zig/lib/std/fs.zig
2019-10-31 13:53:32 -04:00

1258 lines
48 KiB
Zig

const builtin = @import("builtin");
const std = @import("std.zig");
const os = std.os;
const mem = std.mem;
const base64 = std.base64;
const crypto = std.crypto;
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
pub const path = @import("fs/path.zig");
pub const File = @import("fs/file.zig").File;
pub const symLink = os.symlink;
pub const symLinkC = os.symlinkC;
pub const deleteFile = os.unlink;
pub const deleteFileC = os.unlinkC;
pub const rename = os.rename;
pub const renameC = os.renameC;
pub const renameW = os.renameW;
pub const realpath = os.realpath;
pub const realpathC = os.realpathC;
pub const realpathW = os.realpathW;
pub const getAppDataDir = @import("fs/get_app_data_dir.zig").getAppDataDir;
pub const GetAppDataDirError = @import("fs/get_app_data_dir.zig").GetAppDataDirError;
/// This represents the maximum size of a UTF-8 encoded file path.
/// All file system operations which return a path are guaranteed to
/// fit into a UTF-8 encoded array of this length.
pub const MAX_PATH_BYTES = switch (builtin.os) {
.linux, .macosx, .ios, .freebsd, .netbsd, .dragonfly => os.PATH_MAX,
// Each UTF-16LE character may be expanded to 3 UTF-8 bytes.
// If it would require 4 UTF-8 bytes, then there would be a surrogate
// pair in the UTF-16LE, and we (over)account 3 bytes for it that way.
// +1 for the null byte at the end, which can be encoded in 1 byte.
.windows => os.windows.PATH_MAX_WIDE * 3 + 1,
else => @compileError("Unsupported OS"),
};
// here we replace the standard +/ with -_ so that it can be used in a file name
const b64_fs_encoder = base64.Base64Encoder.init("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_", base64.standard_pad_char);
/// TODO remove the allocator requirement from this API
pub fn atomicSymLink(allocator: *Allocator, existing_path: []const u8, new_path: []const u8) !void {
if (symLink(existing_path, new_path)) {
return;
} else |err| switch (err) {
error.PathAlreadyExists => {},
else => return err, // TODO zig should know this set does not include PathAlreadyExists
}
const dirname = path.dirname(new_path) orelse ".";
var rand_buf: [12]u8 = undefined;
const tmp_path = try allocator.alloc(u8, dirname.len + 1 + base64.Base64Encoder.calcSize(rand_buf.len));
defer allocator.free(tmp_path);
mem.copy(u8, tmp_path[0..], dirname);
tmp_path[dirname.len] = path.sep;
while (true) {
try crypto.randomBytes(rand_buf[0..]);
b64_fs_encoder.encode(tmp_path[dirname.len + 1 ..], rand_buf);
if (symLink(existing_path, tmp_path)) {
return rename(tmp_path, new_path);
} else |err| switch (err) {
error.PathAlreadyExists => continue,
else => return err, // TODO zig should know this set does not include PathAlreadyExists
}
}
}
// TODO fix enum literal not casting to error union
const PrevStatus = enum {
stale,
fresh,
};
pub fn updateFile(source_path: []const u8, dest_path: []const u8) !PrevStatus {
return updateFileMode(source_path, dest_path, null);
}
/// Check the file size, mtime, and mode of `source_path` and `dest_path`. If they are equal, does nothing.
/// Otherwise, atomically copies `source_path` to `dest_path`. The destination file gains the mtime,
/// atime, and mode of the source file so that the next call to `updateFile` will not need a copy.
/// Returns the previous status of the file before updating.
/// If any of the directories do not exist for dest_path, they are created.
/// TODO https://github.com/ziglang/zig/issues/2885
pub fn updateFileMode(source_path: []const u8, dest_path: []const u8, mode: ?File.Mode) !PrevStatus {
var src_file = try File.openRead(source_path);
defer src_file.close();
const src_stat = try src_file.stat();
check_dest_stat: {
const dest_stat = blk: {
var dest_file = File.openRead(dest_path) catch |err| switch (err) {
error.FileNotFound => break :check_dest_stat,
else => |e| return e,
};
defer dest_file.close();
break :blk try dest_file.stat();
};
if (src_stat.size == dest_stat.size and
src_stat.mtime == dest_stat.mtime and
src_stat.mode == dest_stat.mode)
{
return PrevStatus.fresh;
}
}
const actual_mode = mode orelse src_stat.mode;
// TODO this logic could be made more efficient by calling makePath, once
// that API does not require an allocator
var atomic_file = make_atomic_file: while (true) {
const af = AtomicFile.init(dest_path, actual_mode) catch |err| switch (err) {
error.FileNotFound => {
var p = dest_path;
while (path.dirname(p)) |dirname| {
makeDir(dirname) catch |e| switch (e) {
error.FileNotFound => {
p = dirname;
continue;
},
else => return e,
};
continue :make_atomic_file;
} else {
return err;
}
},
else => |e| return e,
};
break af;
} else unreachable;
defer atomic_file.deinit();
const in_stream = &src_file.inStream().stream;
var buf: [mem.page_size * 6]u8 = undefined;
while (true) {
const amt = try in_stream.readFull(buf[0..]);
try atomic_file.file.write(buf[0..amt]);
if (amt != buf.len) {
try atomic_file.file.updateTimes(src_stat.atime, src_stat.mtime);
try atomic_file.finish();
return PrevStatus.stale;
}
}
}
/// Guaranteed to be atomic. However until https://patchwork.kernel.org/patch/9636735/ is
/// merged and readily available,
/// there is a possibility of power loss or application termination leaving temporary files present
/// in the same directory as dest_path.
