_args.append(pkg.name);
try zig_args.append(builder.pathFromRoot(pkg.path.getPath(self.builder)));
if (pkg.dependencies) |dependencies| {
for (dependencies) |sub_pkg| {
try self.makePackageCmd(sub_pkg, zig_args);
}
}
try zig_args.append("--pkg-end");
}
fn make(step: *Step) !void {
const self = @fieldParentPtr(LibExeObjStep, "step", step);
const builder = self.builder;
if (self.root_src == null and self.link_objects.items.len == 0) {
warn("{s}: linker needs 1 or more objects to link\n", .{self.step.name});
return error.NeedAnObject;
}
var zig_args = ArrayList([]const u8).init(builder.allocator);
defer zig_args.deinit();
zig_args.append(builder.zig_exe) catch unreachable;
const cmd = switch (self.kind) {
.lib => "build-lib",
.exe => "build-exe",
.obj => "build-obj",
.@"test" => "test",
.test_exe => "test",
};
zig_args.append(cmd) catch unreachable;
if (builder.color != .auto) {
try zig_args.append("--color");
try zig_args.append(@tagName(builder.color));
}
if (self.entry_symbol_name) |entry| {
try zig_args.append("--entry");
try zig_args.append(entry);
}
if (self.stack_size) |stack_size| {
try zig_args.append("--stack");
try zig_args.append(try std.fmt.allocPrint(builder.allocator, "{}", .{stack_size}));
}
if (self.root_src) |root_src| try zig_args.append(root_src.getPath(builder));
var prev_has_extra_flags = false;
// Resolve transitive dependencies
for (self.link_objects.items) |link_object| {
switch (link_object) {
.other_step => |other| {
// Inherit dependency on system libraries
for (other.link_objects.items) |other_link_object| {
switch (other_link_object) {
.system_lib => |name| self.linkSystemLibrary(name),
else => continue,
}
}
// Inherit dependencies on darwin frameworks
if (!other.isDynamicLibrary()) {
var it = other.frameworks.iterator();
while (it.next()) |framework| {
self.frameworks.insert(framework.*) catch unreachable;
}
}
},
else => continue,
}
}
for (self.link_objects.items) |link_object| {
switch (link_object) {
.static_path => |static_path| try zig_args.append(static_path.getPath(builder)),
.other_step => |other| switch (other.kind) {
.exe => @panic("Cannot link with an executable build artifact"),
.test_exe => @panic("Cannot link with an executable build artifact"),
.@"test" => @panic("Cannot link with a test"),
.obj => {
try zig_args.append(other.getOutputSource().getPath(builder));
},
.lib => {
const full_path_lib = other.getOutputLibSource().getPath(builder);
try zig_args.append(full_path_lib);
if (other.linkage != null and other.linkage.? == .dynamic and !self.target.isWindows()) {
if (fs.path.dirname(full_path_lib)) |dirname| {
try zig_args.append("-rpath");
try zig_args.append(dirname);
}
}
},
},
.system_lib => |name| {
try zig_args.append(builder.fmt("-l{s}", .{name}));
},
.assembly_file => |asm_file| {
if (prev_has_extra_flags) {
try zig_args.append("-extra-cflags");
try zig_args.append("--");
prev_has_extra_flags = false;
}
try zig_args.append(asm_file.getPath(builder));
},
.c_source_file => |c_source_file| {
if (c_source_file.args.len == 0) {
if (prev_has_extra_flags) {
try zig_args.append("-cflags");
try zig_args.append("--");
prev_has_extra_flags = false;
}
} else {
try zig_args.append("-cflags");
for (c_source_file.args) |arg| {
try zig_args.append(arg);
}
try zig_args.append("--");
}
try zig_args.append(c_source_file.source.getPath(builder));
},
.c_source_files => |c_source_files| {
if (c_source_files.flags.len == 0) {
if (prev_has_extra_flags) {
try zig_args.append("-cflags");
try zig_args.append("--");
prev_has_extra_flags = false;
}
} else {
try zig_args.append("-cflags");
for (c_source_files.flags) |flag| {
try zig_args.append(flag);
}
try zig_args.append("--");
}
for (c_source_files.files) |file| {
try zig_args.append(builder.pathFromRoot(file));
}
},
}
}
if (self.image_base) |image_base| {
try zig_args.append("--image-base");
try zig_args.append(builder.fmt("0x{x}", .{image_base}));
}
if (self.filter) |filter| {
try zig_args.append("--test-filter");
try zig_args.append(filter);
}
if (self.test_evented_io) {
try zig_args.append("--test-evented-io");
}
if (self.name_prefix.len != 0) {
try zig_args.append("--test-name-prefix");
try zig_args.append(self.name_prefix);
}
for (builder.debug_log_scopes) |log_scope| {
try zig_args.append("--debug-log");
try zig_args.append(log_scope);
}
if (builder.verbose_cimport) zig_args.append("--verbose-cimport") catch unreachable;
if (builder.verbose_air) zig_args.append("--verbose-air") catch unreachable;
if (builder.verbose_llvm_ir) zig_args.append("--verbose-llvm-ir") catch unreachable;
if (builder.verbose_link or self.verbose_link) zig_args.append("--verbose-link") catch unreachable;
if (builder.verbose_cc or self.verbose_cc) zig_args.append("--verbose-cc") catch unreachable;
if (builder.verbose_llvm_cpu_features) zig_args.append("--verbose-llvm-cpu-features") catch unreachable;
if (self.emit_analysis.getArg(builder, "emit-analysis")) |arg| try zig_args.append(arg);
