mirror of
https://github.com/ziglang/zig.git
synced 2024-11-15 08:33:06 +00:00
17e3fcc3a5
Importantly, fixes incorrectly annotated types in `__aeabi_?2h`.
187 lines
7.9 KiB
Zig
187 lines
7.9 KiB
Zig
const std = @import("std");
|
|
|
|
pub inline fn truncf(comptime dst_t: type, comptime src_t: type, a: src_t) dst_t {
|
|
const src_rep_t = std.meta.Int(.unsigned, @typeInfo(src_t).Float.bits);
|
|
const dst_rep_t = std.meta.Int(.unsigned, @typeInfo(dst_t).Float.bits);
|
|
const srcSigBits = std.math.floatMantissaBits(src_t);
|
|
const dstSigBits = std.math.floatMantissaBits(dst_t);
|
|
|
|
// Various constants whose values follow from the type parameters.
|
|
// Any reasonable optimizer will fold and propagate all of these.
|
|
const srcBits = @typeInfo(src_t).Float.bits;
|
|
const srcExpBits = srcBits - srcSigBits - 1;
|
|
const srcInfExp = (1 << srcExpBits) - 1;
|
|
const srcExpBias = srcInfExp >> 1;
|
|
|
|
const srcMinNormal = 1 << srcSigBits;
|
|
const srcSignificandMask = srcMinNormal - 1;
|
|
const srcInfinity = srcInfExp << srcSigBits;
|
|
const srcSignMask = 1 << (srcSigBits + srcExpBits);
|
|
const srcAbsMask = srcSignMask - 1;
|
|
const roundMask = (1 << (srcSigBits - dstSigBits)) - 1;
|
|
const halfway = 1 << (srcSigBits - dstSigBits - 1);
|
|
const srcQNaN = 1 << (srcSigBits - 1);
|
|
const srcNaNCode = srcQNaN - 1;
|
|
|
|
const dstBits = @typeInfo(dst_t).Float.bits;
|
|
const dstExpBits = dstBits - dstSigBits - 1;
|
|
const dstInfExp = (1 << dstExpBits) - 1;
|
|
const dstExpBias = dstInfExp >> 1;
|
|
|
|
const underflowExponent = srcExpBias + 1 - dstExpBias;
|
|
const overflowExponent = srcExpBias + dstInfExp - dstExpBias;
|
|
const underflow = underflowExponent << srcSigBits;
|
|
const overflow = overflowExponent << srcSigBits;
|
|
|
|
const dstQNaN = 1 << (dstSigBits - 1);
|
|
const dstNaNCode = dstQNaN - 1;
|
|
|
|
// Break a into a sign and representation of the absolute value
|
|
const aRep: src_rep_t = @bitCast(a);
|
|
const aAbs: src_rep_t = aRep & srcAbsMask;
|
|
const sign: src_rep_t = aRep & srcSignMask;
|
|
var absResult: dst_rep_t = undefined;
|
|
|
|
if (aAbs -% underflow < aAbs -% overflow) {
|
|
// The exponent of a is within the range of normal numbers in the
|
|
// destination format. We can convert by simply right-shifting with
|
|
// rounding and adjusting the exponent.
|
|
absResult = @truncate(aAbs >> (srcSigBits - dstSigBits));
|
|
absResult -%= @as(dst_rep_t, srcExpBias - dstExpBias) << dstSigBits;
|
|
|
|
const roundBits: src_rep_t = aAbs & roundMask;
|
|
if (roundBits > halfway) {
|
|
// Round to nearest
|
|
absResult += 1;
|
|
} else if (roundBits == halfway) {
|
|
// Ties to even
|
|
absResult += absResult & 1;
|
|
}
|
|
} else if (aAbs > srcInfinity) {
|
|
// a is NaN.
|
|
// Conjure the result by beginning with infinity, setting the qNaN
|
|
// bit and inserting the (truncated) trailing NaN field.
|
|
absResult = @as(dst_rep_t, @intCast(dstInfExp)) << dstSigBits;
|
|
absResult |= dstQNaN;
|
|
absResult |= @intCast(((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode);
|
|
} else if (aAbs >= overflow) {
|
|
// a overflows to infinity.
|
|
absResult = @as(dst_rep_t, @intCast(dstInfExp)) << dstSigBits;
|
|
} else {
|
|
// a underflows on conversion to the destination type or is an exact
|
|
// zero. The result may be a denormal or zero. Extract the exponent
|
|
// to get the shift amount for the denormalization.
|
|
const aExp: u32 = @intCast(aAbs >> srcSigBits);
|
|
const shift: u32 = @intCast(srcExpBias - dstExpBias - aExp + 1);
|
|
|
|
const significand: src_rep_t = (aRep & srcSignificandMask) | srcMinNormal;
|
|
|
|
// Right shift by the denormalization amount with sticky.
