zig/lib/std/unicode.zig
Ryan Liptak 959d227d13 ArgIteratorWindows: Reduce allocated memory by parsing the WTF-16 string directly
Before this commit, the WTF-16 command line string would be converted to WTF-8 in `init`, and then a second buffer of the WTF-8 size + 1 would be allocated to store the parsed arguments. The converted WTF-8 command line would then be parsed and the relevant bytes would be copied into the argument buffer before being returned.

After this commit, only the WTF-8 size of the WTF-16 string is calculated (without conversion) which is then used to allocate the buffer for the parsed arguments. Parsing is then done on the WTF-16 slice directly, with the arguments being converted to WTF-8 on-the-fly.

This has a few (minor) benefits:

- Cuts the amount of memory allocated by ArgIteratorWindows in half (or better)
- Makes the total amount of memory allocated by ArgIteratorWindows predictable, since, before, the upfront `wtf16LeToWtf8Alloc` call could end up allocating more-memory-than-necessary temporarily due to its internal use of an ArrayList. Now, the amount of memory allocated is always exactly `calcWtf8Len(cmd_line) + 1`.
2024-07-13 14:48:17 -07:00

2143 lines
82 KiB
Zig
Raw Blame History

const std = @import("./std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const native_endian = builtin.cpu.arch.endian();
/// Use this to replace an unknown, unrecognized, or unrepresentable character.
///
/// See also: https://en.wikipedia.org/wiki/Specials_(Unicode_block)#Replacement_character
pub const replacement_character: u21 = 0xFFFD;
/// Returns how many bytes the UTF-8 representation would require
/// for the given codepoint.
pub fn utf8CodepointSequenceLength(c: u21) !u3 {
if (c < 0x80) return @as(u3, 1);
if (c < 0x800) return @as(u3, 2);
if (c < 0x10000) return @as(u3, 3);
if (c < 0x110000) return @as(u3, 4);
return error.CodepointTooLarge;
}
/// Given the first byte of a UTF-8 codepoint,
/// returns a number 1-4 indicating the total length of the codepoint in bytes.
/// If this byte does not match the form of a UTF-8 start byte, returns Utf8InvalidStartByte.
pub fn utf8ByteSequenceLength(first_byte: u8) !u3 {
// The switch is optimized much better than a "smart" approach using @clz
return switch (first_byte) {
0b0000_0000...0b0111_1111 => 1,
0b1100_0000...0b1101_1111 => 2,
0b1110_0000...0b1110_1111 => 3,
0b1111_0000...0b1111_0111 => 4,
else => error.Utf8InvalidStartByte,
};
}
/// Encodes the given codepoint into a UTF-8 byte sequence.
/// c: the codepoint.
/// out: the out buffer to write to. Must have a len >= utf8CodepointSequenceLength(c).
/// Errors: if c cannot be encoded in UTF-8.
/// Returns: the number of bytes written to out.
pub fn utf8Encode(c: u21, out: []u8) error{ Utf8CannotEncodeSurrogateHalf, CodepointTooLarge }!u3 {
return utf8EncodeImpl(c, out, .cannot_encode_surrogate_half);
}
const Surrogates = enum {
cannot_encode_surrogate_half,
can_encode_surrogate_half,
};
fn utf8EncodeImpl(c: u21, out: []u8, comptime surrogates: Surrogates) !u3 {
const length = try utf8CodepointSequenceLength(c);
assert(out.len >= length);
switch (length) {
// The pattern for each is the same
// - Increasing the initial shift by 6 each time
// - Each time after the first shorten the shifted
// value to a max of 0b111111 (63)
1 => out[0] = @as(u8, @intCast(c)), // Can just do 0 + codepoint for initial range
2 => {
out[0] = @as(u8, @intCast(0b11000000 | (c >> 6)));
out[1] = @as(u8, @intCast(0b10000000 | (c & 0b111111)));
},
3 => {
if (surrogates == .cannot_encode_surrogate_half and isSurrogateCodepoint(c)) {
return error.Utf8CannotEncodeSurrogateHalf;
}
out[0] = @as(u8, @intCast(0b11100000 | (c >> 12)));
out[1] = @as(u8, @intCast(0b10000000 | ((c >> 6) & 0b111111)));
out[2] = @as(u8, @intCast(0b10000000 | (c & 0b111111)));
},
4 => {
out[0] = @as(u8, @intCast(0b11110000 | (c >> 18)));
out[1] = @as(u8, @intCast(0b10000000 | ((c >> 12) & 0b111111)));
out[2] = @as(u8, @intCast(0b10000000 | ((c >> 6) & 0b111111)));
out[3] = @as(u8, @intCast(0b10000000 | (c & 0b111111)));
},
else => unreachable,
}
return length;
}
pub inline fn utf8EncodeComptime(comptime c: u21) [
utf8CodepointSequenceLength(c) catch |err|
@compileError(@errorName(err))
]u8 {
comptime var result: [
utf8CodepointSequenceLength(c) catch
unreachable
]u8 = undefined;
comptime assert((utf8Encode(c, &result) catch |err|
@compileError(@errorName(err))) == result.len);
return result;
}
const Utf8DecodeError = Utf8Decode2Error || Utf8Decode3Error || Utf8Decode4Error;
/// Decodes the UTF-8 codepoint encoded in the given slice of bytes.
/// bytes.len must be equal to utf8ByteSequenceLength(bytes[0]) catch unreachable.
/// If you already know the length at comptime, you can call one of
/// utf8Decode2,utf8Decode3,utf8Decode4 directly instead of this function.
pub fn utf8Decode(bytes: []const u8) Utf8DecodeError!u21 {
return switch (bytes.len) {
1 => @as(u21, bytes[0]),
2 => utf8Decode2(bytes),
3 => utf8Decode3(bytes),
4 => utf8Decode4(bytes),
else => unreachable,
};
}
const Utf8Decode2Error = error{
Utf8ExpectedContinuation,
Utf8OverlongEncoding,
};
pub fn utf8Decode2(bytes: []const u8) Utf8Decode2Error!u21 {
assert(bytes.len == 2);
assert(bytes[0] & 0b11100000 == 0b11000000);
var value: u21 = bytes[0] & 0b00011111;
if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
value <<= 6;
value |= bytes[1] & 0b00111111;
if (value < 0x80) return error.Utf8OverlongEncoding;
return value;
}
const Utf8Decode3Error = Utf8Decode3AllowSurrogateHalfError || error{
Utf8EncodesSurrogateHalf,
};
pub fn utf8Decode3(bytes: []const u8) Utf8Decode3Error!u21 {
const value = try utf8Decode3AllowSurrogateHalf(bytes);
if (0xd800 <= value and value <= 0xdfff) return error.Utf8EncodesSurrogateHalf;
return value;
}
const Utf8Decode3AllowSurrogateHalfError = error{
Utf8ExpectedContinuation,
Utf8OverlongEncoding,
};
pub fn utf8Decode3AllowSurrogateHalf(bytes: []const u8) Utf8Decode3AllowSurrogateHalfError!u21 {
assert(bytes.len == 3);
assert(bytes[0] & 0b11110000 == 0b11100000);
var value: u21 = bytes[0] & 0b00001111;
if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
value <<= 6;
value |= bytes[1] & 0b00111111;
if (bytes[2] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
value <<= 6;
value |= bytes[2] & 0b00111111;
if (value < 0x800) return error.Utf8OverlongEncoding;
return value;
}
const Utf8Decode4Error = error{
Utf8ExpectedContinuation,
Utf8OverlongEncoding,
Utf8CodepointTooLarge,
};
pub fn utf8Decode4(bytes: []const u8) Utf8Decode4Error!u21 {
assert(bytes.len == 4);
assert(bytes[0] & 0b11111000 == 0b11110000);
var value: u21 = bytes[0] & 0b00000111;
if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
value <<= 6;
value |= bytes[1] & 0b00111111;
if (bytes[2] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
value <<= 6;
value |= bytes[2] & 0b00111111;
if (bytes[3] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
value <<= 6;
value |= bytes[3] & 0b00111111;
if (value < 0x10000) return error.Utf8OverlongEncoding;
if (value > 0x10FFFF) return error.Utf8CodepointTooLarge;
return value;
}
/// Returns true if the given unicode codepoint can be encoded in UTF-8.
pub fn utf8ValidCodepoint(value: u21) bool {
return switch (value) {
0xD800...0xDFFF => false, // Surrogates range
0x110000...0x1FFFFF => false, // Above the maximum codepoint value
else => true,
};
}
/// Returns the length of a supplied UTF-8 string literal in terms of unicode
/// codepoints.
pub fn utf8CountCodepoints(s: []const u8) !usize {
var len: usize = 0;
const N = @sizeOf(usize);
const MASK = 0x80 * (std.math.maxInt(usize) / 0xff);
var i: usize = 0;
while (i < s.len) {
// Fast path for ASCII sequences
while (i + N <= s.len) : (i += N) {
const v = mem.readInt(usize, s[i..][0..N], native_endian);
if (v & MASK != 0) break;
len += N;
}
if (i < s.len) {
const n = try utf8ByteSequenceLength(s[i]);
if (i + n > s.len) return error.TruncatedInput;
switch (n) {
1 => {}, // ASCII, no validation needed
else => _ = try utf8Decode(s[i..][0..n]),
}
i += n;
len += 1;
}
}
return len;
}
/// Returns true if the input consists entirely of UTF-8 codepoints
pub fn utf8ValidateSlice(input: []const u8) bool {
return utf8ValidateSliceImpl(input, .cannot_encode_surrogate_half);
}
fn utf8ValidateSliceImpl(input: []const u8, comptime surrogates: Surrogates) bool {
var remaining = input;
if (std.simd.suggestVectorLength(u8)) |chunk_len| {
const Chunk = @Vector(chunk_len, u8);
// Fast path. Check for and skip ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(0x80);
if (@reduce(.Or, chunk & mask == mask)) {
// found a non ASCII byte
break;
}
remaining = remaining[chunk_len..];
}
}
// default lowest and highest continuation byte
const lo_cb = 0b10000000;
const hi_cb = 0b10111111;
const min_non_ascii_codepoint = 0x80;
// The first nibble is used to identify the continuation byte range to
// accept. The second nibble is the size.