if (self.emit_asm.getArg(builder, "emit-asm")) |arg| try zig_args.append(arg);
if (self.emit_bin.getArg(builder, "emit-bin")) |arg| try zig_args.append(arg);
if (self.emit_docs.getArg(builder, "emit-docs")) |arg| try zig_args.append(arg);
if (self.emit_implib.getArg(builder, "emit-implib")) |arg| try zig_args.append(arg);
if (self.emit_llvm_bc.getArg(builder, "emit-llvm-bc")) |arg| try zig_args.append(arg);
if (self.emit_llvm_ir.getArg(builder, "emit-llvm-ir")) |arg| try zig_args.append(arg);
if (self.emit_h) try zig_args.append("-femit-h");
if (self.strip) {
try zig_args.append("--strip");
}
if (self.link_eh_frame_hdr) {
try zig_args.append("--eh-frame-hdr");
}
if (self.link_emit_relocs) {
try zig_args.append("--emit-relocs");
}
if (self.link_function_sections) {
try zig_args.append("-ffunction-sections");
}
if (self.linker_allow_shlib_undefined) |x| {
try zig_args.append(if (x) "-fallow-shlib-undefined" else "-fno-allow-shlib-undefined");
}
if (self.link_z_notext) {
try zig_args.append("-z");
try zig_args.append("notext");
}
if (self.libc_file) |libc_file| {
try zig_args.append("--libc");
try zig_args.append(libc_file.getPath(self.builder));
} else if (builder.libc_file) |libc_file| {
try zig_args.append("--libc");
try zig_args.append(libc_file);
}
switch (self.build_mode) {
.Debug => {}, // Skip since it's the default.
else => zig_args.append(builder.fmt("-O{s}", .{@tagName(self.build_mode)})) catch unreachable,
}
try zig_args.append("--cache-dir");
try zig_args.append(builder.pathFromRoot(builder.cache_root));
try zig_args.append("--global-cache-dir");
try zig_args.append(builder.pathFromRoot(builder.global_cache_root));
zig_args.append("--name") catch unreachable;
zig_args.append(self.name) catch unreachable;
if (self.linkage) |some| switch (some) {
.dynamic => try zig_args.append("-dynamic"),
.static => try zig_args.append("-static"),
};
if (self.kind == .lib and self.linkage != null and self.linkage.? == .dynamic) {
if (self.version) |version| {
zig_args.append("--version") catch unreachable;
zig_args.append(builder.fmt("{}", .{version})) catch unreachable;
}
if (self.target.isDarwin()) {
const install_name = self.install_name orelse builder.fmt("@rpath/{s}{s}{s}", .{
self.target.libPrefix(),
self.name,
self.target.dynamicLibSuffix(),
});
try zig_args.append("-install_name");
try zig_args.append(install_name);
}
}
if (self.entitlements) |entitlements| {
try zig_args.appendSlice(&[_][]const u8{ "--entitlements", entitlements });
}
if (self.bundle_compiler_rt) |x| {
if (x) {
try zig_args.append("-fcompiler-rt");
} else {
try zig_args.append("-fno-compiler-rt");
}
}
if (self.single_threaded) |single_threaded| {
if (single_threaded) {
try zig_args.append("-fsingle-threaded");
} else {
try zig_args.append("-fno-single-threaded");
}
}
if (self.disable_stack_probing) {
try zig_args.append("-fno-stack-check");
}
if (self.red_zone) |red_zone| {
if (red_zone) {
try zig_args.append("-mred-zone");
} else {
try zig_args.append("-mno-red-zone");
}
}
if (self.omit_frame_pointer) |omit_frame_pointer| {
if (omit_frame_pointer) {
try zig_args.append("-fomit-frame-pointer");
} else {
try zig_args.append("-fno-omit-frame-pointer");
}
}
if (self.disable_sanitize_c) {
try zig_args.append("-fno-sanitize-c");
}
if (self.sanitize_thread) {
try zig_args.append("-fsanitize-thread");
}
if (self.rdynamic) {
try zig_args.append("-rdynamic");
}
if (self.import_memory) {
try zig_args.append("--import-memory");
}
if (self.import_table) {
try zig_args.append("--import-table");
}
if (self.export_table) {
try zig_args.append("--export-table");
}
if (self.initial_memory) |initial_memory| {
try zig_args.append(builder.fmt("--initial-memory={d}", .{initial_memory}));
}
if (self.max_memory) |max_memory| {
try zig_args.append(builder.fmt("--max-memory={d}", .{max_memory}));
}
if (self.shared_memory) {
try zig_args.append("--shared-memory");
}
if (self.global_base) |global_base| {
try zig_args.append(builder.fmt("--global-base={d}", .{global_base}));
}
if (self.code_model != .default) {
try zig_args.append("-mcmodel");
try zig_args.append(@tagName(self.code_model));
}
if (self.wasi_exec_model) |model| {
try zig_args.append(builder.fmt("-mexec-model={s}", .{@tagName(model)}));
}
for (self.export_symbol_names) |symbol_name| {
try zig_args.append(builder.fmt("--export={s}", .{symbol_name}));
}
if (!self.target.isNative()) {
try zig_args.append("-target");
try zig_args.append(try self.target.zigTriple(builder.allocator));
// TODO this logic can disappear if cpu model + features becomes part of the target triple
const cross = self.target.toTarget();
const all_features = cross.cpu.arch.allFeaturesList();
var populated_cpu_features = cross.cpu.model.features;
populated_cpu_features.populateDependencies(all_features);
if (populated_cpu_features.eql(cross.cpu.features)) {
// The CPU name alone is sufficient.