/// Destination file will have the same mode as the source file.
pub fn copyFile(source_path: []const u8, dest_path: []const u8) !void {
var in_file = try File.openRead(source_path);
defer in_file.close();
const mode = try in_file.mode();
const in_stream = &in_file.inStream().stream;
var atomic_file = try AtomicFile.init(dest_path, mode);
defer atomic_file.deinit();
var buf: [mem.page_size]u8 = undefined;
while (true) {
const amt = try in_stream.readFull(buf[0..]);
try atomic_file.file.write(buf[0..amt]);
if (amt != buf.len) {
return atomic_file.finish();
}
}
}
/// Guaranteed to be atomic. However until https://patchwork.kernel.org/patch/9636735/ is
/// merged and readily available,
/// there is a possibility of power loss or application termination leaving temporary files present
pub fn copyFileMode(source_path: []const u8, dest_path: []const u8, mode: File.Mode) !void {
var in_file = try File.openRead(source_path);
defer in_file.close();
var atomic_file = try AtomicFile.init(dest_path, mode);
defer atomic_file.deinit();
var buf: [mem.page_size * 6]u8 = undefined;
while (true) {
const amt = try in_file.read(buf[0..]);
try atomic_file.file.write(buf[0..amt]);
if (amt != buf.len) {
return atomic_file.finish();
}
}
}
pub const AtomicFile = struct {
file: File,
tmp_path_buf: [MAX_PATH_BYTES]u8,
dest_path: []const u8,
finished: bool,
const InitError = File.OpenError;
/// dest_path must remain valid for the lifetime of AtomicFile
/// call finish to atomically replace dest_path with contents
/// TODO once we have null terminated pointers, use the
/// openWriteNoClobberN function
pub fn init(dest_path: []const u8, mode: File.Mode) InitError!AtomicFile {
const dirname = path.dirname(dest_path);
var rand_buf: [12]u8 = undefined;
const dirname_component_len = if (dirname) |d| d.len + 1 else 0;
const encoded_rand_len = comptime base64.Base64Encoder.calcSize(rand_buf.len);
const tmp_path_len = dirname_component_len + encoded_rand_len;
var tmp_path_buf: [MAX_PATH_BYTES]u8 = undefined;
if (tmp_path_len >= tmp_path_buf.len) return error.NameTooLong;
if (dirname) |dir| {
mem.copy(u8, tmp_path_buf[0..], dir);
tmp_path_buf[dir.len] = path.sep;
}
tmp_path_buf[tmp_path_len] = 0;
while (true) {
try crypto.randomBytes(rand_buf[0..]);
b64_fs_encoder.encode(tmp_path_buf[dirname_component_len..tmp_path_len], rand_buf);
const file = File.openWriteNoClobberC(&tmp_path_buf, mode) catch |err| switch (err) {
error.PathAlreadyExists => continue,
// TODO zig should figure out that this error set does not include PathAlreadyExists since
// it is handled in the above switch
else => return err,
};
return AtomicFile{
.file = file,
.tmp_path_buf = tmp_path_buf,
.dest_path = dest_path,
.finished = false,
};
}
}
/// always call deinit, even after successful finish()
pub fn deinit(self: *AtomicFile) void {
if (!self.finished) {
self.file.close();
deleteFileC(&self.tmp_path_buf) catch {};
self.finished = true;
}
}
pub fn finish(self: *AtomicFile) !void {
assert(!self.finished);
self.file.close();
self.finished = true;
if (builtin.os == .windows) {
const dest_path_w = try os.windows.sliceToPrefixedFileW(self.dest_path);
const tmp_path_w = try os.windows.cStrToPrefixedFileW(&self.tmp_path_buf);
return os.renameW(&tmp_path_w, &dest_path_w);
}
const dest_path_c = try os.toPosixPath(self.dest_path);
return os.renameC(&self.tmp_path_buf, &dest_path_c);
}
};
const default_new_dir_mode = 0o755;
/// Create a new directory.
pub fn makeDir(dir_path: []const u8) !void {
return os.mkdir(dir_path, default_new_dir_mode);
}
/// Same as `makeDir` except the parameter is a null-terminated UTF8-encoded string.
pub fn makeDirC(dir_path: [*]const u8) !void {
return os.mkdirC(dir_path, default_new_dir_mode);
}
/// Same as `makeDir` except the parameter is a null-terminated UTF16LE-encoded string.
pub fn makeDirW(dir_path: [*]const u16) !void {
return os.mkdirW(dir_path, default_new_dir_mode);
}
/// Calls makeDir recursively to make an entire path. Returns success if the path
/// already exists and is a directory.
/// This function is not atomic, and if it returns an error, the file system may
/// have been modified regardless.
/// TODO determine if we can remove the allocator requirement from this function
pub fn makePath(allocator: *Allocator, full_path: []const u8) !void {
const resolved_path = try path.resolve(allocator, [_][]const u8{full_path});
defer allocator.free(resolved_path);
var end_index: usize = resolved_path.len;
while (true) {
makeDir(resolved_path[0..end_index]) catch |err| switch (err) {
error.PathAlreadyExists => {
// TODO stat the file and return an error if it's not a directory
// this is important because otherwise a dangling symlink
// could cause an infinite loop
if (end_index == resolved_path.len) return;
},
error.FileNotFound => {
// march end_index backward until next path component
while (true) {
end_index -= 1;
if (path.isSep(resolved_path[end_index])) break;
}
continue;
},
else => return err,
};
if (end_index == resolved_path.len) return;
// march end_index forward until next path component
while (true) {
end_index += 1;
if (end_index == resolved_path.len or path.isSep(resolved_path[end_index])) break;
}
}
}
/// Returns `error.DirNotEmpty` if the directory is not empty.