|
|
if (shift > srcSigBits) {
|
|
absResult = 0;
|
|
} else {
|
|
const sticky: src_rep_t = @intFromBool(significand << @intCast(srcBits - shift) != 0);
|
|
const denormalizedSignificand: src_rep_t = significand >> @intCast(shift) | sticky;
|
|
absResult = @intCast(denormalizedSignificand >> (srcSigBits - dstSigBits));
|
|
const roundBits: src_rep_t = denormalizedSignificand & roundMask;
|
|
if (roundBits > halfway) {
|
|
// Round to nearest
|
|
absResult += 1;
|
|
} else if (roundBits == halfway) {
|
|
// Ties to even
|
|
absResult += absResult & 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
const result: dst_rep_t align(@alignOf(dst_t)) = absResult |
|
|
@as(dst_rep_t, @truncate(sign >> @intCast(srcBits - dstBits)));
|
|
return @bitCast(result);
|
|
}
|
|
|
|
pub inline fn trunc_f80(comptime dst_t: type, a: f80) dst_t {
|
|
const dst_rep_t = std.meta.Int(.unsigned, @typeInfo(dst_t).Float.bits);
|
|
const src_sig_bits = std.math.floatMantissaBits(f80) - 1; // -1 for the integer bit
|
|
const dst_sig_bits = std.math.floatMantissaBits(dst_t);
|
|
|
|
const src_exp_bias = 16383;
|
|
|
|
const round_mask = (1 << (src_sig_bits - dst_sig_bits)) - 1;
|
|
const halfway = 1 << (src_sig_bits - dst_sig_bits - 1);
|
|
|
|
const dst_bits = @typeInfo(dst_t).Float.bits;
|
|
const dst_exp_bits = dst_bits - dst_sig_bits - 1;
|
|
const dst_inf_exp = (1 << dst_exp_bits) - 1;
|
|
const dst_exp_bias = dst_inf_exp >> 1;
|
|
|
|
const underflow = src_exp_bias + 1 - dst_exp_bias;
|
|
const overflow = src_exp_bias + dst_inf_exp - dst_exp_bias;
|
|
|
|
const dst_qnan = 1 << (dst_sig_bits - 1);
|
|
const dst_nan_mask = dst_qnan - 1;
|
|
|
|
// Break a into a sign and representation of the absolute value
|
|
var a_rep = std.math.break_f80(a);
|
|
const sign = a_rep.exp & 0x8000;
|
|
a_rep.exp &= 0x7FFF;
|
|
a_rep.fraction &= 0x7FFFFFFFFFFFFFFF;
|
|
var abs_result: dst_rep_t = undefined;
|
|
|
|
if (a_rep.exp -% underflow < a_rep.exp -% overflow) {
|
|
// The exponent of a is within the range of normal numbers in the
|
|
// destination format. We can convert by simply right-shifting with
|
|
// rounding and adjusting the exponent.
|
|
abs_result = @as(dst_rep_t, a_rep.exp) << dst_sig_bits;
|
|
abs_result |= @truncate(a_rep.fraction >> (src_sig_bits - dst_sig_bits));
|
|
abs_result -%= @as(dst_rep_t, src_exp_bias - dst_exp_bias) << dst_sig_bits;
|
|
|
|
const round_bits = a_rep.fraction & round_mask;
|
|
if (round_bits > halfway) {
|
|
// Round to nearest
|
|
abs_result += 1;
|
|
} else if (round_bits == halfway) {
|
|
// Ties to even
|
|
abs_result += abs_result & 1;
|
|
}
|
|
} else if (a_rep.exp == 0x7FFF and a_rep.fraction != 0) {
|
|
// a is NaN.
|
|
// Conjure the result by beginning with infinity, setting the qNaN
|
|
// bit and inserting the (truncated) trailing NaN field.
|
|
abs_result = @as(dst_rep_t, @intCast(dst_inf_exp)) << dst_sig_bits;
|
|
abs_result |= dst_qnan;
|
|
abs_result |= @intCast((a_rep.fraction >> (src_sig_bits - dst_sig_bits)) & dst_nan_mask);
|
|
} else if (a_rep.exp >= overflow) {
|
|
// a overflows to infinity.
|
|
abs_result = @as(dst_rep_t, @intCast(dst_inf_exp)) << dst_sig_bits;
|
|
} else {
|
|
// a underflows on conversion to the destination type or is an exact
|
|
// zero. The result may be a denormal or zero. Extract the exponent
|
|
// to get the shift amount for the denormalization.
|
|
const shift = src_exp_bias - dst_exp_bias - a_rep.exp;
|
|
|
|
// Right shift by the denormalization amount with sticky.
|
|
if (shift > src_sig_bits) {
|
|
abs_result = 0;
|
|
} else {
|
|
const sticky = @intFromBool(a_rep.fraction << @intCast(shift) != 0);
|
|
const denormalized_significand = a_rep.fraction >> @intCast(shift) | sticky;
|
|
abs_result = @intCast(denormalized_significand >> (src_sig_bits - dst_sig_bits));
|
|
const round_bits = denormalized_significand & round_mask;
|
|
if (round_bits > halfway) {
|
|
// Round to nearest
|
|
abs_result += 1;
|
|
} else if (round_bits == halfway) {
|
|
// Ties to even
|
|
abs_result += abs_result & 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
const result align(@alignOf(dst_t)) = abs_result | @as(dst_rep_t, sign) << dst_bits - 16;
|
|
return @bitCast(result);
|
|
}
|
|
|
|
test {
|
|
_ = @import("truncf_test.zig");
|
|
}
|