try zig_args.append("-mcpu");
try zig_args.append(cross.cpu.model.name);
} else {
var mcpu_buffer = std.ArrayList(u8).init(builder.allocator);
try mcpu_buffer.writer().print("-mcpu={s}", .{cross.cpu.model.name});
for (all_features) |feature, i_usize| {
const i = @intCast(std.Target.Cpu.Feature.Set.Index, i_usize);
const in_cpu_set = populated_cpu_features.isEnabled(i);
const in_actual_set = cross.cpu.features.isEnabled(i);
if (in_cpu_set and !in_actual_set) {
try mcpu_buffer.writer().print("-{s}", .{feature.name});
} else if (!in_cpu_set and in_actual_set) {
try mcpu_buffer.writer().print("+{s}", .{feature.name});
}
}
try zig_args.append(mcpu_buffer.toOwnedSlice());
}
if (self.target.dynamic_linker.get()) |dynamic_linker| {
try zig_args.append("--dynamic-linker");
try zig_args.append(dynamic_linker);
}
}
if (self.linker_script) |linker_script| {
try zig_args.append("--script");
try zig_args.append(linker_script.getPath(builder));
}
if (self.version_script) |version_script| {
try zig_args.append("--version-script");
try zig_args.append(builder.pathFromRoot(version_script));
}
if (self.kind == .@"test") {
if (self.exec_cmd_args) |exec_cmd_args| {
for (exec_cmd_args) |cmd_arg| {
if (cmd_arg) |arg| {
try zig_args.append("--test-cmd");
try zig_args.append(arg);
} else {
try zig_args.append("--test-cmd-bin");
}
}
} else {
const need_cross_glibc = self.target.isGnuLibC() and self.is_linking_libc;
switch (self.builder.host.getExternalExecutor(self.target_info, .{
.qemu_fixes_dl = need_cross_glibc and builder.glibc_runtimes_dir != null,
.link_libc = self.is_linking_libc,
})) {
.native => {},
.bad_dl, .bad_os_or_cpu => {
try zig_args.append("--test-no-exec");
},
.rosetta => if (builder.enable_rosetta) {
try zig_args.append("--test-cmd-bin");
} else {
try zig_args.append("--test-no-exec");
},
.qemu => |bin_name| ok: {
if (builder.enable_qemu) qemu: {
const glibc_dir_arg = if (need_cross_glibc)
builder.glibc_runtimes_dir orelse break :qemu
else
null;
try zig_args.append("--test-cmd");
try zig_args.append(bin_name);
if (glibc_dir_arg) |dir| {
// TODO look into making this a call to `linuxTriple`. This
// needs the directory to be called "i686" rather than
// "i386" which is why we do it manually here.