const xx = 0xF1; // invalid: size 1
const as = 0xF0; // ASCII: size 1
const s1 = 0x02; // accept 0, size 2
const s2 = switch (surrogates) {
.cannot_encode_surrogate_half => 0x13, // accept 1, size 3
.can_encode_surrogate_half => 0x03, // accept 0, size 3
};
const s3 = 0x03; // accept 0, size 3
const s4 = switch (surrogates) {
.cannot_encode_surrogate_half => 0x23, // accept 2, size 3
.can_encode_surrogate_half => 0x03, // accept 0, size 3
};
const s5 = 0x34; // accept 3, size 4
const s6 = 0x04; // accept 0, size 4
const s7 = 0x44; // accept 4, size 4
// Information about the first byte in a UTF-8 sequence.
const first = comptime ([_]u8{as} ** 128) ++ ([_]u8{xx} ** 64) ++ [_]u8{
xx, xx, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1,
s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1,
s2, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s4, s3, s3,
s5, s6, s6, s6, s7, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx,
};
const n = remaining.len;
var i: usize = 0;
while (i < n) {
const first_byte = remaining[i];
if (first_byte < min_non_ascii_codepoint) {
i += 1;
continue;
}
const info = first[first_byte];
if (info == xx) {
return false; // Illegal starter byte.
}
const size = info & 7;
if (i + size > n) {
return false; // Short or invalid.
}
// Figure out the acceptable low and high continuation bytes, starting
// with our defaults.
var accept_lo: u8 = lo_cb;
var accept_hi: u8 = hi_cb;
switch (info >> 4) {
0 => {},
1 => accept_lo = 0xA0,
2 => accept_hi = 0x9F,
3 => accept_lo = 0x90,
4 => accept_hi = 0x8F,
else => unreachable,
}
const c1 = remaining[i + 1];
if (c1 < accept_lo or accept_hi < c1) {
return false;
}
switch (size) {
2 => i += 2,
3 => {
const c2 = remaining[i + 2];
if (c2 < lo_cb or hi_cb < c2) {
return false;
}
i += 3;
},
4 => {
const c2 = remaining[i + 2];
if (c2 < lo_cb or hi_cb < c2) {
return false;
}
const c3 = remaining[i + 3];
if (c3 < lo_cb or hi_cb < c3) {
return false;
}
i += 4;
},
else => unreachable,
}
}
return true;
}
/// Utf8View iterates the code points of a utf-8 encoded string.
///
/// ```
/// var utf8 = (try std.unicode.Utf8View.init("hi there")).iterator();
/// while (utf8.nextCodepointSlice()) |codepoint| {
/// std.debug.print("got codepoint {s}\n", .{codepoint});
/// }
/// ```
pub const Utf8View = struct {
bytes: []const u8,
pub fn init(s: []const u8) !Utf8View {
if (!utf8ValidateSlice(s)) {
return error.InvalidUtf8;
}
return initUnchecked(s);
}
pub fn initUnchecked(s: []const u8) Utf8View {
return Utf8View{ .bytes = s };
}
pub inline fn initComptime(comptime s: []const u8) Utf8View {
return comptime if (init(s)) |r| r else |err| switch (err) {
error.InvalidUtf8 => {
@compileError("invalid utf8");
},
};
}
pub fn iterator(s: Utf8View) Utf8Iterator {
return Utf8Iterator{
.bytes = s.bytes,
.i = 0,
};
}
};
pub const Utf8Iterator = struct {
bytes: []const u8,
i: usize,
pub fn nextCodepointSlice(it: *Utf8Iterator) ?[]const u8 {
if (it.i >= it.bytes.len) {
return null;
}
const cp_len = utf8ByteSequenceLength(it.bytes[it.i]) catch unreachable;
it.i += cp_len;
return it.bytes[it.i - cp_len .. it.i];
}
pub fn nextCodepoint(it: *Utf8Iterator) ?u21 {
const slice = it.nextCodepointSlice() orelse return null;
return utf8Decode(slice) catch unreachable;
}
/// Look ahead at the next n codepoints without advancing the iterator.
/// If fewer than n codepoints are available, then return the remainder of the string.
pub fn peek(it: *Utf8Iterator, n: usize) []const u8 {
const original_i = it.i;
defer it.i = original_i;
var end_ix = original_i;
var found: usize = 0;
while (found < n) : (found += 1) {
const next_codepoint = it.nextCodepointSlice() orelse return it.bytes[original_i..];
end_ix += next_codepoint.len;
}
return it.bytes[original_i..end_ix];
}
};
pub fn utf16IsHighSurrogate(c: u16) bool {
return c & ~@as(u16, 0x03ff) == 0xd800;
}
pub fn utf16IsLowSurrogate(c: u16) bool {
return c & ~@as(u16, 0x03ff) == 0xdc00;
}
/// Returns how many code units the UTF-16 representation would require
/// for the given codepoint.
pub fn utf16CodepointSequenceLength(c: u21) !u2 {
if (c <= 0xFFFF) return 1;
if (c <= 0x10FFFF) return 2;
return error.CodepointTooLarge;
}
test utf16CodepointSequenceLength {
try testing.expectEqual(@as(u2, 1), try utf16CodepointSequenceLength('a'));
try testing.expectEqual(@as(u2, 1), try utf16CodepointSequenceLength(0xFFFF));
try testing.expectEqual(@as(u2, 2), try utf16CodepointSequenceLength(0x10000));
try testing.expectEqual(@as(u2, 2), try utf16CodepointSequenceLength(0x10FFFF));
try testing.expectError(error.CodepointTooLarge, utf16CodepointSequenceLength(0x110000));
}
/// Given the first code unit of a UTF-16 codepoint, returns a number 1-2
/// indicating the total length of the codepoint in UTF-16 code units.
/// If this code unit does not match the form of a UTF-16 start code unit, returns Utf16InvalidStartCodeUnit.
pub fn utf16CodeUnitSequenceLength(first_code_unit: u16) !u2 {
if (utf16IsHighSurrogate(first_code_unit)) return 2;
if (utf16IsLowSurrogate(first_code_unit)) return error.Utf16InvalidStartCodeUnit;
return 1;
}
test utf16CodeUnitSequenceLength {
try testing.expectEqual(@as(u2, 1), try utf16CodeUnitSequenceLength('a'));
try testing.expectEqual(@as(u2, 1), try utf16CodeUnitSequenceLength(0xFFFF));
try testing.expectEqual(@as(u2, 2), try utf16CodeUnitSequenceLength(0xDBFF));
try testing.expectError(error.Utf16InvalidStartCodeUnit, utf16CodeUnitSequenceLength(0xDFFF));
}
/// Decodes the codepoint encoded in the given pair of UTF-16 code units.
/// Asserts that `surrogate_pair.len >= 2` and that the first code unit is a high surrogate.
/// If the second code unit is not a low surrogate, error.ExpectedSecondSurrogateHalf is returned.
pub fn utf16DecodeSurrogatePair(surrogate_pair: []const u16) !u21 {
assert(surrogate_pair.len >= 2);
assert(utf16IsHighSurrogate(surrogate_pair[0]));
const high_half: u21 = surrogate_pair[0];
const low_half = surrogate_pair[1];
if (!utf16IsLowSurrogate(low_half)) return error.ExpectedSecondSurrogateHalf;
return 0x10000 + ((high_half & 0x03ff) << 10) | (low_half & 0x03ff);
}
pub const Utf16LeIterator = struct {
bytes: []const u8,
i: usize,
pub fn init(s: []const u16) Utf16LeIterator {
return Utf16LeIterator{
.bytes = mem.sliceAsBytes(s),
.i = 0,
};
}
pub const NextCodepointError = error{ DanglingSurrogateHalf, ExpectedSecondSurrogateHalf, UnexpectedSecondSurrogateHalf };
pub fn nextCodepoint(it: *Utf16LeIterator) NextCodepointError!?u21 {
assert(it.i <= it.bytes.len);
if (it.i == it.bytes.len) return null;
var code_units: [2]u16 = undefined;
code_units[0] = mem.readInt(u16, it.bytes[it.i..][0..2], .little);
it.i += 2;
if (utf16IsHighSurrogate(code_units[0])) {
// surrogate pair
if (it.i >= it.bytes.len) return error.DanglingSurrogateHalf;
code_units[1] = mem.readInt(u16, it.bytes[it.i..][0..2], .little);
const codepoint = try utf16DecodeSurrogatePair(&code_units);
it.i += 2;
return codepoint;
} else if (utf16IsLowSurrogate(code_units[0])) {
return error.UnexpectedSecondSurrogateHalf;
} else {
return code_units[0];
}
}
};
/// Returns the length of a supplied UTF-16 string literal in terms of unicode
/// codepoints.