/// To delete a directory recursively, see `deleteTree`.
pub fn deleteDir(dir_path: []const u8) !void {
return os.rmdir(dir_path);
}
/// Same as `deleteDir` except the parameter is a null-terminated UTF8-encoded string.
pub fn deleteDirC(dir_path: [*]const u8) !void {
return os.rmdirC(dir_path);
}
/// Same as `deleteDir` except the parameter is a null-terminated UTF16LE-encoded string.
pub fn deleteDirW(dir_path: [*]const u16) !void {
return os.rmdirW(dir_path);
}
/// Removes a symlink, file, or directory.
/// If `full_path` is relative, this is equivalent to `Dir.deleteTree` with the
/// current working directory as the open directory handle.
/// If `full_path` is absolute, this is equivalent to `Dir.deleteTree` with the
/// base directory.
pub fn deleteTree(full_path: []const u8) !void {
if (path.isAbsolute(full_path)) {
const dirname = path.dirname(full_path) orelse return error{
/// Attempt to remove the root file system path.
/// This error is unreachable if `full_path` is relative.
CannotDeleteRootDirectory,
}.CannotDeleteRootDirectory;
var dir = try Dir.open(dirname);
defer dir.close();
return dir.deleteTree(path.basename(full_path));
} else {
return Dir.cwd().deleteTree(full_path);
}
}
pub const Dir = struct {
fd: os.fd_t,
pub const Entry = struct {
name: []const u8,
kind: Kind,
pub const Kind = enum {
BlockDevice,
CharacterDevice,
Directory,
NamedPipe,
SymLink,
File,
UnixDomainSocket,
Whiteout,
Unknown,
};
};
const IteratorError = error{AccessDenied} || os.UnexpectedError;
pub const Iterator = switch (builtin.os) {
.macosx, .ios, .freebsd, .netbsd, .dragonfly => struct {
dir: Dir,
seek: i64,
buf: [8192]u8, // TODO align(@alignOf(os.dirent)),
index: usize,
end_index: usize,
const Self = @This();
pub const Error = IteratorError;
/// Memory such as file names referenced in this returned entry becomes invalid
/// with subsequent calls to `next`, as well as when this `Dir` is deinitialized.
pub fn next(self: *Self) Error!?Entry {
switch (builtin.os) {
.macosx, .ios => return self.nextDarwin(),
.freebsd, .netbsd, .dragonfly => return self.nextBsd(),
else => @compileError("unimplemented"),
}
}
fn nextDarwin(self: *Self) !?Entry {
start_over: while (true) {
if (self.index >= self.end_index) {
const rc = os.system.__getdirentries64(
self.dir.fd,
&self.buf,
self.buf.len,
&self.seek,
);
if (rc == 0) return null;
if (rc < 0) {
switch (os.errno(rc)) {
os.EBADF => unreachable,
os.EFAULT => unreachable,
os.ENOTDIR => unreachable,
os.EINVAL => unreachable,
else => |err| return os.unexpectedErrno(err),
}
}
self.index = 0;
self.end_index = @intCast(usize, rc);
}
const darwin_entry = @ptrCast(*align(1) os.dirent, &self.buf[self.index]);
const next_index = self.index + darwin_entry.reclen();
self.index = next_index;
const name = @ptrCast([*]u8, &darwin_entry.d_name)[0..darwin_entry.d_namlen];
if (mem.eql(u8, name, ".") or mem.eql(u8, name, "..")) {
continue :start_over;
}
const entry_kind = switch (darwin_entry.d_type) {
os.DT_BLK => Entry.Kind.BlockDevice,
os.DT_CHR => Entry.Kind.CharacterDevice,
os.DT_DIR => Entry.Kind.Directory,
os.DT_FIFO => Entry.Kind.NamedPipe,
os.DT_LNK => Entry.Kind.SymLink,
os.DT_REG => Entry.Kind.File,
os.DT_SOCK => Entry.Kind.UnixDomainSocket,
os.DT_WHT => Entry.Kind.Whiteout,
else => Entry.Kind.Unknown,
};
return Entry{
.name = name,
.kind = entry_kind,
};
}
}
fn nextBsd(self: *Self) !?Entry {
start_over: while (true) {
if (self.index >= self.end_index) {
const rc = os.system.getdirentries(
self.dir.fd,
self.buf[0..].ptr,
self.buf.len,
&self.seek,
);
switch (os.errno(rc)) {
0 => {},
os.EBADF => unreachable,
os.EFAULT => unreachable,
os.ENOTDIR => unreachable,
os.EINVAL => unreachable,
else => |err| return os.unexpectedErrno(err),
}
if (rc == 0) return null;
self.index = 0;
self.end_index = @intCast(usize, rc);
}
const freebsd_entry = @ptrCast(*align(1) os.dirent, &self.buf[self.index]);
const next_index = self.index + freebsd_entry.reclen();
self.index = next_index;
const name = @ptrCast([*]u8, &freebsd_entry.d_name)[0..freebsd_entry.d_namlen];
if (mem.eql(u8, name, ".") or mem.eql(u8, name, "..")) {
continue :start_over;
}
const entry_kind = switch (freebsd_entry.d_type) {
os.DT_BLK => Entry.Kind.BlockDevice,
os.DT_CHR => Entry.Kind.CharacterDevice,
os.DT_DIR => Entry.Kind.Directory,
os.DT_FIFO => Entry.Kind.NamedPipe,
os.DT_LNK => Entry.Kind.SymLink,
os.DT_REG => Entry.Kind.File,
os.DT_SOCK => Entry.Kind.UnixDomainSocket,
os.DT_WHT => Entry.Kind.Whiteout,
else => Entry.Kind.Unknown,
};
return Entry{
.name = name,
.kind = entry_kind,
};
}
}
},
.linux => struct {
dir: Dir,
buf: [8192]u8, // TODO align(@alignOf(os.dirent64)),
index: usize,
end_index: usize,
const Self = @This();
pub const Error = IteratorError;
/// Memory such as file names referenced in this returned entry becomes invalid
/// with subsequent calls to `next`, as well as when this `Dir` is deinitialized.