const fmt_str = "{s}" ++ fs.path.sep_str ++ "{s}-{s}-{s}";
const cpu_arch = self.target.getCpuArch();
const os_tag = self.target.getOsTag();
const abi = self.target.getAbi();
const cpu_arch_name: []const u8 = if (cpu_arch == .i386)
"i686"
else
@tagName(cpu_arch);
const full_dir = try std.fmt.allocPrint(builder.allocator, fmt_str, .{
dir, cpu_arch_name, @tagName(os_tag), @tagName(abi),
});
try zig_args.append("--test-cmd");
try zig_args.append("-L");
try zig_args.append("--test-cmd");
try zig_args.append(full_dir);
}
try zig_args.append("--test-cmd-bin");
break :ok;
}
try zig_args.append("--test-no-exec");
},
.wine => |bin_name| if (builder.enable_wine) {
try zig_args.append("--test-cmd");
try zig_args.append(bin_name);
try zig_args.append("--test-cmd-bin");
} else {
try zig_args.append("--test-no-exec");
},
.wasmtime => |bin_name| if (builder.enable_wasmtime) {
try zig_args.append("--test-cmd");
try zig_args.append(bin_name);
try zig_args.append("--test-cmd");
try zig_args.append("--dir=.");
try zig_args.append("--test-cmd");
try zig_args.append("--allow-unknown-exports"); // TODO: Remove when stage2 is default compiler
try zig_args.append("--test-cmd-bin");
} else {
try zig_args.append("--test-no-exec");
},
.darling => |bin_name| if (builder.enable_darling) {
try zig_args.append("--test-cmd");
try zig_args.append(bin_name);
try zig_args.append("--test-cmd-bin");
} else {
try zig_args.append("--test-no-exec");
},
}
}
} else if (self.kind == .test_exe) {
try zig_args.append("--test-no-exec");
}
for (self.packages.items) |pkg| {
try self.makePackageCmd(pkg, &zig_args);
}
for (self.include_dirs.items) |include_dir| {
switch (include_dir) {
.raw_path => |include_path| {
try zig_args.append("-I");
try zig_args.append(self.builder.pathFromRoot(include_path));
},
.raw_path_system => |include_path| {
if (builder.sysroot != null) {
try zig_args.append("-iwithsysroot");
} else {
try zig_args.append("-isystem");
}
const resolved_include_path = self.builder.pathFromRoot(include_path);
const common_include_path = if (builtin.os.tag == .windows and builder.sysroot != null and fs.path.isAbsolute(resolved_include_path)) blk: {
// We need to check for disk designator and strip it out from dir path so
// that zig/clang can concat resolved_include_path with sysroot.
const disk_designator = fs.path.diskDesignatorWindows(resolved_include_path);
if (mem.indexOf(u8, resolved_include_path, disk_designator)) |where| {
break :blk resolved_include_path[where + disk_designator.len ..];
}
break :blk resolved_include_path;
} else resolved_include_path;
try zig_args.append(common_include_path);
},
.other_step => |other| if (other.emit_h) {
const h_path = other.getOutputHSource().getPath(self.builder);
try zig_args.append("-isystem");
try zig_args.append(fs.path.dirname(h_path).?);
},
}
}
for (self.lib_paths.items) |lib_path| {
try zig_args.append("-L");
try zig_args.append(lib_path);
}
for (self.rpaths.items) |rpath| {
try zig_args.append("-rpath");
try zig_args.append(rpath);
}
for (self.c_macros.items) |c_macro| {
try zig_args.append("-D");
try zig_args.append(c_macro);
}
if (self.target.isDarwin()) {
for (self.framework_dirs.items) |dir| {
if (builder.sysroot != null) {
try zig_args.append("-iframeworkwithsysroot");
} else {
try zig_args.append("-iframework");
}
try zig_args.append(dir);
try zig_args.append("-F");
try zig_args.append(dir);
}
var it = self.frameworks.iterator();
while (it.next()) |framework| {
zig_args.append("-framework") catch unreachable;
zig_args.append(framework.*) catch unreachable;
}
} else {
if (self.framework_dirs.items.len > 0) {
warn("Framework directories have been added for a non-darwin target, this will have no affect on the build\n", .{});
}
if (self.frameworks.count() > 0) {
warn("Frameworks have been added for a non-darwin target, this will have no affect on the build\n", .{});
}
}
if (builder.sysroot) |sysroot| {
try zig_args.appendSlice(&[_][]const u8{ "--sysroot", sysroot });
}
for (builder.search_prefixes.items) |search_prefix| {
try zig_args.append("-L");
try zig_args.append(builder.pathJoin(&.{
search_prefix, "lib",
}));
try zig_args.append("-isystem");
try zig_args.append(builder.pathJoin(&.{
search_prefix, "include",
}));
}
if (self.valgrind_support) |valgrind_support| {
if (valgrind_support) {
try zig_args.append("-fvalgrind");
} else {
try zig_args.append("-fno-valgrind");
}
}
if (self.each_lib_rpath) |each_lib_rpath| {
if (each_lib_rpath) {
try zig_args.append("-feach-lib-rpath");
} else {
try zig_args.append("-fno-each-lib-rpath");
}
}
if (self.override_lib_dir) |dir| {
try zig_args.append("--zig-lib-dir");
try zig_args.append(builder.pathFromRoot(dir));
} else if (self.builder.override_lib_dir) |dir| {
try zig_args.append("--zig-lib-dir");
try zig_args.append(builder.pathFromRoot(dir));
}
if (self.main_pkg_path) |dir| {
try zig_args.append("--main-pkg-path");
try zig_args.append(builder.pathFromRoot(dir));
}
if (self.force_pic) |pic| {
if (pic) {
try zig_args.append("-fPIC");
} else {
try zig_args.append("-fno-PIC");
}
}
if (self.pie) |pie| {
if (pie) {
try zig_args.append("-fPIE");
} else {
try zig_args.append("-fno-PIE");
}
}
if (self.want_lto) |lto| {
if (lto) {
try zig_args.append("-flto");
} else {
try zig_args.append("-fno-lto");
}
}
if (self.subsystem) |subsystem| {
try zig_args.append("--subsystem");
try zig_args.append(switch (subsystem) {
.Console => "console",
.Windows => "windows",
.Posix => "posix",
.Native => "native",
.EfiApplication => "efi_application",
.EfiBootServiceDriver => "efi_boot_service_driver",
.EfiRom => "efi_rom",
.EfiRuntimeDriver => "efi_runtime_driver",
});
}
try zig_args.append("--enable-cache");
// Windows has an argument length limit of 32,766 characters, macOS 262,144 and Linux
// 2,097,152. If our args exceed 30 KiB, we instead write them to a "response file" and
// pass that to zig, e.g. via 'zig build-lib @args.rsp'
var args_length: usize = 0;
for (zig_args.items) |arg| {
args_length += arg.len + 1; // +1 to account for null terminator
}
if (args_length >= 30 * 1024) {
const args_dir = try fs.path.join(
builder.allocator,
&[_][]const u8{ builder.pathFromRoot("zig-cache"), "args" },
);
try std.fs.cwd().makePath(args_dir);
// Write the args to zig-cache/args/<SHA256 hash of args> to avoid conflicts with
// other zig build commands running in parallel.