pub fn utf16CountCodepoints(utf16le: []const u16) !usize {
var len: usize = 0;
var it = Utf16LeIterator.init(utf16le);
while (try it.nextCodepoint()) |_| len += 1;
return len;
}
fn testUtf16CountCodepoints() !void {
try testing.expectEqual(
@as(usize, 1),
try utf16CountCodepoints(utf8ToUtf16LeStringLiteral("a")),
);
try testing.expectEqual(
@as(usize, 10),
try utf16CountCodepoints(utf8ToUtf16LeStringLiteral("abcdefghij")),
);
try testing.expectEqual(
@as(usize, 10),
try utf16CountCodepoints(utf8ToUtf16LeStringLiteral("äåéëþüúíóö")),
);
try testing.expectEqual(
@as(usize, 5),
try utf16CountCodepoints(utf8ToUtf16LeStringLiteral("こんにちは")),
);
}
test "utf16 count codepoints" {
try testUtf16CountCodepoints();
try comptime testUtf16CountCodepoints();
}
test "utf8 encode" {
try comptime testUtf8Encode();
try testUtf8Encode();
}
fn testUtf8Encode() !void {
// A few taken from wikipedia a few taken elsewhere
var array: [4]u8 = undefined;
try testing.expect((try utf8Encode(try utf8Decode(""), array[0..])) == 3);
try testing.expect(array[0] == 0b11100010);
try testing.expect(array[1] == 0b10000010);
try testing.expect(array[2] == 0b10101100);
try testing.expect((try utf8Encode(try utf8Decode("$"), array[0..])) == 1);
try testing.expect(array[0] == 0b00100100);
try testing.expect((try utf8Encode(try utf8Decode("¢"), array[0..])) == 2);
try testing.expect(array[0] == 0b11000010);
try testing.expect(array[1] == 0b10100010);
try testing.expect((try utf8Encode(try utf8Decode("𐍈"), array[0..])) == 4);
try testing.expect(array[0] == 0b11110000);
try testing.expect(array[1] == 0b10010000);
try testing.expect(array[2] == 0b10001101);
try testing.expect(array[3] == 0b10001000);
}
test "utf8 encode comptime" {
try testing.expectEqualSlices(u8, "", &utf8EncodeComptime('€'));
try testing.expectEqualSlices(u8, "$", &utf8EncodeComptime('$'));
try testing.expectEqualSlices(u8, "¢", &utf8EncodeComptime('¢'));
try testing.expectEqualSlices(u8, "𐍈", &utf8EncodeComptime('𐍈'));
}
test "utf8 encode error" {
try comptime testUtf8EncodeError();
try testUtf8EncodeError();
}
fn testUtf8EncodeError() !void {
var array: [4]u8 = undefined;
try testErrorEncode(0xd800, array[0..], error.Utf8CannotEncodeSurrogateHalf);
try testErrorEncode(0xdfff, array[0..], error.Utf8CannotEncodeSurrogateHalf);
try testErrorEncode(0x110000, array[0..], error.CodepointTooLarge);
try testErrorEncode(0x1fffff, array[0..], error.CodepointTooLarge);
}
fn testErrorEncode(codePoint: u21, array: []u8, expectedErr: anyerror) !void {
try testing.expectError(expectedErr, utf8Encode(codePoint, array));
}
test "utf8 iterator on ascii" {
try comptime testUtf8IteratorOnAscii();
try testUtf8IteratorOnAscii();
}
fn testUtf8IteratorOnAscii() !void {
const s = Utf8View.initComptime("abc");
var it1 = s.iterator();
try testing.expect(mem.eql(u8, "a", it1.nextCodepointSlice().?));
try testing.expect(mem.eql(u8, "b", it1.nextCodepointSlice().?));
try testing.expect(mem.eql(u8, "c", it1.nextCodepointSlice().?));
try testing.expect(it1.nextCodepointSlice() == null);
var it2 = s.iterator();
try testing.expect(it2.nextCodepoint().? == 'a');
try testing.expect(it2.nextCodepoint().? == 'b');
try testing.expect(it2.nextCodepoint().? == 'c');
try testing.expect(it2.nextCodepoint() == null);
}
test "utf8 view bad" {
try comptime testUtf8ViewBad();
try testUtf8ViewBad();
}
fn testUtf8ViewBad() !void {
// Compile-time error.
// const s3 = Utf8View.initComptime("\xfe\xf2");
try testing.expectError(error.InvalidUtf8, Utf8View.init("hel\xadlo"));
}
test "utf8 view ok" {
try comptime testUtf8ViewOk();
try testUtf8ViewOk();
}
fn testUtf8ViewOk() !void {
const s = Utf8View.initComptime("東京市");
var it1 = s.iterator();
try testing.expect(mem.eql(u8, "", it1.nextCodepointSlice().?));
try testing.expect(mem.eql(u8, "", it1.nextCodepointSlice().?));
try testing.expect(mem.eql(u8, "", it1.nextCodepointSlice().?));
try testing.expect(it1.nextCodepointSlice() == null);
var it2 = s.iterator();
try testing.expect(it2.nextCodepoint().? == 0x6771);
try testing.expect(it2.nextCodepoint().? == 0x4eac);
try testing.expect(it2.nextCodepoint().? == 0x5e02);
try testing.expect(it2.nextCodepoint() == null);
}
test "validate slice" {
try comptime testValidateSlice();
try testValidateSlice();
// We skip a variable (based on recommended vector size) chunks of
// ASCII characters. Let's make sure we're chunking correctly.
const str = [_]u8{'a'} ** 550 ++ "\xc0";
for (0..str.len - 3) |i| {
try testing.expect(!utf8ValidateSlice(str[i..]));
}
}
fn testValidateSlice() !void {
try testing.expect(utf8ValidateSlice("abc"));
try testing.expect(utf8ValidateSlice("abc\xdf\xbf"));
try testing.expect(utf8ValidateSlice(""));
try testing.expect(utf8ValidateSlice("a"));
try testing.expect(utf8ValidateSlice("abc"));
try testing.expect(utf8ValidateSlice("Ж"));
try testing.expect(utf8ValidateSlice("ЖЖ"));
try testing.expect(utf8ValidateSlice("брэд-ЛГТМ"));
try testing.expect(utf8ValidateSlice("☺☻☹"));
try testing.expect(utf8ValidateSlice("a\u{fffdb}"));
try testing.expect(utf8ValidateSlice("\xf4\x8f\xbf\xbf"));
try testing.expect(utf8ValidateSlice("abc\xdf\xbf"));
try testing.expect(!utf8ValidateSlice("abc\xc0"));
try testing.expect(!utf8ValidateSlice("abc\xc0abc"));
try testing.expect(!utf8ValidateSlice("aa\xe2"));
try testing.expect(!utf8ValidateSlice("\x42\xfa"));
try testing.expect(!utf8ValidateSlice("\x42\xfa\x43"));
try testing.expect(!utf8ValidateSlice("abc\xc0"));
try testing.expect(!utf8ValidateSlice("abc\xc0abc"));
try testing.expect(!utf8ValidateSlice("\xf4\x90\x80\x80"));
try testing.expect(!utf8ValidateSlice("\xf7\xbf\xbf\xbf"));
try testing.expect(!utf8ValidateSlice("\xfb\xbf\xbf\xbf\xbf"));
try testing.expect(!utf8ValidateSlice("\xc0\x80"));
try testing.expect(!utf8ValidateSlice("\xed\xa0\x80"));
try testing.expect(!utf8ValidateSlice("\xed\xbf\xbf"));
}
test "valid utf8" {
try comptime testValidUtf8();
try testValidUtf8();
}
fn testValidUtf8() !void {
try testValid("\x00", 0x0);
try testValid("\x20", 0x20);
try testValid("\x7f", 0x7f);
try testValid("\xc2\x80", 0x80);
try testValid("\xdf\xbf", 0x7ff);
try testValid("\xe0\xa0\x80", 0x800);
try testValid("\xe1\x80\x80", 0x1000);
try testValid("\xef\xbf\xbf", 0xffff);
try testValid("\xf0\x90\x80\x80", 0x10000);
try testValid("\xf1\x80\x80\x80", 0x40000);
try testValid("\xf3\xbf\xbf\xbf", 0xfffff);
try testValid("\xf4\x8f\xbf\xbf", 0x10ffff);
}
test "invalid utf8 continuation bytes" {
try comptime testInvalidUtf8ContinuationBytes();
try testInvalidUtf8ContinuationBytes();
}
fn testInvalidUtf8ContinuationBytes() !void {
// unexpected continuation
try testError("\x80", error.Utf8InvalidStartByte);
try testError("\xbf", error.Utf8InvalidStartByte);
// too many leading 1's
try testError("\xf8", error.Utf8InvalidStartByte);
try testError("\xff", error.Utf8InvalidStartByte);
// expected continuation for 2 byte sequences
try testError("\xc2", error.UnexpectedEof);
try testError("\xc2\x00", error.Utf8ExpectedContinuation);
try testError("\xc2\xc0", error.Utf8ExpectedContinuation);
// expected continuation for 3 byte sequences
try testError("\xe0", error.UnexpectedEof);
try testError("\xe0\x00", error.UnexpectedEof);
try testError("\xe0\xc0", error.UnexpectedEof);
try testError("\xe0\xa0", error.UnexpectedEof);
try testError("\xe0\xa0\x00", error.Utf8ExpectedContinuation);
try testError("\xe0\xa0\xc0", error.Utf8ExpectedContinuation);
// expected continuation for 4 byte sequences
try testError("\xf0", error.UnexpectedEof);
try testError("\xf0\x00", error.UnexpectedEof);
try testError("\xf0\xc0", error.UnexpectedEof);
try testError("\xf0\x90\x00", error.UnexpectedEof);
try testError("\xf0\x90\xc0", error.UnexpectedEof);
try testError("\xf0\x90\x80\x00", error.Utf8ExpectedContinuation);
try testError("\xf0\x90\x80\xc0", error.Utf8ExpectedContinuation);
}
test "overlong utf8 codepoint" {
try comptime testOverlongUtf8Codepoint();
try testOverlongUtf8Codepoint();
}
fn testOverlongUtf8Codepoint() !void {
try testError("\xc0\x80", error.Utf8OverlongEncoding);
try testError("\xc1\xbf", error.Utf8OverlongEncoding);
try testError("\xe0\x80\x80", error.Utf8OverlongEncoding);
try testError("\xe0\x9f\xbf", error.Utf8OverlongEncoding);
try testError("\xf0\x80\x80\x80", error.Utf8OverlongEncoding);
try testError("\xf0\x8f\xbf\xbf", error.Utf8OverlongEncoding);
}
test "misc invalid utf8" {
try comptime testMiscInvalidUtf8();
try testMiscInvalidUtf8();
}
fn testMiscInvalidUtf8() !void {
// codepoint out of bounds
try testError("\xf4\x90\x80\x80", error.Utf8CodepointTooLarge);
try testError("\xf7\xbf\xbf\xbf", error.Utf8CodepointTooLarge);
// surrogate halves
try testValid("\xed\x9f\xbf", 0xd7ff);
try testError("\xed\xa0\x80", error.Utf8EncodesSurrogateHalf);
try testError("\xed\xbf\xbf", error.Utf8EncodesSurrogateHalf);
try testValid("\xee\x80\x80", 0xe000);
}
test "utf8 iterator peeking" {
try comptime testUtf8Peeking();
try testUtf8Peeking();
}
fn testUtf8Peeking() !void {
const s = Utf8View.initComptime("noël");
var it = s.iterator();
try testing.expect(mem.eql(u8, "n", it.nextCodepointSlice().?));
try testing.expect(mem.eql(u8, "o", it.peek(1)));
try testing.expect(mem.eql(u8, "", it.peek(2)));
try testing.expect(mem.eql(u8, "oël", it.peek(3)));
try testing.expect(mem.eql(u8, "oël", it.peek(4)));
try testing.expect(mem.eql(u8, "oël", it.peek(10)));
try testing.expect(mem.eql(u8, "o", it.nextCodepointSlice().?));
try testing.expect(mem.eql(u8, "ë", it.nextCodepointSlice().?));
try testing.expect(mem.eql(u8, "l", it.nextCodepointSlice().?));
try testing.expect(it.nextCodepointSlice() == null);
try testing.expect(mem.eql(u8, &[_]u8{}, it.peek(1)));
}
fn testError(bytes: []const u8, expected_err: anyerror) !void {
try testing.expectError(expected_err, testDecode(bytes));
}
fn testValid(bytes: []const u8, expected_codepoint: u21) !void {
try testing.expect((testDecode(bytes) catch unreachable) == expected_codepoint);
}
fn testDecode(bytes: []const u8) !u21 {
const length = try utf8ByteSequenceLength(bytes[0]);
if (bytes.len < length) return error.UnexpectedEof;
try testing.expect(bytes.len == length);
return utf8Decode(bytes);
}
/// Print the given `utf8` string, encoded as UTF-8 bytes.