pub fn next(self: *Self) Error!?Entry {
start_over: while (true) {
if (self.index >= self.end_index) {
const rc = os.linux.getdents64(self.dir.fd, &self.buf, self.buf.len);
switch (os.linux.getErrno(rc)) {
0 => {},
os.EBADF => unreachable,
os.EFAULT => unreachable,
os.ENOTDIR => unreachable,
os.EINVAL => unreachable,
else => |err| return os.unexpectedErrno(err),
}
if (rc == 0) return null;
self.index = 0;
self.end_index = rc;
}
const linux_entry = @ptrCast(*align(1) os.dirent64, &self.buf[self.index]);
const next_index = self.index + linux_entry.reclen();
self.index = next_index;
const name = mem.toSlice(u8, @ptrCast([*]u8, &linux_entry.d_name));
// skip . and .. entries
if (mem.eql(u8, name, ".") or mem.eql(u8, name, "..")) {
continue :start_over;
}
const entry_kind = switch (linux_entry.d_type) {
os.DT_BLK => Entry.Kind.BlockDevice,
os.DT_CHR => Entry.Kind.CharacterDevice,
os.DT_DIR => Entry.Kind.Directory,
os.DT_FIFO => Entry.Kind.NamedPipe,
os.DT_LNK => Entry.Kind.SymLink,
os.DT_REG => Entry.Kind.File,
os.DT_SOCK => Entry.Kind.UnixDomainSocket,
else => Entry.Kind.Unknown,
};
return Entry{
.name = name,
.kind = entry_kind,
};
}
}
},
.windows => struct {
dir: Dir,
buf: [8192]u8 align(@alignOf(os.windows.FILE_BOTH_DIR_INFORMATION)),
index: usize,
end_index: usize,
first: bool,
name_data: [256]u8,
const Self = @This();
pub const Error = IteratorError;
pub fn next(self: *Self) Error!?Entry {
start_over: while (true) {
const w = os.windows;
if (self.index >= self.end_index) {
var io: w.IO_STATUS_BLOCK = undefined;
const rc = w.ntdll.NtQueryDirectoryFile(
self.dir.fd,
null,
null,
null,
&io,
&self.buf,
self.buf.len,
.FileBothDirectoryInformation,
w.FALSE,
null,
if (self.first) w.BOOLEAN(w.TRUE) else w.BOOLEAN(w.FALSE),
);
self.first = false;
if (io.Information == 0) return null;
self.index = 0;
self.end_index = io.Information;
switch (rc) {
w.STATUS.SUCCESS => {},
w.STATUS.ACCESS_DENIED => return error.AccessDenied,
else => return w.unexpectedStatus(rc),
}
}
const aligned_ptr = @alignCast(@alignOf(w.FILE_BOTH_DIR_INFORMATION), &self.buf[self.index]);
const dir_info = @ptrCast(*w.FILE_BOTH_DIR_INFORMATION, aligned_ptr);
if (dir_info.NextEntryOffset != 0) {
self.index += dir_info.NextEntryOffset;
} else {
self.index = self.buf.len;
}
const name_utf16le = @ptrCast([*]u16, &dir_info.FileName)[0 .. dir_info.FileNameLength / 2];
if (mem.eql(u16, name_utf16le, [_]u16{'.'}) or mem.eql(u16, name_utf16le, [_]u16{ '.', '.' }))
continue;
// Trust that Windows gives us valid UTF-16LE
const name_utf8_len = std.unicode.utf16leToUtf8(self.name_data[0..], name_utf16le) catch unreachable;
const name_utf8 = self.name_data[0..name_utf8_len];
const kind = blk: {
const attrs = dir_info.FileAttributes;
if (attrs & w.FILE_ATTRIBUTE_DIRECTORY != 0) break :blk Entry.Kind.Directory;
if (attrs & w.FILE_ATTRIBUTE_REPARSE_POINT != 0) break :blk Entry.Kind.SymLink;
break :blk Entry.Kind.File;
};
return Entry{
.name = name_utf8,
.kind = kind,
};
}
}
},
else => @compileError("unimplemented"),
};
pub fn iterate(self: Dir) Iterator {
switch (builtin.os) {
.macosx, .ios, .freebsd, .netbsd, .dragonfly => return Iterator{
.dir = self,
.seek = 0,
.index = 0,
.end_index = 0,
.buf = undefined,
},
.linux => return Iterator{
.dir = self,
.index = 0,
.end_index = 0,
.buf = undefined,
},
.windows => return Iterator{
.dir = self,
.index = 0,
.end_index = 0,
.first = true,
.buf = undefined,
.name_data = undefined,
},
else => @compileError("unimplemented"),
}
}
/// Returns an open handle to the current working directory.
