zig/lib/std/bounded_array.zig
2024-05-21 13:46:05 +03:00

427 lines
16 KiB
Zig

const std = @import("std.zig");
const assert = std.debug.assert;
const mem = std.mem;
const testing = std.testing;
/// A structure with an array and a length, that can be used as a slice.
///
/// Useful to pass around small arrays whose exact size is only known at
/// runtime, but whose maximum size is known at comptime, without requiring
/// an `Allocator`.
///
/// ```zig
/// var actual_size = 32;
/// var a = try BoundedArray(u8, 64).init(actual_size);
/// var slice = a.slice(); // a slice of the 64-byte array
/// var a_clone = a; // creates a copy - the structure doesn't use any internal pointers
/// ```
pub fn BoundedArray(comptime T: type, comptime buffer_capacity: usize) type {
return BoundedArrayAligned(T, @alignOf(T), buffer_capacity);
}
/// A structure with an array, length and alignment, that can be used as a
/// slice.
///
/// Useful to pass around small explicitly-aligned arrays whose exact size is
/// only known at runtime, but whose maximum size is known at comptime, without
/// requiring an `Allocator`.
/// ```zig
// var a = try BoundedArrayAligned(u8, 16, 2).init(0);
// try a.append(255);
// try a.append(255);
// const b = @ptrCast(*const [1]u16, a.constSlice().ptr);
// try testing.expectEqual(@as(u16, 65535), b[0]);
/// ```
pub fn BoundedArrayAligned(
comptime T: type,
comptime alignment: u29,
comptime buffer_capacity: usize,
) type {
return struct {
const Self = @This();
const Len = std.math.IntFittingRange(0, buffer_capacity);
buffer: [buffer_capacity]T align(alignment) = undefined,
len: Len = 0,
/// Set the actual length of the slice.
/// Returns error.Overflow if it exceeds the length of the backing array.
pub fn init(len: usize) error{Overflow}!Self {
if (len > buffer_capacity) return error.Overflow;
return Self{ .len = @intCast(len) };
}
/// View the internal array as a slice whose size was previously set.
pub fn slice(self: anytype) switch (@TypeOf(&self.buffer)) {
*align(alignment) [buffer_capacity]T => []align(alignment) T,
*align(alignment) const [buffer_capacity]T => []align(alignment) const T,
else => unreachable,
} {
return self.buffer[0..self.len];
}
/// View the internal array as a constant slice whose size was previously set.
pub fn constSlice(self: *const Self) []align(alignment) const T {
return self.slice();
}
/// Adjust the slice's length to `len`.
/// Does not initialize added items if any.
pub fn resize(self: *Self, len: usize) error{Overflow}!void {
if (len > buffer_capacity) return error.Overflow;
self.len = @intCast(len);
}
/// Copy the content of an existing slice.
pub fn fromSlice(m: []const T) error{Overflow}!Self {
var list = try init(m.len);
@memcpy(list.slice(), m);
return list;
}
/// Return the element at index `i` of the slice.
pub fn get(self: Self, i: usize) T {
return self.constSlice()[i];
}
/// Set the value of the element at index `i` of the slice.
pub fn set(self: *Self, i: usize, item: T) void {
self.slice()[i] = item;
}
/// Return the maximum length of a slice.
pub fn capacity(self: Self) usize {
return self.buffer.len;
}
/// Check that the slice can hold at least `additional_count` items.
pub fn ensureUnusedCapacity(self: Self, additional_count: usize) error{Overflow}!void {
if (self.len + additional_count > buffer_capacity) {
return error.Overflow;
}
}
/// Increase length by 1, returning a pointer to the new item.
pub fn addOne(self: *Self) error{Overflow}!*T {
try self.ensureUnusedCapacity(1);
return self.addOneAssumeCapacity();
}
/// Increase length by 1, returning pointer to the new item.
/// Asserts that there is space for the new item.
pub fn addOneAssumeCapacity(self: *Self) *T {
assert(self.len < buffer_capacity);
self.len += 1;
return &self.slice()[self.len - 1];
}
/// Resize the slice, adding `n` new elements, which have `undefined` values.
/// The return value is a pointer to the array of uninitialized elements.
pub fn addManyAsArray(self: *Self, comptime n: usize) error{Overflow}!*align(alignment) [n]T {
const prev_len = self.len;
try self.resize(self.len + n);
return self.slice()[prev_len..][0..n];
}
/// Resize the slice, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the uninitialized elements.
pub fn addManyAsSlice(self: *Self, n: usize) error{Overflow}![]align(alignment) T {
const prev_len = self.len;
try self.resize(self.len + n);
return self.slice()[prev_len..][0..n];
}
/// Remove and return the last element from the slice.
/// Asserts the slice has at least one item.
pub fn pop(self: *Self) T {
const item = self.get(self.len - 1);
self.len -= 1;
return item;
}
/// Remove and return the last element from the slice, or
/// return `null` if the slice is empty.
pub fn popOrNull(self: *Self) ?T {
return if (self.len == 0) null else self.pop();
}
/// Return a slice of only the extra capacity after items.