/// Ill-formed UTF-8 byte sequences are replaced by the replacement character (U+FFFD)
/// according to "U+FFFD Substitution of Maximal Subparts" from Chapter 3 of
/// the Unicode standard, and as specified by https://encoding.spec.whatwg.org/#utf-8-decoder
fn formatUtf8(
utf8: []const u8,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = fmt;
_ = options;
var buf: [300]u8 = undefined; // just an arbitrary size
var u8len: usize = 0;
// This implementation is based on this specification:
// https://encoding.spec.whatwg.org/#utf-8-decoder
var codepoint: u21 = 0;
var cont_bytes_seen: u3 = 0;
var cont_bytes_needed: u3 = 0;
var lower_boundary: u8 = 0x80;
var upper_boundary: u8 = 0xBF;
var i: usize = 0;
while (i < utf8.len) {
const byte = utf8[i];
if (cont_bytes_needed == 0) {
switch (byte) {
0x00...0x7F => {
buf[u8len] = byte;
u8len += 1;
},
0xC2...0xDF => {
cont_bytes_needed = 1;
codepoint = byte & 0b00011111;
},
0xE0...0xEF => {
if (byte == 0xE0) lower_boundary = 0xA0;
if (byte == 0xED) upper_boundary = 0x9F;
cont_bytes_needed = 2;
codepoint = byte & 0b00001111;
},
0xF0...0xF4 => {
if (byte == 0xF0) lower_boundary = 0x90;
if (byte == 0xF4) upper_boundary = 0x8F;
cont_bytes_needed = 3;
codepoint = byte & 0b00000111;
},
else => {
u8len += utf8Encode(replacement_character, buf[u8len..]) catch unreachable;
},
}
// consume the byte
i += 1;
} else if (byte < lower_boundary or byte > upper_boundary) {
codepoint = 0;
cont_bytes_needed = 0;
cont_bytes_seen = 0;
lower_boundary = 0x80;
upper_boundary = 0xBF;
u8len += utf8Encode(replacement_character, buf[u8len..]) catch unreachable;
// do not consume the current byte, it should now be treated as a possible start byte
} else {
lower_boundary = 0x80;
upper_boundary = 0xBF;
codepoint <<= 6;
codepoint |= byte & 0b00111111;
cont_bytes_seen += 1;
// consume the byte
i += 1;
if (cont_bytes_seen == cont_bytes_needed) {
const codepoint_len = cont_bytes_seen + 1;
const codepoint_start_i = i - codepoint_len;
@memcpy(buf[u8len..][0..codepoint_len], utf8[codepoint_start_i..][0..codepoint_len]);
u8len += codepoint_len;
codepoint = 0;
cont_bytes_needed = 0;
cont_bytes_seen = 0;
}
}
// make sure there's always enough room for another maximum length UTF-8 codepoint
if (u8len + 4 > buf.len) {
try writer.writeAll(buf[0..u8len]);
u8len = 0;
}
}
if (cont_bytes_needed != 0) {
// we know there's enough room because we always flush
// if there's less than 4 bytes remaining in the buffer.
u8len += utf8Encode(replacement_character, buf[u8len..]) catch unreachable;
}
try writer.writeAll(buf[0..u8len]);
}
/// Return a Formatter for a (potentially ill-formed) UTF-8 string.
/// Ill-formed UTF-8 byte sequences are replaced by the replacement character (U+FFFD)
/// according to "U+FFFD Substitution of Maximal Subparts" from Chapter 3 of
/// the Unicode standard, and as specified by https://encoding.spec.whatwg.org/#utf-8-decoder
pub fn fmtUtf8(utf8: []const u8) std.fmt.Formatter(formatUtf8) {
return .{ .data = utf8 };
}
test fmtUtf8 {
const expectFmt = testing.expectFmt;
try expectFmt("", "{}", .{fmtUtf8("")});
try expectFmt("foo", "{}", .{fmtUtf8("foo")});
try expectFmt("𐐷", "{}", .{fmtUtf8("𐐷")});
// Table 3-8. U+FFFD for Non-Shortest Form Sequences
try expectFmt("<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A", "{}", .{fmtUtf8("\xC0\xAF\xE0\x80\xBF\xF0\x81\x82A")});
// Table 3-9. U+FFFD for Ill-Formed Sequences for Surrogates
try expectFmt("<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A", "{}", .{fmtUtf8("\xED\xA0\x80\xED\xBF\xBF\xED\xAFA")});
// Table 3-10. U+FFFD for Other Ill-Formed Sequences
try expectFmt("<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A<EFBFBD><EFBFBD>B", "{}", .{fmtUtf8("\xF4\x91\x92\x93\xFFA\x80\xBFB")});
// Table 3-11. U+FFFD for Truncated Sequences
try expectFmt("<EFBFBD><EFBFBD><EFBFBD><EFBFBD>A", "{}", .{fmtUtf8("\xE1\x80\xE2\xF0\x91\x92\xF1\xBFA")});
}
fn utf16LeToUtf8ArrayListImpl(
result: *std.ArrayList(u8),
utf16le: []const u16,
comptime surrogates: Surrogates,
) (switch (surrogates) {
.cannot_encode_surrogate_half => Utf16LeToUtf8AllocError,
.can_encode_surrogate_half => mem.Allocator.Error,
})!void {
assert(result.unusedCapacitySlice().len >= utf16le.len);
var remaining = utf16le;
vectorized: {
const chunk_len = std.simd.suggestVectorLength(u16) orelse break :vectorized;
const Chunk = @Vector(chunk_len, u16);
// Fast path. Check for and encode ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(mem.nativeToLittle(u16, 0x7F));
if (@reduce(.Or, chunk | mask != mask)) {
// found a non ASCII code unit
break;
}
const ascii_chunk: @Vector(chunk_len, u8) = @truncate(mem.nativeToLittle(Chunk, chunk));
// We allocated enough space to encode every UTF-16 code unit
// as ASCII, so if the entire string is ASCII then we are
// guaranteed to have enough space allocated
result.addManyAsArrayAssumeCapacity(chunk_len).* = ascii_chunk;
remaining = remaining[chunk_len..];
}
}
switch (surrogates) {
.cannot_encode_surrogate_half => {
var it = Utf16LeIterator.init(remaining);
while (try it.nextCodepoint()) |codepoint| {
const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
assert((utf8Encode(codepoint, try result.addManyAsSlice(utf8_len)) catch unreachable) == utf8_len);
}
},
.can_encode_surrogate_half => {
var it = Wtf16LeIterator.init(remaining);
while (it.nextCodepoint()) |codepoint| {
const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
assert((wtf8Encode(codepoint, try result.addManyAsSlice(utf8_len)) catch unreachable) == utf8_len);
}
},
}
}
pub const Utf16LeToUtf8AllocError = mem.Allocator.Error || Utf16LeToUtf8Error;
pub fn utf16LeToUtf8ArrayList(result: *std.ArrayList(u8), utf16le: []const u16) Utf16LeToUtf8AllocError!void {
try result.ensureUnusedCapacity(utf16le.len);
return utf16LeToUtf8ArrayListImpl(result, utf16le, .cannot_encode_surrogate_half);
}
pub const utf16leToUtf8Alloc = @compileError("deprecated; renamed to utf16LeToUtf8Alloc");
/// Caller must free returned memory.