/// Closing the returned `Dir` is checked illegal behavior.
/// On POSIX targets, this function is comptime-callable.
pub fn cwd() Dir {
if (builtin.os == .windows) {
return Dir{ .fd = os.windows.peb().ProcessParameters.CurrentDirectory.Handle };
} else {
return Dir{ .fd = os.AT_FDCWD };
}
}
pub const OpenError = error{
FileNotFound,
NotDir,
AccessDenied,
SymLinkLoop,
ProcessFdQuotaExceeded,
NameTooLong,
SystemFdQuotaExceeded,
NoDevice,
SystemResources,
InvalidUtf8,
BadPathName,
DeviceBusy,
} || os.UnexpectedError;
/// Call `close` to free the directory handle.
pub fn open(dir_path: []const u8) OpenError!Dir {
return cwd().openDir(dir_path);
}
/// Same as `open` except the parameter is null-terminated.
pub fn openC(dir_path_c: [*]const u8) OpenError!Dir {
return cwd().openDirC(dir_path_c);
}
pub fn close(self: *Dir) void {
os.close(self.fd);
self.* = undefined;
}
/// Call `File.close` on the result when done.
pub fn openRead(self: Dir, sub_path: []const u8) File.OpenError!File {
const path_c = try os.toPosixPath(sub_path);
return self.openReadC(&path_c);
}
/// Call `File.close` on the result when done.
pub fn openReadC(self: Dir, sub_path: [*]const u8) File.OpenError!File {
const flags = os.O_LARGEFILE | os.O_RDONLY | os.O_CLOEXEC;
const fd = try os.openatC(self.fd, sub_path, flags, 0);
return File.openHandle(fd);
}
/// Call `close` on the result when done.
pub fn openDir(self: Dir, sub_path: []const u8) OpenError!Dir {
if (builtin.os == .windows) {
const sub_path_w = try os.windows.sliceToPrefixedFileW(sub_path);
return self.openDirW(&sub_path_w);
}
const sub_path_c = try os.toPosixPath(sub_path);
return self.openDirC(&sub_path_c);
}
/// Same as `openDir` except the parameter is null-terminated.
pub fn openDirC(self: Dir, sub_path_c: [*]const u8) OpenError!Dir {
if (builtin.os == .windows) {
const sub_path_w = try os.windows.cStrToPrefixedFileW(sub_path_c);
return self.openDirW(&sub_path_w);
}
const flags = os.O_RDONLY | os.O_DIRECTORY | os.O_CLOEXEC;
const fd = os.openatC(self.fd, sub_path_c, flags, 0) catch |err| switch (err) {
error.FileTooBig => unreachable, // can't happen for directories
error.IsDir => unreachable, // we're providing O_DIRECTORY
error.NoSpaceLeft => unreachable, // not providing O_CREAT
error.PathAlreadyExists => unreachable, // not providing O_CREAT
else => |e| return e,
};
return Dir{ .fd = fd };
}
/// Same as `openDir` except the path parameter is UTF16LE, NT-prefixed.
/// This function is Windows-only.
pub fn openDirW(self: Dir, sub_path_w: [*]const u16) OpenError!Dir {
const w = os.windows;
var result = Dir{
.fd = undefined,
};
const path_len_bytes = @intCast(u16, mem.toSliceConst(u16, sub_path_w).len * 2);
var nt_name = w.UNICODE_STRING{
.Length = path_len_bytes,
.MaximumLength = path_len_bytes,
.Buffer = @intToPtr([*]u16, @ptrToInt(sub_path_w)),
};
var attr = w.OBJECT_ATTRIBUTES{
.Length = @sizeOf(w.OBJECT_ATTRIBUTES),
.RootDirectory = if (path.isAbsoluteW(sub_path_w)) null else self.fd,
.Attributes = 0, // Note we do not use OBJ_CASE_INSENSITIVE here.
.ObjectName = &nt_name,
.SecurityDescriptor = null,
.SecurityQualityOfService = null,
};
if (sub_path_w[0] == '.' and sub_path_w[1] == 0) {
// Windows does not recognize this, but it does work with empty string.
nt_name.Length = 0;
}
if (sub_path_w[0] == '.' and sub_path_w[1] == '.' and sub_path_w[2] == 0) {
// If you're looking to contribute to zig and fix this, see here for an example of how to
// implement this: https://git.midipix.org/ntapi/tree/src/fs/ntapi_tt_open_physical_parent_directory.c
@panic("TODO opening '..' with a relative directory handle is not yet implemented on Windows");
}
var io: w.IO_STATUS_BLOCK = undefined;
const rc = w.ntdll.NtCreateFile(
&result.fd,
w.GENERIC_READ | w.SYNCHRONIZE,
&attr,
&io,
null,
0,
w.FILE_SHARE_READ | w.FILE_SHARE_WRITE,
w.FILE_OPEN,
w.FILE_DIRECTORY_FILE | w.FILE_SYNCHRONOUS_IO_NONALERT | w.FILE_OPEN_FOR_BACKUP_INTENT,
null,
0,
);
switch (rc) {
w.STATUS.SUCCESS => return result,
w.STATUS.OBJECT_NAME_INVALID => unreachable,
w.STATUS.OBJECT_NAME_NOT_FOUND => return error.FileNotFound,
w.STATUS.OBJECT_PATH_NOT_FOUND => return error.FileNotFound,
w.STATUS.INVALID_PARAMETER => unreachable,
else => return w.unexpectedStatus(rc),
}
}
pub const DeleteFileError = os.UnlinkError;
/// Delete a file name and possibly the file it refers to, based on an open directory handle.