/// This can be useful for writing directly into it.
/// Note that such an operation must be followed up with a
/// call to `resize()`
pub fn unusedCapacitySlice(self: *Self) []align(alignment) T {
return self.buffer[self.len..];
}
/// Insert `item` at index `i` by moving `slice[n .. slice.len]` to make room.
/// This operation is O(N).
pub fn insert(
self: *Self,
i: usize,
item: T,
) error{Overflow}!void {
if (i > self.len) {
return error.Overflow;
}
_ = try self.addOne();
var s = self.slice();
mem.copyBackwards(T, s[i + 1 .. s.len], s[i .. s.len - 1]);
self.buffer[i] = item;
}
/// Insert slice `items` at index `i` by moving `slice[i .. slice.len]` to make room.
/// This operation is O(N).
pub fn insertSlice(self: *Self, i: usize, items: []const T) error{Overflow}!void {
try self.ensureUnusedCapacity(items.len);
self.len = @intCast(self.len + items.len);
mem.copyBackwards(T, self.slice()[i + items.len .. self.len], self.constSlice()[i .. self.len - items.len]);
@memcpy(self.slice()[i..][0..items.len], items);
}
/// Replace range of elements `slice[start..][0..len]` with `new_items`.
/// Grows slice if `len < new_items.len`.
/// Shrinks slice if `len > new_items.len`.
pub fn replaceRange(
self: *Self,
start: usize,
len: usize,
new_items: []const T,
) error{Overflow}!void {
const after_range = start + len;
var range = self.slice()[start..after_range];
if (range.len == new_items.len) {
@memcpy(range[0..new_items.len], new_items);
} else if (range.len < new_items.len) {
const first = new_items[0..range.len];
const rest = new_items[range.len..];
@memcpy(range[0..first.len], first);
try self.insertSlice(after_range, rest);
} else {
@memcpy(range[0..new_items.len], new_items);
const after_subrange = start + new_items.len;
for (self.constSlice()[after_range..], 0..) |item, i| {
self.slice()[after_subrange..][i] = item;
}
self.len = @intCast(self.len - len + new_items.len);
}
}
/// Extend the slice by 1 element.
pub fn append(self: *Self, item: T) error{Overflow}!void {
const new_item_ptr = try self.addOne();
new_item_ptr.* = item;
}
/// Extend the slice by 1 element, asserting the capacity is already
/// enough to store the new item.
pub fn appendAssumeCapacity(self: *Self, item: T) void {
const new_item_ptr = self.addOneAssumeCapacity();
new_item_ptr.* = item;
}
/// Remove the element at index `i`, shift elements after index
/// `i` forward, and return the removed element.
/// Asserts the slice has at least one item.
/// This operation is O(N).
pub fn orderedRemove(self: *Self, i: usize) T {
const newlen = self.len - 1;
if (newlen == i) return self.pop();
const old_item = self.get(i);
for (self.slice()[i..newlen], 0..) |*b, j| b.* = self.get(i + 1 + j);
self.set(newlen, undefined);
self.len = newlen;
return old_item;
}
/// Remove the element at the specified index and return it.
/// The empty slot is filled from the end of the slice.
/// This operation is O(1).
pub fn swapRemove(self: *Self, i: usize) T {
if (self.len - 1 == i) return self.pop();
const old_item = self.get(i);
self.set(i, self.pop());
return old_item;
}
/// Append the slice of items to the slice.
pub fn appendSlice(self: *Self, items: []const T) error{Overflow}!void {
try self.ensureUnusedCapacity(items.len);
self.appendSliceAssumeCapacity(items);
}
/// Append the slice of items to the slice, asserting the capacity is already
/// enough to store the new items.
pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
const old_len = self.len;
self.len = @intCast(self.len + items.len);
@memcpy(self.slice()[old_len..][0..items.len], items);
}
/// Append a value to the slice `n` times.
/// Allocates more memory as necessary.
pub fn appendNTimes(self: *Self, value: T, n: usize) error{Overflow}!void {
const old_len = self.len;
try self.resize(old_len + n);
@memset(self.slice()[old_len..self.len], value);
}
/// Append a value to the slice `n` times.
