zig/lib/compiler_rt/truncf.zig
Jacob Young 17e3fcc3a5 compiler_rt: fight off @as invasion
Importantly, fixes incorrectly annotated types in `__aeabi_?2h`.
2023-09-19 09:37:52 -07:00

187 lines
7.9 KiB
Zig

const std = @import("std");
pub inline fn truncf(comptime dst_t: type, comptime src_t: type, a: src_t) dst_t {
const src_rep_t = std.meta.Int(.unsigned, @typeInfo(src_t).Float.bits);
const dst_rep_t = std.meta.Int(.unsigned, @typeInfo(dst_t).Float.bits);
const srcSigBits = std.math.floatMantissaBits(src_t);
const dstSigBits = std.math.floatMantissaBits(dst_t);
// Various constants whose values follow from the type parameters.
// Any reasonable optimizer will fold and propagate all of these.
const srcBits = @typeInfo(src_t).Float.bits;
const srcExpBits = srcBits - srcSigBits - 1;
const srcInfExp = (1 << srcExpBits) - 1;
const srcExpBias = srcInfExp >> 1;
const srcMinNormal = 1 << srcSigBits;
const srcSignificandMask = srcMinNormal - 1;
const srcInfinity = srcInfExp << srcSigBits;
const srcSignMask = 1 << (srcSigBits + srcExpBits);
const srcAbsMask = srcSignMask - 1;
const roundMask = (1 << (srcSigBits - dstSigBits)) - 1;
const halfway = 1 << (srcSigBits - dstSigBits - 1);
const srcQNaN = 1 << (srcSigBits - 1);
const srcNaNCode = srcQNaN - 1;
const dstBits = @typeInfo(dst_t).Float.bits;
const dstExpBits = dstBits - dstSigBits - 1;
const dstInfExp = (1 << dstExpBits) - 1;
const dstExpBias = dstInfExp >> 1;
const underflowExponent = srcExpBias + 1 - dstExpBias;
const overflowExponent = srcExpBias + dstInfExp - dstExpBias;
const underflow = underflowExponent << srcSigBits;
const overflow = overflowExponent << srcSigBits;
const dstQNaN = 1 << (dstSigBits - 1);
const dstNaNCode = dstQNaN - 1;
// Break a into a sign and representation of the absolute value
const aRep: src_rep_t = @bitCast(a);
const aAbs: src_rep_t = aRep & srcAbsMask;
const sign: src_rep_t = aRep & srcSignMask;
var absResult: dst_rep_t = undefined;
if (aAbs -% underflow < aAbs -% overflow) {
// The exponent of a is within the range of normal numbers in the
// destination format. We can convert by simply right-shifting with
// rounding and adjusting the exponent.
absResult = @truncate(aAbs >> (srcSigBits - dstSigBits));
absResult -%= @as(dst_rep_t, srcExpBias - dstExpBias) << dstSigBits;
const roundBits: src_rep_t = aAbs & roundMask;
if (roundBits > halfway) {
// Round to nearest
absResult += 1;
} else if (roundBits == halfway) {
// Ties to even
absResult += absResult & 1;
}
} else if (aAbs > srcInfinity) {
// a is NaN.
// Conjure the result by beginning with infinity, setting the qNaN
// bit and inserting the (truncated) trailing NaN field.
absResult = @as(dst_rep_t, @intCast(dstInfExp)) << dstSigBits;
absResult |= dstQNaN;
absResult |= @intCast(((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode);
} else if (aAbs >= overflow) {
// a overflows to infinity.
absResult = @as(dst_rep_t, @intCast(dstInfExp)) << dstSigBits;
} else {
// a underflows on conversion to the destination type or is an exact
// zero. The result may be a denormal or zero. Extract the exponent
// to get the shift amount for the denormalization.
const aExp: u32 = @intCast(aAbs >> srcSigBits);
const shift: u32 = @intCast(srcExpBias - dstExpBias - aExp + 1);
const significand: src_rep_t = (aRep & srcSignificandMask) | srcMinNormal;
// Right shift by the denormalization amount with sticky.