pub fn deleteFile(self: Dir, sub_path: []const u8) DeleteFileError!void {
const sub_path_c = try os.toPosixPath(sub_path);
return self.deleteFileC(&sub_path_c);
}
/// Same as `deleteFile` except the parameter is null-terminated.
pub fn deleteFileC(self: Dir, sub_path_c: [*]const u8) DeleteFileError!void {
os.unlinkatC(self.fd, sub_path_c, 0) catch |err| switch (err) {
error.DirNotEmpty => unreachable, // not passing AT_REMOVEDIR
else => |e| return e,
};
}
pub const DeleteDirError = error{
DirNotEmpty,
FileNotFound,
AccessDenied,
FileBusy,
FileSystem,
SymLinkLoop,
NameTooLong,
NotDir,
SystemResources,
ReadOnlyFileSystem,
InvalidUtf8,
BadPathName,
Unexpected,
};
/// Returns `error.DirNotEmpty` if the directory is not empty.
/// To delete a directory recursively, see `deleteTree`.
pub fn deleteDir(self: Dir, sub_path: []const u8) DeleteDirError!void {
if (builtin.os == .windows) {
const sub_path_w = try os.windows.sliceToPrefixedFileW(sub_path);
return self.deleteDirW(&sub_path_w);
}
const sub_path_c = try os.toPosixPath(sub_path);
return self.deleteDirC(&sub_path_c);
}
/// Same as `deleteDir` except the parameter is null-terminated.
pub fn deleteDirC(self: Dir, sub_path_c: [*]const u8) DeleteDirError!void {
os.unlinkatC(self.fd, sub_path_c, os.AT_REMOVEDIR) catch |err| switch (err) {
error.IsDir => unreachable, // not possible since we pass AT_REMOVEDIR
else => |e| return e,
};
}
/// Same as `deleteDir` except the parameter is UTF16LE, NT prefixed.
/// This function is Windows-only.
pub fn deleteDirW(self: Dir, sub_path_w: [*]const u16) DeleteDirError!void {
os.unlinkatW(self.fd, sub_path_w, os.AT_REMOVEDIR) catch |err| switch (err) {
error.IsDir => unreachable, // not possible since we pass AT_REMOVEDIR
else => |e| return e,
};
}
/// Read value of a symbolic link.
/// The return value is a slice of `buffer`, from index `0`.
pub fn readLink(self: Dir, sub_path: []const u8, buffer: *[MAX_PATH_BYTES]u8) ![]u8 {
const sub_path_c = try os.toPosixPath(sub_path);
return self.readLinkC(&sub_path_c, buffer);
}
/// Same as `readLink`, except the `pathname` parameter is null-terminated.
pub fn readLinkC(self: Dir, sub_path_c: [*]const u8, buffer: *[MAX_PATH_BYTES]u8) ![]u8 {
return os.readlinkatC(self.fd, sub_path_c, buffer);
}
pub const DeleteTreeError = error{
AccessDenied,
FileTooBig,
SymLinkLoop,
ProcessFdQuotaExceeded,
NameTooLong,
SystemFdQuotaExceeded,
NoDevice,
SystemResources,
ReadOnlyFileSystem,
FileSystem,
FileBusy,
DeviceBusy,
/// One of the path components was not a directory.
/// This error is unreachable if `sub_path` does not contain a path separator.
NotDir,
/// On Windows, file paths must be valid Unicode.
InvalidUtf8,
/// On Windows, file paths cannot contain these characters:
/// '/', '*', '?', '"', '<', '>', '|'
BadPathName,
} || os.UnexpectedError;
/// Whether `full_path` describes a symlink, file, or directory, this function
/// removes it. If it cannot be removed because it is a non-empty directory,
/// this function recursively removes its entries and then tries again.
/// This operation is not atomic on most file systems.
pub fn deleteTree(self: Dir, sub_path: []const u8) DeleteTreeError!void {
start_over: while (true) {
var got_access_denied = false;
// First, try deleting the item as a file. This way we don't follow sym links.
if (self.deleteFile(sub_path)) {
return;
} else |err| switch (err) {
error.FileNotFound => return,
error.IsDir => {},
error.AccessDenied => got_access_denied = true,
error.InvalidUtf8,
error.SymLinkLoop,
error.NameTooLong,
error.SystemResources,
error.ReadOnlyFileSystem,
error.NotDir,
error.FileSystem,
error.FileBusy,
error.BadPathName,
error.Unexpected,
=> |e| return e,
}
var dir = self.openDir(sub_path) catch |err| switch (err) {
error.NotDir => {
if (got_access_denied) {
return error.AccessDenied;
}
continue :start_over;
},
error.FileNotFound => {
// That's fine, we were trying to remove this directory anyway.
continue :start_over;
},
error.AccessDenied,
error.SymLinkLoop,
error.ProcessFdQuotaExceeded,
error.NameTooLong,
error.SystemFdQuotaExceeded,
error.NoDevice,
error.SystemResources,
error.Unexpected,
error.InvalidUtf8,
error.BadPathName,
error.DeviceBusy,
=> |e| return e,
};
var cleanup_dir_parent: ?Dir = null;
defer if (cleanup_dir_parent) |*d| d.close();
var cleanup_dir = true;
defer if (cleanup_dir) dir.close();
var dir_name_buf: [MAX_PATH_BYTES]u8 = undefined;
var dir_name: []const u8 = sub_path;
var parent_dir = self;
// Here we must avoid recursion, in order to provide O(1) memory guarantee of this function.