/// Asserts the capacity is enough.
pub fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
const old_len = self.len;
assert(self.len + n <= buffer_capacity);
self.len = @intCast(self.len + n);
@memset(self.slice()[old_len..self.len], value);
}
pub const Writer = if (T != u8)
@compileError("The Writer interface is only defined for BoundedArray(u8, ...) " ++
"but the given type is BoundedArray(" ++ @typeName(T) ++ ", ...)")
else
std.io.Writer(*Self, error{Overflow}, appendWrite);
/// Initializes a writer which will write into the array.
pub fn writer(self: *Self) Writer {
return .{ .context = self };
}
/// Same as `appendSlice` except it returns the number of bytes written, which is always the same
/// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
fn appendWrite(self: *Self, m: []const u8) error{Overflow}!usize {
try self.appendSlice(m);
return m.len;
}
};
}
test BoundedArray {
var a = try BoundedArray(u8, 64).init(32);
try testing.expectEqual(a.capacity(), 64);
try testing.expectEqual(a.slice().len, 32);
try testing.expectEqual(a.constSlice().len, 32);
try a.resize(48);
try testing.expectEqual(a.len, 48);
const x = [_]u8{1} ** 10;
a = try BoundedArray(u8, 64).fromSlice(&x);
try testing.expectEqualSlices(u8, &x, a.constSlice());
var a2 = a;
try testing.expectEqualSlices(u8, a.constSlice(), a2.constSlice());
a2.set(0, 0);
try testing.expect(a.get(0) != a2.get(0));
try testing.expectError(error.Overflow, a.resize(100));
try testing.expectError(error.Overflow, BoundedArray(u8, x.len - 1).fromSlice(&x));
try a.resize(0);
try a.ensureUnusedCapacity(a.capacity());
(try a.addOne()).* = 0;
try a.ensureUnusedCapacity(a.capacity() - 1);
try testing.expectEqual(a.len, 1);
const uninitialized = try a.addManyAsArray(4);
try testing.expectEqual(uninitialized.len, 4);
try testing.expectEqual(a.len, 5);
try a.append(0xff);
try testing.expectEqual(a.len, 6);
try testing.expectEqual(a.pop(), 0xff);
a.appendAssumeCapacity(0xff);
try testing.expectEqual(a.len, 6);
try testing.expectEqual(a.pop(), 0xff);
try a.resize(1);
try testing.expectEqual(a.popOrNull(), 0);
try testing.expectEqual(a.popOrNull(), null);
var unused = a.unusedCapacitySlice();
@memset(unused[0..8], 2);
unused[8] = 3;
unused[9] = 4;
try testing.expectEqual(unused.len, a.capacity());
try a.resize(10);
try a.insert(5, 0xaa);
try testing.expectEqual(a.len, 11);
try testing.expectEqual(a.get(5), 0xaa);
try testing.expectEqual(a.get(9), 3);
try testing.expectEqual(a.get(10), 4);
try a.insert(11, 0xbb);
try testing.expectEqual(a.len, 12);
try testing.expectEqual(a.pop(), 0xbb);
try a.appendSlice(&x);
try testing.expectEqual(a.len, 11 + x.len);
try a.appendNTimes(0xbb, 5);
try testing.expectEqual(a.len, 11 + x.len + 5);
try testing.expectEqual(a.pop(), 0xbb);
a.appendNTimesAssumeCapacity(0xcc, 5);
try testing.expectEqual(a.len, 11 + x.len + 5 - 1 + 5);
try testing.expectEqual(a.pop(), 0xcc);
try testing.expectEqual(a.len, 29);
try a.replaceRange(1, 20, &x);
try testing.expectEqual(a.len, 29 + x.len - 20);
try a.insertSlice(0, &x);
try testing.expectEqual(a.len, 29 + x.len - 20 + x.len);
try a.replaceRange(1, 5, &x);
try testing.expectEqual(a.len, 29 + x.len - 20 + x.len + x.len - 5);
try a.append(10);
try testing.expectEqual(a.pop(), 10);
try a.append(20);
const removed = a.orderedRemove(5);
try testing.expectEqual(removed, 1);
try testing.expectEqual(a.len, 34);
a.set(0, 0xdd);
a.set(a.len - 1, 0xee);
const swapped = a.swapRemove(0);
try testing.expectEqual(swapped, 0xdd);
try testing.expectEqual(a.get(0), 0xee);
const added_slice = try a.addManyAsSlice(3);
try testing.expectEqual(added_slice.len, 3);
try testing.expectEqual(a.len, 36);
while (a.popOrNull()) |_| {}
const w = a.writer();
const s = "hello, this is a test string";
try w.writeAll(s);
try testing.expectEqualStrings(s, a.constSlice());
}
test "BoundedArray sizeOf" {
// Just sanity check size on one CPU
if (@import("builtin").cpu.arch != .x86_64)
return;
try testing.expectEqual(@sizeOf(BoundedArray(u8, 3)), 4);
// `len` is the minimum required size to hold the maximum capacity
try testing.expectEqual(@TypeOf(@as(BoundedArray(u8, 15), undefined).len), u4);
try testing.expectEqual(@TypeOf(@as(BoundedArray(u8, 16), undefined).len), u5);
}
test "BoundedArrayAligned" {
var a = try BoundedArrayAligned(u8, 16, 4).init(0);
try a.append(0);
try a.append(0);
try a.append(255);
try a.append(255);
const b = @as(*const [2]u16, @ptrCast(a.constSlice().ptr));
try testing.expectEqual(@as(u16, 0), b[0]);
try testing.expectEqual(@as(u16, 65535), b[1]);
}