const partially_quoted = try std.mem.join(builder.allocator, "\" \"", zig_args.items[2..]);
const args = try std.mem.concat(builder.allocator, u8, &[_][]const u8{ "\"", partially_quoted, "\"" });
var args_hash: [Sha256.digest_length]u8 = undefined;
Sha256.hash(args, &args_hash, .{});
var args_hex_hash: [Sha256.digest_length * 2]u8 = undefined;
_ = try std.fmt.bufPrint(
&args_hex_hash,
"{s}",
.{std.fmt.fmtSliceHexLower(&args_hash)},
);
const args_file = try fs.path.join(builder.allocator, &[_][]const u8{ args_dir, args_hex_hash[0..] });
try std.fs.cwd().writeFile(args_file, args);
zig_args.shrinkRetainingCapacity(2);
try zig_args.append(try std.mem.concat(builder.allocator, u8, &[_][]const u8{ "@", args_file }));
}
const output_dir_nl = try builder.execFromStep(zig_args.items, &self.step);
const build_output_dir = mem.trimRight(u8, output_dir_nl, "\r\n");
if (self.output_dir) |output_dir| {
var src_dir = try std.fs.cwd().openDir(build_output_dir, .{ .iterate = true });
defer src_dir.close();
// Create the output directory if it doesn't exist.
try std.fs.cwd().makePath(output_dir);
var dest_dir = try std.fs.cwd().openDir(output_dir, .{});
defer dest_dir.close();
var it = src_dir.iterate();
while (try it.next()) |entry| {
// The compiler can put these files into the same directory, but we don't
// want to copy them over.
if (mem.eql(u8, entry.name, "stage1.id") or
mem.eql(u8, entry.name, "llvm-ar.id") or
mem.eql(u8, entry.name, "libs.txt") or
mem.eql(u8, entry.name, "builtin.zig") or
mem.eql(u8, entry.name, "zld.id") or
mem.eql(u8, entry.name, "lld.id")) continue;
_ = try src_dir.updateFile(entry.name, dest_dir, entry.name, .{});
}
} else {
self.output_dir = build_output_dir;
}
// This will ensure all output filenames will now have the output_dir available!
self.computeOutFileNames();
// Update generated files
if (self.output_dir != null) {
self.output_path_source.path = builder.pathJoin(
&.{ self.output_dir.?, self.out_filename },
);
if (self.emit_h) {
self.output_h_path_source.path = builder.pathJoin(
&.{ self.output_dir.?, self.out_h_filename },
);
}
if (self.target.isWindows() or self.target.isUefi()) {
self.output_pdb_path_source.path = builder.pathJoin(
&.{ self.output_dir.?, self.out_pdb_filename },
);
}
}
if (self.kind == .lib and self.linkage != null and self.linkage.? == .dynamic and self.version != null and self.target.wantSharedLibSymLinks()) {
try doAtomicSymLinks(builder.allocator, self.getOutputSource().getPath(builder), self.major_only_filename.?, self.name_only_filename.?);
}
}
};
/// Allocates a new string for assigning a value to a named macro.
/// If the value is omitted, it is set to 1.
/// `name` and `value` need not live longer than the function call.