pub fn utf16LeToUtf8Alloc(allocator: mem.Allocator, utf16le: []const u16) Utf16LeToUtf8AllocError![]u8 {
// optimistically guess that it will all be ascii.
var result = try std.ArrayList(u8).initCapacity(allocator, utf16le.len);
errdefer result.deinit();
try utf16LeToUtf8ArrayListImpl(&result, utf16le, .cannot_encode_surrogate_half);
return result.toOwnedSlice();
}
pub const utf16leToUtf8AllocZ = @compileError("deprecated; renamed to utf16LeToUtf8AllocZ");
/// Caller must free returned memory.
pub fn utf16LeToUtf8AllocZ(allocator: mem.Allocator, utf16le: []const u16) Utf16LeToUtf8AllocError![:0]u8 {
// optimistically guess that it will all be ascii (and allocate space for the null terminator)
var result = try std.ArrayList(u8).initCapacity(allocator, utf16le.len + 1);
errdefer result.deinit();
try utf16LeToUtf8ArrayListImpl(&result, utf16le, .cannot_encode_surrogate_half);
return result.toOwnedSliceSentinel(0);
}
pub const Utf16LeToUtf8Error = Utf16LeIterator.NextCodepointError;
/// Asserts that the output buffer is big enough.
/// Returns end byte index into utf8.
fn utf16LeToUtf8Impl(utf8: []u8, utf16le: []const u16, comptime surrogates: Surrogates) (switch (surrogates) {
.cannot_encode_surrogate_half => Utf16LeToUtf8Error,
.can_encode_surrogate_half => error{},
})!usize {
var dest_index: usize = 0;
var remaining = utf16le;
vectorized: {
const chunk_len = std.simd.suggestVectorLength(u16) orelse break :vectorized;
const Chunk = @Vector(chunk_len, u16);
// Fast path. Check for and encode ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(mem.nativeToLittle(u16, 0x7F));
if (@reduce(.Or, chunk | mask != mask)) {
// found a non ASCII code unit
break;
}
const ascii_chunk: @Vector(chunk_len, u8) = @truncate(mem.nativeToLittle(Chunk, chunk));
utf8[dest_index..][0..chunk_len].* = ascii_chunk;
dest_index += chunk_len;
remaining = remaining[chunk_len..];
}
}
switch (surrogates) {
.cannot_encode_surrogate_half => {
var it = Utf16LeIterator.init(remaining);
while (try it.nextCodepoint()) |codepoint| {
dest_index += utf8Encode(codepoint, utf8[dest_index..]) catch |err| switch (err) {
// The maximum possible codepoint encoded by UTF-16 is U+10FFFF,
// which is within the valid codepoint range.
error.CodepointTooLarge => unreachable,
// We know the codepoint was valid in UTF-16, meaning it is not
// an unpaired surrogate codepoint.
error.Utf8CannotEncodeSurrogateHalf => unreachable,
};
}
},
.can_encode_surrogate_half => {
var it = Wtf16LeIterator.init(remaining);
while (it.nextCodepoint()) |codepoint| {
dest_index += wtf8Encode(codepoint, utf8[dest_index..]) catch |err| switch (err) {
// The maximum possible codepoint encoded by UTF-16 is U+10FFFF,
// which is within the valid codepoint range.
error.CodepointTooLarge => unreachable,
};
}
},
}
return dest_index;
}
pub const utf16leToUtf8 = @compileError("deprecated; renamed to utf16LeToUtf8");
pub fn utf16LeToUtf8(utf8: []u8, utf16le: []const u16) Utf16LeToUtf8Error!usize {
return utf16LeToUtf8Impl(utf8, utf16le, .cannot_encode_surrogate_half);
}
test utf16LeToUtf8 {
var utf16le: [2]u16 = undefined;
const utf16le_as_bytes = mem.sliceAsBytes(utf16le[0..]);
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 'A', .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 'a', .little);
const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "Aa"));
}
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 0x80, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xffff, .little);
const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xc2\x80" ++ "\xef\xbf\xbf"));
}
{
// the values just outside the surrogate half range
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xd7ff, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xe000, .little);
const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xed\x9f\xbf" ++ "\xee\x80\x80"));
}
{
// smallest surrogate pair
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xd800, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdc00, .little);
const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xf0\x90\x80\x80"));
}
{
// largest surrogate pair
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdbff, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdfff, .little);
const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xbf\xbf"));
}
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdbff, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdc00, .little);
const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xb0\x80"));
}
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdcdc, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdcdc, .little);
const result = utf16LeToUtf8Alloc(testing.allocator, &utf16le);
try testing.expectError(error.UnexpectedSecondSurrogateHalf, result);
}
}
fn utf8ToUtf16LeArrayListImpl(result: *std.ArrayList(u16), utf8: []const u8, comptime surrogates: Surrogates) !void {
assert(result.unusedCapacitySlice().len >= utf8.len);
var remaining = utf8;
vectorized: {
const chunk_len = std.simd.suggestVectorLength(u16) orelse break :vectorized;
const Chunk = @Vector(chunk_len, u8);
// Fast path. Check for and encode ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(0x80);
if (@reduce(.Or, chunk & mask == mask)) {
// found a non ASCII code unit
break;
}
const utf16_chunk = mem.nativeToLittle(@Vector(chunk_len, u16), chunk);
result.addManyAsArrayAssumeCapacity(chunk_len).* = utf16_chunk;
remaining = remaining[chunk_len..];
}
}
const view = switch (surrogates) {
.cannot_encode_surrogate_half => try Utf8View.init(remaining),
.can_encode_surrogate_half => try Wtf8View.init(remaining),
};
var it = view.iterator();
while (it.nextCodepoint()) |codepoint| {
if (codepoint < 0x10000) {
try result.append(mem.nativeToLittle(u16, @intCast(codepoint)));
} else {
const high = @as(u16, @intCast((codepoint - 0x10000) >> 10)) + 0xD800;
const low = @as(u16, @intCast(codepoint & 0x3FF)) + 0xDC00;
try result.appendSlice(&.{ mem.nativeToLittle(u16, high), mem.nativeToLittle(u16, low) });
}
}
}
pub fn utf8ToUtf16LeArrayList(result: *std.ArrayList(u16), utf8: []const u8) error{ InvalidUtf8, OutOfMemory }!void {
try result.ensureUnusedCapacity(utf8.len);
return utf8ToUtf16LeArrayListImpl(result, utf8, .cannot_encode_surrogate_half);
}
pub fn utf8ToUtf16LeAlloc(allocator: mem.Allocator, utf8: []const u8) error{ InvalidUtf8, OutOfMemory }![]u16 {
// optimistically guess that it will not require surrogate pairs
var result = try std.ArrayList(u16).initCapacity(allocator, utf8.len);
errdefer result.deinit();
try utf8ToUtf16LeArrayListImpl(&result, utf8, .cannot_encode_surrogate_half);
return result.toOwnedSlice();
}
pub const utf8ToUtf16LeWithNull = @compileError("deprecated; renamed to utf8ToUtf16LeAllocZ");
pub fn utf8ToUtf16LeAllocZ(allocator: mem.Allocator, utf8: []const u8) error{ InvalidUtf8, OutOfMemory }![:0]u16 {
// optimistically guess that it will not require surrogate pairs
var result = try std.ArrayList(u16).initCapacity(allocator, utf8.len + 1);
errdefer result.deinit();
try utf8ToUtf16LeArrayListImpl(&result, utf8, .cannot_encode_surrogate_half);
return result.toOwnedSliceSentinel(0);
}
/// Returns index of next character. If exact fit, returned index equals output slice length.
/// Assumes there is enough space for the output.