// Go through each entry and if it is not a directory, delete it. If it is a directory,
// open it, and close the original directory. Repeat. Then start the entire operation over.
scan_dir: while (true) {
var dir_it = dir.iterate();
while (try dir_it.next()) |entry| {
if (dir.deleteFile(entry.name)) {
continue;
} else |err| switch (err) {
error.FileNotFound => continue,
// Impossible because we do not pass any path separators.
error.NotDir => unreachable,
error.IsDir => {},
error.AccessDenied => got_access_denied = true,
error.InvalidUtf8,
error.SymLinkLoop,
error.NameTooLong,
error.SystemResources,
error.ReadOnlyFileSystem,
error.FileSystem,
error.FileBusy,
error.BadPathName,
error.Unexpected,
=> |e| return e,
}
const new_dir = dir.openDir(entry.name) catch |err| switch (err) {
error.NotDir => {
if (got_access_denied) {
return error.AccessDenied;
}
continue :scan_dir;
},
error.FileNotFound => {
// That's fine, we were trying to remove this directory anyway.
continue :scan_dir;
},
error.AccessDenied,
error.SymLinkLoop,
error.ProcessFdQuotaExceeded,
error.NameTooLong,
error.SystemFdQuotaExceeded,
error.NoDevice,
error.SystemResources,
error.Unexpected,
error.InvalidUtf8,
error.BadPathName,
error.DeviceBusy,
=> |e| return e,
};
if (cleanup_dir_parent) |*d| d.close();
cleanup_dir_parent = dir;
dir = new_dir;
mem.copy(u8, &dir_name_buf, entry.name);
dir_name = dir_name_buf[0..entry.name.len];
continue :scan_dir;
}
// Reached the end of the directory entries, which means we successfully deleted all of them.
// Now to remove the directory itself.
dir.close();
cleanup_dir = false;
if (cleanup_dir_parent) |d| {
d.deleteDir(dir_name) catch |err| switch (err) {
// These two things can happen due to file system race conditions.
error.FileNotFound, error.DirNotEmpty => continue :start_over,
else => |e| return e,
};
continue :start_over;
} else {
self.deleteDir(sub_path) catch |err| switch (err) {
error.FileNotFound => return,
error.DirNotEmpty => continue :start_over,
else => |e| return e,
};
return;
}
}
}
}
};
pub const Walker = struct {
stack: std.ArrayList(StackItem),
name_buffer: std.Buffer,
pub const Entry = struct {
/// The containing directory. This can be used to operate directly on `basename`
/// rather than `path`, avoiding `error.NameTooLong` for deeply nested paths.
/// The directory remains open until `next` or `deinit` is called.
dir: Dir,
basename: []const u8,
path: []const u8,
kind: Dir.Entry.Kind,
};
const StackItem = struct {
dir_it: Dir.Iterator,
dirname_len: usize,
};
/// After each call to this function, and on deinit(), the memory returned
/// from this function becomes invalid. A copy must be made in order to keep
/// a reference to the path.
pub fn next(self: *Walker) !?Entry {
while (true) {
if (self.stack.len == 0) return null;
// `top` becomes invalid after appending to `self.stack`.
const top = &self.stack.toSlice()[self.stack.len - 1];
const dirname_len = top.dirname_len;
if (try top.dir_it.next()) |base| {
self.name_buffer.shrink(dirname_len);
try self.name_buffer.appendByte(path.sep);
try self.name_buffer.append(base.name);
if (base.kind == .Directory) {
var new_dir = top.dir_it.dir.openDir(base.name) catch |err| switch (err) {
error.NameTooLong => unreachable, // no path sep in base.name
else => |e| return e,
};
{
errdefer new_dir.close();
try self.stack.append(StackItem{
.dir_it = new_dir.iterate(),
.dirname_len = self.name_buffer.len(),
});
}
}
return Entry{
.dir = top.dir_it.dir,
.basename = self.name_buffer.toSliceConst()[dirname_len + 1 ..],
.path = self.name_buffer.toSliceConst(),
.kind = base.kind,
};
} else {
self.stack.pop().dir_it.dir.close();
}
}
}
pub fn deinit(self: *Walker) void {
while (self.stack.popOrNull()) |*item| item.dir_it.close();
self.stack.deinit();
self.name_buffer.deinit();
}
};
/// Recursively iterates over a directory.
/// Must call `Walker.deinit` when done.
/// `dir_path` must not end in a path separator.
/// The order of returned file system entries is undefined.
pub fn walkPath(allocator: *Allocator, dir_path: []const u8) !Walker {
assert(!mem.endsWith(u8, dir_path, path.sep_str));
var dir = try Dir.open(dir_path);
errdefer dir.close();
var name_buffer = try std.Buffer.init(allocator, dir_path);
errdefer name_buffer.deinit();
var walker = Walker{
.stack = std.ArrayList(Walker.StackItem).init(allocator),
.name_buffer = name_buffer,
};
try walker.stack.append(Walker.StackItem{
.dir_it = dir.iterate(),
.dirname_len = dir_path.len,
});
return walker;
}
/// Read value of a symbolic link.