pub fn constructCMacro(allocator: Allocator, name: []const u8, value: ?[]const u8) []const u8 {
var macro = allocator.alloc(
u8,
name.len + if (value) |value_slice| value_slice.len + 1 else 0,
) catch |err| if (err == error.OutOfMemory) @panic("Out of memory") else unreachable;
mem.copy(u8, macro, name);
if (value) |value_slice| {
macro[name.len] = '=';
mem.copy(u8, macro[name.len + 1 ..], value_slice);
}
return macro;
}
pub const InstallArtifactStep = struct {
pub const base_id = .install_artifact;
step: Step,
builder: *Builder,
artifact: *LibExeObjStep,
dest_dir: InstallDir,
pdb_dir: ?InstallDir,
h_dir: ?InstallDir,
const Self = @This();
pub fn create(builder: *Builder, artifact: *LibExeObjStep) *Self {
if (artifact.install_step) |s| return s;
const self = builder.allocator.create(Self) catch unreachable;
self.* = Self{
.builder = builder,
.step = Step.init(.install_artifact, builder.fmt("install {s}", .{artifact.step.name}), builder.allocator, make),
.artifact = artifact,
.dest_dir = artifact.override_dest_dir orelse switch (artifact.kind) {
.obj => @panic("Cannot install a .obj build artifact."),
.@"test" => @panic("Cannot install a test build artifact, use addTestExe instead."),
.exe, .test_exe => InstallDir{ .bin = {} },
.lib => InstallDir{ .lib = {} },
},
.pdb_dir = if (artifact.producesPdbFile()) blk: {
if (artifact.kind == .exe or artifact.kind == .test_exe) {
break :blk InstallDir{ .bin = {} };
} else {
break :blk InstallDir{ .lib = {} };
}
} else null,
.h_dir = if (artifact.kind == .lib and artifact.emit_h) .header else null,
};
self.step.dependOn(&artifact.step);
artifact.install_step = self;
builder.pushInstalledFile(self.dest_dir, artifact.out_filename);
if (self.artifact.isDynamicLibrary()) {
if (artifact.major_only_filename) |name| {
builder.pushInstalledFile(.lib, name);
}
if (artifact.name_only_filename) |name| {
builder.pushInstalledFile(.lib, name);
}
if (self.artifact.target.isWindows()) {
builder.pushInstalledFile(.lib, artifact.out_lib_filename);
}
}
if (self.pdb_dir) |pdb_dir| {
builder.pushInstalledFile(pdb_dir, artifact.out_pdb_filename);
}
if (self.h_dir) |h_dir| {
builder.pushInstalledFile(h_dir, artifact.out_h_filename);
}
return self;
}
fn make(step: *Step) !void {
const self = @fieldParentPtr(Self, "step", step);
const builder = self.builder;
const full_dest_path = builder.getInstallPath(self.dest_dir, self.artifact.out_filename);
try builder.updateFile(self.artifact.getOutputSource().getPath(builder), full_dest_path);
if (self.artifact.isDynamicLibrary() and self.artifact.version != null and self.artifact.target.wantSharedLibSymLinks()) {
try doAtomicSymLinks(builder.allocator, full_dest_path, self.artifact.major_only_filename.?, self.artifact.name_only_filename.?);
}
if (self.artifact.isDynamicLibrary() and self.artifact.target.isWindows() and self.artifact.emit_implib != .no_emit) {
const full_implib_path = builder.getInstallPath(self.dest_dir, self.artifact.out_lib_filename);
try builder.updateFile(self.artifact.getOutputLibSource().getPath(builder), full_implib_path);
}
if (self.pdb_dir) |pdb_dir| {
const full_pdb_path = builder.getInstallPath(pdb_dir, self.artifact.out_pdb_filename);
try builder.updateFile(self.artifact.getOutputPdbSource().getPath(builder), full_pdb_path);
}
if (self.h_dir) |h_dir| {
const full_pdb_path = builder.getInstallPath(h_dir, self.artifact.out_h_filename);
try builder.updateFile(self.artifact.getOutputHSource().getPath(builder), full_pdb_path);
}
self.artifact.installed_path = full_dest_path;
}
};
pub const InstallFileStep = struct {
pub const base_id = .install_file;
step: Step,
builder: *Builder,
source: FileSource,
dir: InstallDir,
dest_rel_path: []const u8,
pub fn init(
builder: *Builder,
source: FileSource,
dir: InstallDir,
dest_rel_path: []const u8,
) InstallFileStep {
builder.pushInstalledFile(dir, dest_rel_path);
return InstallFileStep{
.builder = builder,
.step = Step.init(.install_file, builder.fmt("install {s} to {s}", .{ source.getDisplayName(), dest_rel_path }), builder.allocator, make),
.source = source.dupe(builder),
.dir = dir.dupe(builder),
.dest_rel_path = builder.dupePath(dest_rel_path),
};
}
fn make(step: *Step) !void {
const self = @fieldParentPtr(InstallFileStep, "step", step);
const full_dest_path = self.builder.getInstallPath(self.dir, self.dest_rel_path);
const full_src_path = self.source.getPath(self.builder);
try self.builder.updateFile(full_src_path, full_dest_path);
}
};
pub const InstallDirectoryOptions = struct {
source_dir: []const u8,
install_dir: InstallDir,
install_subdir: []const u8,
/// File paths which end in any of these suffixes will be excluded
/// from being installed.
exclude_extensions: []const []const u8 = &.{},
/// File paths which end in any of these suffixes will result in
/// empty files being installed. This is mainly intended for large
/// test.zig files in order to prevent needless installation bloat.