pub fn utf8ToUtf16Le(utf16le: []u16, utf8: []const u8) error{InvalidUtf8}!usize {
return utf8ToUtf16LeImpl(utf16le, utf8, .cannot_encode_surrogate_half);
}
pub fn utf8ToUtf16LeImpl(utf16le: []u16, utf8: []const u8, comptime surrogates: Surrogates) !usize {
var dest_index: usize = 0;
var remaining = utf8;
vectorized: {
const chunk_len = std.simd.suggestVectorLength(u16) orelse break :vectorized;
const Chunk = @Vector(chunk_len, u8);
// Fast path. Check for and encode ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(0x80);
if (@reduce(.Or, chunk & mask == mask)) {
// found a non ASCII code unit
break;
}
const utf16_chunk = mem.nativeToLittle(@Vector(chunk_len, u16), chunk);
utf16le[dest_index..][0..chunk_len].* = utf16_chunk;
dest_index += chunk_len;
remaining = remaining[chunk_len..];
}
}
const view = switch (surrogates) {
.cannot_encode_surrogate_half => try Utf8View.init(remaining),
.can_encode_surrogate_half => try Wtf8View.init(remaining),
};
var it = view.iterator();
while (it.nextCodepoint()) |codepoint| {
if (codepoint < 0x10000) {
utf16le[dest_index] = mem.nativeToLittle(u16, @intCast(codepoint));
dest_index += 1;
} else {
const high = @as(u16, @intCast((codepoint - 0x10000) >> 10)) + 0xD800;
const low = @as(u16, @intCast(codepoint & 0x3FF)) + 0xDC00;
utf16le[dest_index..][0..2].* = .{ mem.nativeToLittle(u16, high), mem.nativeToLittle(u16, low) };
dest_index += 2;
}
}
return dest_index;
}
test utf8ToUtf16Le {
var utf16le: [128]u16 = undefined;
{
const length = try utf8ToUtf16Le(utf16le[0..], "𐐷");
try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16le[0..length]));
}
{
const length = try utf8ToUtf16Le(utf16le[0..], "\u{10FFFF}");
try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16le[0..length]));
}
{
const result = utf8ToUtf16Le(utf16le[0..], "\xf4\x90\x80\x80");
try testing.expectError(error.InvalidUtf8, result);
}
{
const length = try utf8ToUtf16Le(utf16le[0..], "This string has been designed to test the vectorized implementat" ++
"ion by beginning with one hundred twenty-seven ASCII characters¡");
try testing.expectEqualSlices(u8, &.{
'T', 0, 'h', 0, 'i', 0, 's', 0, ' ', 0, 's', 0, 't', 0, 'r', 0, 'i', 0, 'n', 0, 'g', 0, ' ', 0, 'h', 0, 'a', 0, 's', 0, ' ', 0,
'b', 0, 'e', 0, 'e', 0, 'n', 0, ' ', 0, 'd', 0, 'e', 0, 's', 0, 'i', 0, 'g', 0, 'n', 0, 'e', 0, 'd', 0, ' ', 0, 't', 0, 'o', 0,
' ', 0, 't', 0, 'e', 0, 's', 0, 't', 0, ' ', 0, 't', 0, 'h', 0, 'e', 0, ' ', 0, 'v', 0, 'e', 0, 'c', 0, 't', 0, 'o', 0, 'r', 0,
'i', 0, 'z', 0, 'e', 0, 'd', 0, ' ', 0, 'i', 0, 'm', 0, 'p', 0, 'l', 0, 'e', 0, 'm', 0, 'e', 0, 'n', 0, 't', 0, 'a', 0, 't', 0,
'i', 0, 'o', 0, 'n', 0, ' ', 0, 'b', 0, 'y', 0, ' ', 0, 'b', 0, 'e', 0, 'g', 0, 'i', 0, 'n', 0, 'n', 0, 'i', 0, 'n', 0, 'g', 0,
' ', 0, 'w', 0, 'i', 0, 't', 0, 'h', 0, ' ', 0, 'o', 0, 'n', 0, 'e', 0, ' ', 0, 'h', 0, 'u', 0, 'n', 0, 'd', 0, 'r', 0, 'e', 0,
'd', 0, ' ', 0, 't', 0, 'w', 0, 'e', 0, 'n', 0, 't', 0, 'y', 0, '-', 0, 's', 0, 'e', 0, 'v', 0, 'e', 0, 'n', 0, ' ', 0, 'A', 0,
'S', 0, 'C', 0, 'I', 0, 'I', 0, ' ', 0, 'c', 0, 'h', 0, 'a', 0, 'r', 0, 'a', 0, 'c', 0, 't', 0, 'e', 0, 'r', 0, 's', 0, '¡', 0,
}, mem.sliceAsBytes(utf16le[0..length]));
}
}
test utf8ToUtf16LeArrayList {
{
var list = std.ArrayList(u16).init(testing.allocator);
defer list.deinit();
try utf8ToUtf16LeArrayList(&list, "𐐷");
try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(list.items));
}
{
var list = std.ArrayList(u16).init(testing.allocator);
defer list.deinit();
try utf8ToUtf16LeArrayList(&list, "\u{10FFFF}");
try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(list.items));
}
{
var list = std.ArrayList(u16).init(testing.allocator);
defer list.deinit();
const result = utf8ToUtf16LeArrayList(&list, "\xf4\x90\x80\x80");
try testing.expectError(error.InvalidUtf8, result);
}
}
test utf8ToUtf16LeAlloc {
{
const utf16 = try utf8ToUtf16LeAlloc(testing.allocator, "𐐷");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16[0..]));
}
{
const utf16 = try utf8ToUtf16LeAlloc(testing.allocator, "\u{10FFFF}");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16[0..]));
}
{
const result = utf8ToUtf16LeAlloc(testing.allocator, "\xf4\x90\x80\x80");
try testing.expectError(error.InvalidUtf8, result);
}
}
test utf8ToUtf16LeAllocZ {
{
const utf16 = try utf8ToUtf16LeAllocZ(testing.allocator, "𐐷");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16));
try testing.expect(utf16[2] == 0);
}
{
const utf16 = try utf8ToUtf16LeAllocZ(testing.allocator, "\u{10FFFF}");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16));
try testing.expect(utf16[2] == 0);
}
{
const result = utf8ToUtf16LeAllocZ(testing.allocator, "\xf4\x90\x80\x80");
try testing.expectError(error.InvalidUtf8, result);
}
{
const utf16 = try utf8ToUtf16LeAllocZ(testing.allocator, "This string has been designed to test the vectorized implementat" ++
"ion by beginning with one hundred twenty-seven ASCII characters¡");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, &.{
'T', 0, 'h', 0, 'i', 0, 's', 0, ' ', 0, 's', 0, 't', 0, 'r', 0, 'i', 0, 'n', 0, 'g', 0, ' ', 0, 'h', 0, 'a', 0, 's', 0, ' ', 0,
'b', 0, 'e', 0, 'e', 0, 'n', 0, ' ', 0, 'd', 0, 'e', 0, 's', 0, 'i', 0, 'g', 0, 'n', 0, 'e', 0, 'd', 0, ' ', 0, 't', 0, 'o', 0,
' ', 0, 't', 0, 'e', 0, 's', 0, 't', 0, ' ', 0, 't', 0, 'h', 0, 'e', 0, ' ', 0, 'v', 0, 'e', 0, 'c', 0, 't', 0, 'o', 0, 'r', 0,
'i', 0, 'z', 0, 'e', 0, 'd', 0, ' ', 0, 'i', 0, 'm', 0, 'p', 0, 'l', 0, 'e', 0, 'm', 0, 'e', 0, 'n', 0, 't', 0, 'a', 0, 't', 0,
'i', 0, 'o', 0, 'n', 0, ' ', 0, 'b', 0, 'y', 0, ' ', 0, 'b', 0, 'e', 0, 'g', 0, 'i', 0, 'n', 0, 'n', 0, 'i', 0, 'n', 0, 'g', 0,
' ', 0, 'w', 0, 'i', 0, 't', 0, 'h', 0, ' ', 0, 'o', 0, 'n', 0, 'e', 0, ' ', 0, 'h', 0, 'u', 0, 'n', 0, 'd', 0, 'r', 0, 'e', 0,
'd', 0, ' ', 0, 't', 0, 'w', 0, 'e', 0, 'n', 0, 't', 0, 'y', 0, '-', 0, 's', 0, 'e', 0, 'v', 0, 'e', 0, 'n', 0, ' ', 0, 'A', 0,
'S', 0, 'C', 0, 'I', 0, 'I', 0, ' ', 0, 'c', 0, 'h', 0, 'a', 0, 'r', 0, 'a', 0, 'c', 0, 't', 0, 'e', 0, 'r', 0, 's', 0, '¡', 0,
}, mem.sliceAsBytes(utf16));
}
}
test "ArrayList functions on a re-used list" {
// utf8ToUtf16LeArrayList
{
var list = std.ArrayList(u16).init(testing.allocator);
defer list.deinit();
const init_slice = utf8ToUtf16LeStringLiteral("abcdefg");
try list.ensureTotalCapacityPrecise(init_slice.len);
list.appendSliceAssumeCapacity(init_slice);
try utf8ToUtf16LeArrayList(&list, "hijklmnopqrstuvwyxz");
try testing.expectEqualSlices(u16, utf8ToUtf16LeStringLiteral("abcdefghijklmnopqrstuvwyxz"), list.items);
}
// utf16LeToUtf8ArrayList
{
var list = std.ArrayList(u8).init(testing.allocator);
defer list.deinit();
const init_slice = "abcdefg";
try list.ensureTotalCapacityPrecise(init_slice.len);
list.appendSliceAssumeCapacity(init_slice);
try utf16LeToUtf8ArrayList(&list, utf8ToUtf16LeStringLiteral("hijklmnopqrstuvwyxz"));
try testing.expectEqualStrings("abcdefghijklmnopqrstuvwyxz", list.items);
}
// wtf8ToWtf16LeArrayList
{
var list = std.ArrayList(u16).init(testing.allocator);
defer list.deinit();
const init_slice = utf8ToUtf16LeStringLiteral("abcdefg");
try list.ensureTotalCapacityPrecise(init_slice.len);
list.appendSliceAssumeCapacity(init_slice);
try wtf8ToWtf16LeArrayList(&list, "hijklmnopqrstuvwyxz");
try testing.expectEqualSlices(u16, utf8ToUtf16LeStringLiteral("abcdefghijklmnopqrstuvwyxz"), list.items);
}
// wtf16LeToWtf8ArrayList
{
var list = std.ArrayList(u8).init(testing.allocator);
defer list.deinit();
const init_slice = "abcdefg";
try list.ensureTotalCapacityPrecise(init_slice.len);
list.appendSliceAssumeCapacity(init_slice);
try wtf16LeToWtf8ArrayList(&list, utf8ToUtf16LeStringLiteral("hijklmnopqrstuvwyxz"));
try testing.expectEqualStrings("abcdefghijklmnopqrstuvwyxz", list.items);
}
}
/// Converts a UTF-8 string literal into a UTF-16LE string literal.
pub fn utf8ToUtf16LeStringLiteral(comptime utf8: []const u8) *const [calcUtf16LeLen(utf8) catch |err| @compileError(err):0]u16 {
return comptime blk: {
const len: usize = calcUtf16LeLen(utf8) catch unreachable;
var utf16le: [len:0]u16 = [_:0]u16{0} ** len;
const utf16le_len = utf8ToUtf16Le(&utf16le, utf8[0..]) catch |err| @compileError(err);
assert(len == utf16le_len);
const final = utf16le;
break :blk &final;
};
}
const CalcUtf16LeLenError = Utf8DecodeError || error{Utf8InvalidStartByte};
/// Returns length in UTF-16 of UTF-8 slice as length of []u16.