/// The return value is a slice of buffer, from index `0`.
pub fn readLink(pathname: []const u8, buffer: *[MAX_PATH_BYTES]u8) ![]u8 {
return os.readlink(pathname, buffer);
}
/// Same as `readLink`, except the parameter is null-terminated.
pub fn readLinkC(pathname_c: [*]const u8, buffer: *[MAX_PATH_BYTES]u8) ![]u8 {
return os.readlinkC(pathname_c, buffer);
}
pub const OpenSelfExeError = os.OpenError || os.windows.CreateFileError || SelfExePathError;
pub fn openSelfExe() OpenSelfExeError!File {
if (builtin.os == .linux) {
return File.openReadC(c"/proc/self/exe");
}
if (builtin.os == .windows) {
var buf: [os.windows.PATH_MAX_WIDE]u16 = undefined;
const wide_slice = try selfExePathW(&buf);
return File.openReadW(wide_slice.ptr);
}
var buf: [MAX_PATH_BYTES]u8 = undefined;
const self_exe_path = try selfExePath(&buf);
buf[self_exe_path.len] = 0;
return File.openReadC(self_exe_path.ptr);
}
test "openSelfExe" {
switch (builtin.os) {
.linux, .macosx, .ios, .windows, .freebsd, .dragonfly => (try openSelfExe()).close(),
else => return error.SkipZigTest, // Unsupported OS.
}
}
pub const SelfExePathError = os.ReadLinkError || os.SysCtlError;
/// Get the path to the current executable.
/// If you only need the directory, use selfExeDirPath.
/// If you only want an open file handle, use openSelfExe.
/// This function may return an error if the current executable
/// was deleted after spawning.
/// Returned value is a slice of out_buffer.
///
/// On Linux, depends on procfs being mounted. If the currently executing binary has
/// been deleted, the file path looks something like `/a/b/c/exe (deleted)`.
/// TODO make the return type of this a null terminated pointer
pub fn selfExePath(out_buffer: *[MAX_PATH_BYTES]u8) SelfExePathError![]u8 {
if (comptime std.Target.current.isDarwin()) {
var u32_len: u32 = out_buffer.len;
const rc = std.c._NSGetExecutablePath(out_buffer, &u32_len);
if (rc != 0) return error.NameTooLong;
return mem.toSlice(u8, out_buffer);
}
switch (builtin.os) {
.linux => return os.readlinkC(c"/proc/self/exe", out_buffer),
.freebsd, .dragonfly => {
var mib = [4]c_int{ os.CTL_KERN, os.KERN_PROC, os.KERN_PROC_PATHNAME, -1 };
var out_len: usize = out_buffer.len;
try os.sysctl(&mib, out_buffer, &out_len, null, 0);
// TODO could this slice from 0 to out_len instead?
return mem.toSlice(u8, out_buffer);
},
.netbsd => {
var mib = [4]c_int{ os.CTL_KERN, os.KERN_PROC_ARGS, -1, os.KERN_PROC_PATHNAME };
var out_len: usize = out_buffer.len;
try os.sysctl(&mib, out_buffer, &out_len, null, 0);
// TODO could this slice from 0 to out_len instead?
return mem.toSlice(u8, out_buffer);
},
.windows => {
var utf16le_buf: [os.windows.PATH_MAX_WIDE]u16 = undefined;
const utf16le_slice = try selfExePathW(&utf16le_buf);
// Trust that Windows gives us valid UTF-16LE.
const end_index = std.unicode.utf16leToUtf8(out_buffer, utf16le_slice) catch unreachable;
return out_buffer[0..end_index];
},
else => @compileError("std.fs.selfExePath not supported for this target"),
}
}
/// Same as `selfExePath` except the result is UTF16LE-encoded.
pub fn selfExePathW(out_buffer: *[os.windows.PATH_MAX_WIDE]u16) SelfExePathError![]u16 {
return os.windows.GetModuleFileNameW(null, out_buffer, out_buffer.len);
}
/// `selfExeDirPath` except allocates the result on the heap.
/// Caller owns returned memory.
pub fn selfExeDirPathAlloc(allocator: *Allocator) ![]u8 {
var buf: [MAX_PATH_BYTES]u8 = undefined;
return mem.dupe(allocator, u8, try selfExeDirPath(&buf));
}
/// Get the directory path that contains the current executable.
/// Returned value is a slice of out_buffer.
pub fn selfExeDirPath(out_buffer: *[MAX_PATH_BYTES]u8) SelfExePathError![]const u8 {
if (builtin.os == .linux) {
// If the currently executing binary has been deleted,
// the file path looks something like `/a/b/c/exe (deleted)`
// This path cannot be opened, but it's valid for determining the directory
// the executable was in when it was run.
const full_exe_path = try os.readlinkC(c"/proc/self/exe", out_buffer);
// Assume that /proc/self/exe has an absolute path, and therefore dirname
// will not return null.
return path.dirname(full_exe_path).?;
}
const self_exe_path = try selfExePath(out_buffer);
// Assume that the OS APIs return absolute paths, and therefore dirname
// will not return null.
return path.dirname(self_exe_path).?;
}
/// `realpath`, except caller must free the returned memory.
pub fn realpathAlloc(allocator: *Allocator, pathname: []const u8) ![]u8 {
var buf: [MAX_PATH_BYTES]u8 = undefined;
return mem.dupe(allocator, u8, try os.realpath(pathname, &buf));
}
test "" {
_ = @import("fs/path.zig");
_ = @import("fs/file.zig");
_ = @import("fs/get_app_data_dir.zig");
}