if (shift > srcSigBits) {
absResult = 0;
} else {
const sticky: src_rep_t = @intFromBool(significand << @intCast(srcBits - shift) != 0);
const denormalizedSignificand: src_rep_t = significand >> @intCast(shift) | sticky;
absResult = @intCast(denormalizedSignificand >> (srcSigBits - dstSigBits));
const roundBits: src_rep_t = denormalizedSignificand & roundMask;
if (roundBits > halfway) {
// Round to nearest
absResult += 1;
} else if (roundBits == halfway) {
// Ties to even
absResult += absResult & 1;
}
}
}
const result: dst_rep_t align(@alignOf(dst_t)) = absResult |
@as(dst_rep_t, @truncate(sign >> @intCast(srcBits - dstBits)));
return @bitCast(result);
}
pub inline fn trunc_f80(comptime dst_t: type, a: f80) dst_t {
const dst_rep_t = std.meta.Int(.unsigned, @typeInfo(dst_t).Float.bits);
const src_sig_bits = std.math.floatMantissaBits(f80) - 1; // -1 for the integer bit
const dst_sig_bits = std.math.floatMantissaBits(dst_t);
const src_exp_bias = 16383;
const round_mask = (1 << (src_sig_bits - dst_sig_bits)) - 1;
const halfway = 1 << (src_sig_bits - dst_sig_bits - 1);
const dst_bits = @typeInfo(dst_t).Float.bits;
const dst_exp_bits = dst_bits - dst_sig_bits - 1;
const dst_inf_exp = (1 << dst_exp_bits) - 1;
const dst_exp_bias = dst_inf_exp >> 1;
const underflow = src_exp_bias + 1 - dst_exp_bias;
const overflow = src_exp_bias + dst_inf_exp - dst_exp_bias;
const dst_qnan = 1 << (dst_sig_bits - 1);
const dst_nan_mask = dst_qnan - 1;
// Break a into a sign and representation of the absolute value
var a_rep = std.math.break_f80(a);
const sign = a_rep.exp & 0x8000;
a_rep.exp &= 0x7FFF;
a_rep.fraction &= 0x7FFFFFFFFFFFFFFF;
var abs_result: dst_rep_t = undefined;
if (a_rep.exp -% underflow < a_rep.exp -% overflow) {
// The exponent of a is within the range of normal numbers in the
// destination format. We can convert by simply right-shifting with
// rounding and adjusting the exponent.
abs_result = @as(dst_rep_t, a_rep.exp) << dst_sig_bits;
abs_result |= @truncate(a_rep.fraction >> (src_sig_bits - dst_sig_bits));
abs_result -%= @as(dst_rep_t, src_exp_bias - dst_exp_bias) << dst_sig_bits;
const round_bits = a_rep.fraction & round_mask;
if (round_bits > halfway) {
// Round to nearest
abs_result += 1;
} else if (round_bits == halfway) {
// Ties to even
abs_result += abs_result & 1;
}
} else if (a_rep.exp == 0x7FFF and a_rep.fraction != 0) {
// a is NaN.
// Conjure the result by beginning with infinity, setting the qNaN
// bit and inserting the (truncated) trailing NaN field.
abs_result = @as(dst_rep_t, @intCast(dst_inf_exp)) << dst_sig_bits;
abs_result |= dst_qnan;
abs_result |= @intCast((a_rep.fraction >> (src_sig_bits - dst_sig_bits)) & dst_nan_mask);
} else if (a_rep.exp >= overflow) {
// a overflows to infinity.
abs_result = @as(dst_rep_t, @intCast(dst_inf_exp)) << dst_sig_bits;
} else {
// a underflows on conversion to the destination type or is an exact
// zero. The result may be a denormal or zero. Extract the exponent
// to get the shift amount for the denormalization.
const shift = src_exp_bias - dst_exp_bias - a_rep.exp;
// Right shift by the denormalization amount with sticky.
if (shift > src_sig_bits) {
abs_result = 0;
} else {
const sticky = @intFromBool(a_rep.fraction << @intCast(shift) != 0);
const denormalized_significand = a_rep.fraction >> @intCast(shift) | sticky;
abs_result = @intCast(denormalized_significand >> (src_sig_bits - dst_sig_bits));
const round_bits = denormalized_significand & round_mask;
if (round_bits > halfway) {
// Round to nearest
abs_result += 1;
} else if (round_bits == halfway) {
// Ties to even
abs_result += abs_result & 1;
}
}
}
const result align(@alignOf(dst_t)) = abs_result | @as(dst_rep_t, sign) << dst_bits - 16;
return @bitCast(result);
}
test {
_ = @import("truncf_test.zig");
}