/// Length in []u8 is 2*len16.
pub fn calcUtf16LeLen(utf8: []const u8) CalcUtf16LeLenError!usize {
var src_i: usize = 0;
var dest_len: usize = 0;
while (src_i < utf8.len) {
const n = try utf8ByteSequenceLength(utf8[src_i]);
const next_src_i = src_i + n;
const codepoint = try utf8Decode(utf8[src_i..next_src_i]);
if (codepoint < 0x10000) {
dest_len += 1;
} else {
dest_len += 2;
}
src_i = next_src_i;
}
return dest_len;
}
fn testCalcUtf16LeLen() !void {
try testing.expectEqual(@as(usize, 1), try calcUtf16LeLen("a"));
try testing.expectEqual(@as(usize, 10), try calcUtf16LeLen("abcdefghij"));
try testing.expectEqual(@as(usize, 10), try calcUtf16LeLen("äåéëþüúíóö"));
try testing.expectEqual(@as(usize, 5), try calcUtf16LeLen("こんにちは"));
}
test "calculate utf16 string length of given utf8 string in u16" {
try testCalcUtf16LeLen();
try comptime testCalcUtf16LeLen();
}
/// Print the given `utf16le` string, encoded as UTF-8 bytes.
/// Unpaired surrogates are replaced by the replacement character (U+FFFD).
fn formatUtf16Le(
utf16le: []const u16,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = fmt;
_ = options;
var buf: [300]u8 = undefined; // just an arbitrary size
var it = Utf16LeIterator.init(utf16le);
var u8len: usize = 0;
while (it.nextCodepoint() catch replacement_character) |codepoint| {
u8len += utf8Encode(codepoint, buf[u8len..]) catch
utf8Encode(replacement_character, buf[u8len..]) catch unreachable;
// make sure there's always enough room for another maximum length UTF-8 codepoint
if (u8len + 4 > buf.len) {
try writer.writeAll(buf[0..u8len]);
u8len = 0;
}
}
try writer.writeAll(buf[0..u8len]);
}
pub const fmtUtf16le = @compileError("deprecated; renamed to fmtUtf16Le");
/// Return a Formatter for a (potentially ill-formed) UTF-16 LE string,
/// which will be converted to UTF-8 during formatting.
/// Unpaired surrogates are replaced by the replacement character (U+FFFD).
pub fn fmtUtf16Le(utf16le: []const u16) std.fmt.Formatter(formatUtf16Le) {
return .{ .data = utf16le };
}
test fmtUtf16Le {
const expectFmt = testing.expectFmt;
try expectFmt("", "{}", .{fmtUtf16Le(utf8ToUtf16LeStringLiteral(""))});
try expectFmt("foo", "{}", .{fmtUtf16Le(utf8ToUtf16LeStringLiteral("foo"))});
try expectFmt("𐐷", "{}", .{fmtUtf16Le(utf8ToUtf16LeStringLiteral("𐐷"))});
try expectFmt("", "{}", .{fmtUtf16Le(&[_]u16{mem.readInt(u16, "\xff\xd7", native_endian)})});
try expectFmt("<EFBFBD>", "{}", .{fmtUtf16Le(&[_]u16{mem.readInt(u16, "\x00\xd8", native_endian)})});
try expectFmt("<EFBFBD>", "{}", .{fmtUtf16Le(&[_]u16{mem.readInt(u16, "\xff\xdb", native_endian)})});
try expectFmt("<EFBFBD>", "{}", .{fmtUtf16Le(&[_]u16{mem.readInt(u16, "\x00\xdc", native_endian)})});
try expectFmt("<EFBFBD>", "{}", .{fmtUtf16Le(&[_]u16{mem.readInt(u16, "\xff\xdf", native_endian)})});
try expectFmt("", "{}", .{fmtUtf16Le(&[_]u16{mem.readInt(u16, "\x00\xe0", native_endian)})});
}
test utf8ToUtf16LeStringLiteral {
{
const bytes = [_:0]u16{
mem.nativeToLittle(u16, 0x41),
};
const utf16 = utf8ToUtf16LeStringLiteral("A");
try testing.expectEqualSlices(u16, &bytes, utf16);
try testing.expect(utf16[1] == 0);
}
{
const bytes = [_:0]u16{
mem.nativeToLittle(u16, 0xD801),
mem.nativeToLittle(u16, 0xDC37),
};
const utf16 = utf8ToUtf16LeStringLiteral("𐐷");
try testing.expectEqualSlices(u16, &bytes, utf16);
try testing.expect(utf16[2] == 0);
}
{
const bytes = [_:0]u16{
mem.nativeToLittle(u16, 0x02FF),
};
const utf16 = utf8ToUtf16LeStringLiteral("\u{02FF}");
try testing.expectEqualSlices(u16, &bytes, utf16);
try testing.expect(utf16[1] == 0);
}
{
const bytes = [_:0]u16{
mem.nativeToLittle(u16, 0x7FF),
};
const utf16 = utf8ToUtf16LeStringLiteral("\u{7FF}");
try testing.expectEqualSlices(u16, &bytes, utf16);
try testing.expect(utf16[1] == 0);
}
{
const bytes = [_:0]u16{
mem.nativeToLittle(u16, 0x801),
};
const utf16 = utf8ToUtf16LeStringLiteral("\u{801}");
try testing.expectEqualSlices(u16, &bytes, utf16);
try testing.expect(utf16[1] == 0);
}
{
const bytes = [_:0]u16{
mem.nativeToLittle(u16, 0xDBFF),
mem.nativeToLittle(u16, 0xDFFF),
};
const utf16 = utf8ToUtf16LeStringLiteral("\u{10FFFF}");
try testing.expectEqualSlices(u16, &bytes, utf16);
try testing.expect(utf16[2] == 0);
}
}
fn testUtf8CountCodepoints() !void {
try testing.expectEqual(@as(usize, 10), try utf8CountCodepoints("abcdefghij"));
try testing.expectEqual(@as(usize, 10), try utf8CountCodepoints("äåéëþüúíóö"));
try testing.expectEqual(@as(usize, 5), try utf8CountCodepoints("こんにちは"));
// testing.expectError(error.Utf8EncodesSurrogateHalf, utf8CountCodepoints("\xED\xA0\x80"));
}
test "utf8 count codepoints" {
try testUtf8CountCodepoints();
try comptime testUtf8CountCodepoints();
}
fn testUtf8ValidCodepoint() !void {
try testing.expect(utf8ValidCodepoint('e'));
try testing.expect(utf8ValidCodepoint('ë'));
try testing.expect(utf8ValidCodepoint('は'));
try testing.expect(utf8ValidCodepoint(0xe000));
try testing.expect(utf8ValidCodepoint(0x10ffff));
try testing.expect(!utf8ValidCodepoint(0xd800));
try testing.expect(!utf8ValidCodepoint(0xdfff));
try testing.expect(!utf8ValidCodepoint(0x110000));
}
test "utf8 valid codepoint" {
try testUtf8ValidCodepoint();
try comptime testUtf8ValidCodepoint();
}
/// Returns true if the codepoint is a surrogate (U+DC00 to U+DFFF)
pub fn isSurrogateCodepoint(c: u21) bool {
return switch (c) {
0xD800...0xDFFF => true,
else => false,
};
}
/// Encodes the given codepoint into a WTF-8 byte sequence.
/// c: the codepoint.
/// out: the out buffer to write to. Must have a len >= utf8CodepointSequenceLength(c).
/// Errors: if c cannot be encoded in WTF-8.
/// Returns: the number of bytes written to out.
pub fn wtf8Encode(c: u21, out: []u8) error{CodepointTooLarge}!u3 {
return utf8EncodeImpl(c, out, .can_encode_surrogate_half);
}
const Wtf8DecodeError = Utf8Decode2Error || Utf8Decode3AllowSurrogateHalfError || Utf8Decode4Error;
pub fn wtf8Decode(bytes: []const u8) Wtf8DecodeError!u21 {
return switch (bytes.len) {
1 => @as(u21, bytes[0]),
2 => utf8Decode2(bytes),
3 => utf8Decode3AllowSurrogateHalf(bytes),
4 => utf8Decode4(bytes),
else => unreachable,
};
}
/// Returns true if the input consists entirely of WTF-8 codepoints
/// (all the same restrictions as UTF-8, but allows surrogate codepoints
/// U+D800 to U+DFFF).