/// However if the files were not present at all, then
/// `@import("test.zig")` would be a compile error.
blank_extensions: []const []const u8 = &.{},
fn dupe(self: InstallDirectoryOptions, b: *Builder) InstallDirectoryOptions {
return .{
.source_dir = b.dupe(self.source_dir),
.install_dir = self.install_dir.dupe(b),
.install_subdir = b.dupe(self.install_subdir),
.exclude_extensions = b.dupeStrings(self.exclude_extensions),
.blank_extensions = b.dupeStrings(self.blank_extensions),
};
}
};
pub const InstallDirStep = struct {
pub const base_id = .install_dir;
step: Step,
builder: *Builder,
options: InstallDirectoryOptions,
pub fn init(
builder: *Builder,
options: InstallDirectoryOptions,
) InstallDirStep {
builder.pushInstalledFile(options.install_dir, options.install_subdir);
return InstallDirStep{
.builder = builder,
.step = Step.init(.install_dir, builder.fmt("install {s}/", .{options.source_dir}), builder.allocator, make),
.options = options.dupe(builder),
};
}
fn make(step: *Step) !void {
const self = @fieldParentPtr(InstallDirStep, "step", step);
const dest_prefix = self.builder.getInstallPath(self.options.install_dir, self.options.install_subdir);
const full_src_dir = self.builder.pathFromRoot(self.options.source_dir);
var src_dir = try std.fs.cwd().openDir(full_src_dir, .{ .iterate = true });
defer src_dir.close();
var it = try src_dir.walk(self.builder.allocator);
next_entry: while (try it.next()) |entry| {
for (self.options.exclude_extensions) |ext| {
if (mem.endsWith(u8, entry.path, ext)) {
continue :next_entry;
}
}
const full_path = self.builder.pathJoin(&.{
full_src_dir, entry.path,
});
const dest_path = self.builder.pathJoin(&.{
dest_prefix, entry.path,
});
switch (entry.kind) {
.Directory => try fs.cwd().makePath(dest_path),
.File => {
for (self.options.blank_extensions) |ext| {
if (mem.endsWith(u8, entry.path, ext)) {
try self.builder.truncateFile(dest_path);
continue :next_entry;
}
}
try self.builder.updateFile(full_path, dest_path);
},
else => continue,
}
}
}
};
pub const LogStep = struct {
pub const base_id = .log;
step: Step,
builder: *Builder,
data: []const u8,
pub fn init(builder: *Builder, data: []const u8) LogStep {
return LogStep{
.builder = builder,
.step = Step.init(.log, builder.fmt("log {s}", .{data}), builder.allocator, make),
.data = builder.dupe(data),
};
}
fn make(step: *Step) anyerror!void {
const self = @fieldParentPtr(LogStep, "step", step);
warn("{s}", .{self.data});
}
};
pub const RemoveDirStep = struct {
pub const base_id = .remove_dir;
step: Step,
builder: *Builder,
dir_path: []const u8,
pub fn init(builder: *Builder, dir_path: []const u8) RemoveDirStep {
return RemoveDirStep{
.builder = builder,
.step = Step.init(.remove_dir, builder.fmt("RemoveDir {s}", .{dir_path}), builder.allocator, make),
.dir_path = builder.dupePath(dir_path),
};
}
fn make(step: *Step) !void {
const self = @fieldParentPtr(RemoveDirStep, "step", step);
const full_path = self.builder.pathFromRoot(self.dir_path);
fs.cwd().deleteTree(full_path) catch |err| {
warn("Unable to remove {s}: {s}\n", .{ full_path, @errorName(err) });
return err;
};
}
};
const ThisModule = @This();
pub const Step = struct {
id: Id,
name: []const u8,
makeFn: MakeFn,
dependencies: ArrayList(*Step),
loop_flag: bool,
done_flag: bool,
const MakeFn = switch (builtin.zig_backend) {
.stage1 => fn (self: *Step) anyerror!void,
else => *const fn (self: *Step) anyerror!void,
};
pub const Id = enum {
top_level,
lib_exe_obj,
install_artifact,
install_file,
install_dir,
log,
remove_dir,
fmt,
translate_c,
write_file,
run,
check_file,
install_raw,
options,
custom,
};
pub fn init(id: Id, name: []const u8, allocator: Allocator, makeFn: MakeFn) Step {
return Step{
.id = id,
.name = allocator.dupe(u8, name) catch unreachable,
.makeFn = makeFn,
.dependencies = ArrayList(*Step).init(allocator),
.loop_flag = false,
.done_flag = false,
};
}
pub fn initNoOp(id: Id, name: []const u8, allocator: Allocator) Step {
return init(id, name, allocator, makeNoOp);
}
pub fn make(self: *Step) !void {
if (self.done_flag) return;
try self.makeFn(self);
self.done_flag = true;
}
pub fn dependOn(self: *Step, other: *Step) void {
self.dependencies.append(other) catch unreachable;
}
fn makeNoOp(self: *Step) anyerror!void {
_ = self;
}
pub fn cast(step: *Step, comptime T: type) ?*T {
if (step.id == T.base_id) {
return @fieldParentPtr(T, "step", step);
}
return null;
}
};
fn doAtomicSymLinks(allocator: Allocator, output_path: []const u8, filename_major_only: []const u8, filename_name_only: []const u8) !void {
const out_dir = fs.path.dirname(output_path) orelse ".";
const out_basename = fs.path.basename(output_path);
// sym link for libfoo.so.1 to libfoo.so.1.2.3
const major_only_path = fs.path.join(
allocator,
&[_][]const u8{ out_dir, filename_major_only },
) catch unreachable;
fs.atomicSymLink(allocator, out_basename, major_only_path) catch |err| {
warn("Unable to symlink {s} -> {s}\n", .{ major_only_path, out_basename });
return err;
};
// sym link for libfoo.so to libfoo.so.1
const name_only_path = fs.path.join(
allocator,
&[_][]const u8{ out_dir, filename_name_only },
) catch unreachable;
fs.atomicSymLink(allocator, filename_major_only, name_only_path) catch |err| {
warn("Unable to symlink {s} -> {s}\n", .{ name_only_path, filename_major_only });
return err;
};
}
/// Returned slice must be freed by the caller.
fn findVcpkgRoot(allocator: Allocator) !?[]const u8 {
const appdata_path = try fs.getAppDataDir(allocator, "vcpkg");
defer allocator.free(appdata_path);
const path_file = try fs.path.join(allocator, &[_][]const u8{ appdata_path, "vcpkg.path.txt" });
defer allocator.free(path_file);
const file = fs.cwd().openFile(path_file, .{}) catch return null;
defer file.close();
const size = @intCast(usize, try file.getEndPos());
const vcpkg_path = try allocator.alloc(u8, size);
const size_read = try file.read(vcpkg_path);
std.debug.assert(size == size_read);
return vcpkg_path;
}
const VcpkgRoot = union(VcpkgRootStatus) {
unattempted: void,
not_found: void,
found: []const u8,
};
const VcpkgRootStatus = enum {
unattempted,
not_found,
found,
};
pub const InstallDir = union(enum) {
prefix: void,
lib: void,
bin: void,
header: void,
/// A path relative to the prefix
custom: []const u8,
/// Duplicates the install directory including the path if set to custom.
pub fn dupe(self: InstallDir, builder: *Builder) InstallDir {
if (self == .custom) {
// Written with this temporary to avoid RLS problems
const duped_path = builder.dupe(self.custom);
return .{ .custom = duped_path };
} else {
return self;
}
}
};
pub const InstalledFile = struct {
dir: InstallDir,
path: []const u8,
/// Duplicates the installed file path and directory.
pub fn dupe(self: InstalledFile, builder: *Builder) InstalledFile {
return .{
.dir = self.dir.dupe(builder),
.path = builder.dupe(self.path),
};
}
};
test "Builder.dupePkg()" {
if (builtin.os.tag == .wasi) return error.SkipZigTest;
var arena = std.heap.ArenaAllocator.init(std.testing.allocator);
defer arena.deinit();
var builder = try Builder.create(
arena.allocator(),
"test",
"test",
"test",
"test",
);
defer builder.destroy();
var pkg_dep = Pkg{
.name = "pkg_dep",
.path = .{ .path = "/not/a/pkg_dep.zig" },
};
var pkg_top = Pkg{
.name = "pkg_top",
.path = .{ .path = "/not/a/pkg_top.zig" },
.dependencies = &[_]Pkg{pkg_dep},
};
const dupe = builder.dupePkg(pkg_top);
const original_deps = pkg_top.dependencies.?;
const dupe_deps = dupe.dependencies.?;
// probably the same top level package details
try std.testing.expectEqualStrings(pkg_top.name, dupe.name);
// probably the same dependencies
try std.testing.expectEqual(original_deps.len, dupe_deps.len);
try std.testing.expectEqual(original_deps[0].name, pkg_dep.name);
// could segfault otherwise if pointers in duplicated package's fields are
// the same as those in stack allocated package's fields
try std.testing.expect(dupe_deps.ptr != original_deps.ptr);
try std.testing.expect(dupe.name.ptr != pkg_top.name.ptr);
try std.testing.expect(dupe.path.path.ptr != pkg_top.path.path.ptr);
try std.testing.expect(dupe_deps[0].name.ptr != pkg_dep.name.ptr);
try std.testing.expect(dupe_deps[0].path.path.ptr != pkg_dep.path.path.ptr);
}
test "LibExeObjStep.addPackage" {
if (builtin.os.tag == .wasi) return error.SkipZigTest;
var arena = std.heap.ArenaAllocator.init(std.testing.allocator);
defer arena.deinit();
var builder = try Builder.create(
arena.allocator(),
"test",
"test",
"test",
"test",
);
defer builder.destroy();
const pkg_dep = Pkg{
.name = "pkg_dep",
.path = .{ .path = "/not/a/pkg_dep.zig" },
};
const pkg_top = Pkg{
.name = "pkg_dep",
.path = .{ .path = "/not/a/pkg_top.zig" },
.dependencies = &[_]Pkg{pkg_dep},
};
var exe = builder.addExecutable("not_an_executable", "/not/an/executable.zig");
exe.addPackage(pkg_top);
try std.testing.expectEqual(@as(usize, 1), exe.packages.items.len);
const dupe = exe.packages.items[0];
try std.testing.expectEqualStrings(pkg_top.name, dupe.name);
}