/// Does not check for well-formed WTF-8, meaning that this function
/// does not check that all surrogate halves are unpaired.
pub fn wtf8ValidateSlice(input: []const u8) bool {
return utf8ValidateSliceImpl(input, .can_encode_surrogate_half);
}
test "validate WTF-8 slice" {
try testValidateWtf8Slice();
try comptime testValidateWtf8Slice();
// We skip a variable (based on recommended vector size) chunks of
// ASCII characters. Let's make sure we're chunking correctly.
const str = [_]u8{'a'} ** 550 ++ "\xc0";
for (0..str.len - 3) |i| {
try testing.expect(!wtf8ValidateSlice(str[i..]));
}
}
fn testValidateWtf8Slice() !void {
// These are valid/invalid under both UTF-8 and WTF-8 rules.
try testing.expect(wtf8ValidateSlice("abc"));
try testing.expect(wtf8ValidateSlice("abc\xdf\xbf"));
try testing.expect(wtf8ValidateSlice(""));
try testing.expect(wtf8ValidateSlice("a"));
try testing.expect(wtf8ValidateSlice("abc"));
try testing.expect(wtf8ValidateSlice("Ж"));
try testing.expect(wtf8ValidateSlice("ЖЖ"));
try testing.expect(wtf8ValidateSlice("брэд-ЛГТМ"));
try testing.expect(wtf8ValidateSlice("☺☻☹"));
try testing.expect(wtf8ValidateSlice("a\u{fffdb}"));
try testing.expect(wtf8ValidateSlice("\xf4\x8f\xbf\xbf"));
try testing.expect(wtf8ValidateSlice("abc\xdf\xbf"));
try testing.expect(!wtf8ValidateSlice("abc\xc0"));
try testing.expect(!wtf8ValidateSlice("abc\xc0abc"));
try testing.expect(!wtf8ValidateSlice("aa\xe2"));
try testing.expect(!wtf8ValidateSlice("\x42\xfa"));
try testing.expect(!wtf8ValidateSlice("\x42\xfa\x43"));
try testing.expect(!wtf8ValidateSlice("abc\xc0"));
try testing.expect(!wtf8ValidateSlice("abc\xc0abc"));
try testing.expect(!wtf8ValidateSlice("\xf4\x90\x80\x80"));
try testing.expect(!wtf8ValidateSlice("\xf7\xbf\xbf\xbf"));
try testing.expect(!wtf8ValidateSlice("\xfb\xbf\xbf\xbf\xbf"));
try testing.expect(!wtf8ValidateSlice("\xc0\x80"));
// But surrogate codepoints are only valid in WTF-8.
try testing.expect(wtf8ValidateSlice("\xed\xa0\x80"));
try testing.expect(wtf8ValidateSlice("\xed\xbf\xbf"));
}
/// Wtf8View iterates the code points of a WTF-8 encoded string,
/// including surrogate halves.
///
/// ```
/// var wtf8 = (try std.unicode.Wtf8View.init("hi there")).iterator();
/// while (wtf8.nextCodepointSlice()) |codepoint| {
/// // note: codepoint could be a surrogate half which is invalid
/// // UTF-8, avoid printing or otherwise sending/emitting this directly
/// }
/// ```
pub const Wtf8View = struct {
bytes: []const u8,
pub fn init(s: []const u8) error{InvalidWtf8}!Wtf8View {
if (!wtf8ValidateSlice(s)) {
return error.InvalidWtf8;
}
return initUnchecked(s);
}
pub fn initUnchecked(s: []const u8) Wtf8View {
return Wtf8View{ .bytes = s };
}
pub inline fn initComptime(comptime s: []const u8) Wtf8View {
return comptime if (init(s)) |r| r else |err| switch (err) {
error.InvalidWtf8 => {
@compileError("invalid wtf8");
},
};
}
pub fn iterator(s: Wtf8View) Wtf8Iterator {
return Wtf8Iterator{
.bytes = s.bytes,
.i = 0,
};
}
};
/// Asserts that `bytes` is valid WTF-8
pub const Wtf8Iterator = struct {
bytes: []const u8,
i: usize,
pub fn nextCodepointSlice(it: *Wtf8Iterator) ?[]const u8 {
if (it.i >= it.bytes.len) {
return null;
}
const cp_len = utf8ByteSequenceLength(it.bytes[it.i]) catch unreachable;
it.i += cp_len;
return it.bytes[it.i - cp_len .. it.i];
}
pub fn nextCodepoint(it: *Wtf8Iterator) ?u21 {
const slice = it.nextCodepointSlice() orelse return null;
return wtf8Decode(slice) catch unreachable;
}
/// Look ahead at the next n codepoints without advancing the iterator.
/// If fewer than n codepoints are available, then return the remainder of the string.
pub fn peek(it: *Wtf8Iterator, n: usize) []const u8 {
const original_i = it.i;
defer it.i = original_i;
var end_ix = original_i;
var found: usize = 0;
while (found < n) : (found += 1) {
const next_codepoint = it.nextCodepointSlice() orelse return it.bytes[original_i..];
end_ix += next_codepoint.len;
}
return it.bytes[original_i..end_ix];
}
};
pub fn wtf16LeToWtf8ArrayList(result: *std.ArrayList(u8), utf16le: []const u16) mem.Allocator.Error!void {
try result.ensureUnusedCapacity(utf16le.len);
return utf16LeToUtf8ArrayListImpl(result, utf16le, .can_encode_surrogate_half);
}
/// Caller must free returned memory.
pub fn wtf16LeToWtf8Alloc(allocator: mem.Allocator, wtf16le: []const u16) mem.Allocator.Error![]u8 {
// optimistically guess that it will all be ascii.
var result = try std.ArrayList(u8).initCapacity(allocator, wtf16le.len);
errdefer result.deinit();
try utf16LeToUtf8ArrayListImpl(&result, wtf16le, .can_encode_surrogate_half);
return result.toOwnedSlice();
}
/// Caller must free returned memory.
pub fn wtf16LeToWtf8AllocZ(allocator: mem.Allocator, wtf16le: []const u16) mem.Allocator.Error![:0]u8 {
// optimistically guess that it will all be ascii (and allocate space for the null terminator)
var result = try std.ArrayList(u8).initCapacity(allocator, wtf16le.len + 1);
errdefer result.deinit();
try utf16LeToUtf8ArrayListImpl(&result, wtf16le, .can_encode_surrogate_half);
return result.toOwnedSliceSentinel(0);
}
pub fn wtf16LeToWtf8(wtf8: []u8, wtf16le: []const u16) usize {
return utf16LeToUtf8Impl(wtf8, wtf16le, .can_encode_surrogate_half) catch |err| switch (err) {};
}
pub fn wtf8ToWtf16LeArrayList(result: *std.ArrayList(u16), wtf8: []const u8) error{ InvalidWtf8, OutOfMemory }!void {
try result.ensureUnusedCapacity(wtf8.len);
return utf8ToUtf16LeArrayListImpl(result, wtf8, .can_encode_surrogate_half);
}
pub fn wtf8ToWtf16LeAlloc(allocator: mem.Allocator, wtf8: []const u8) error{ InvalidWtf8, OutOfMemory }![]u16 {
// optimistically guess that it will not require surrogate pairs
var result = try std.ArrayList(u16).initCapacity(allocator, wtf8.len);
errdefer result.deinit();
try utf8ToUtf16LeArrayListImpl(&result, wtf8, .can_encode_surrogate_half);
return result.toOwnedSlice();
}
pub fn wtf8ToWtf16LeAllocZ(allocator: mem.Allocator, wtf8: []const u8) error{ InvalidWtf8, OutOfMemory }![:0]u16 {
// optimistically guess that it will not require surrogate pairs
var result = try std.ArrayList(u16).initCapacity(allocator, wtf8.len + 1);
errdefer result.deinit();
try utf8ToUtf16LeArrayListImpl(&result, wtf8, .can_encode_surrogate_half);
return result.toOwnedSliceSentinel(0);
}
/// Returns index of next character. If exact fit, returned index equals output slice length.
/// Assumes there is enough space for the output.
pub fn wtf8ToWtf16Le(wtf16le: []u16, wtf8: []const u8) error{InvalidWtf8}!usize {
return utf8ToUtf16LeImpl(wtf16le, wtf8, .can_encode_surrogate_half);
}
/// Surrogate codepoints (U+D800 to U+DFFF) are replaced by the Unicode replacement
/// character (U+FFFD).
/// All surrogate codepoints and the replacement character are encoded as three
/// bytes, meaning the input and output slices will always be the same length.
/// In-place conversion is supported when `utf8` and `wtf8` refer to the same slice.
/// Note: If `wtf8` is entirely composed of well-formed UTF-8, then no conversion is necessary.
/// `utf8ValidateSlice` can be used to check if lossy conversion is worthwhile.
/// If `wtf8` is not valid WTF-8, then `error.InvalidWtf8` is returned.
pub fn wtf8ToUtf8Lossy(utf8: []u8, wtf8: []const u8) error{InvalidWtf8}!void {
assert(utf8.len >= wtf8.len);
const in_place = utf8.ptr == wtf8.ptr;
const replacement_char_bytes = comptime blk: {
var buf: [3]u8 = undefined;
assert((utf8Encode(replacement_character, &buf) catch unreachable) == 3);
break :blk buf;
};
var dest_i: usize = 0;
const view = try Wtf8View.init(wtf8);
var it = view.iterator();
while (it.nextCodepointSlice()) |codepoint_slice| {
// All surrogate codepoints are encoded as 3 bytes
if (codepoint_slice.len == 3) {
const codepoint = wtf8Decode(codepoint_slice) catch unreachable;
if (isSurrogateCodepoint(codepoint)) {
@memcpy(utf8[dest_i..][0..replacement_char_bytes.len], &replacement_char_bytes);
dest_i += replacement_char_bytes.len;
continue;
}
}
if (!in_place) {
@memcpy(utf8[dest_i..][0..codepoint_slice.len], codepoint_slice);
}
dest_i += codepoint_slice.len;
}
}
pub fn wtf8ToUtf8LossyAlloc(allocator: mem.Allocator, wtf8: []const u8) error{ InvalidWtf8, OutOfMemory }![]u8 {
const utf8 = try allocator.alloc(u8, wtf8.len);
errdefer allocator.free(utf8);
try wtf8ToUtf8Lossy(utf8, wtf8);
return utf8;
}
pub fn wtf8ToUtf8LossyAllocZ(allocator: mem.Allocator, wtf8: []const u8) error{ InvalidWtf8, OutOfMemory }![:0]u8 {
const utf8 = try allocator.allocSentinel(u8, wtf8.len, 0);
errdefer allocator.free(utf8);
try wtf8ToUtf8Lossy(utf8, wtf8);
return utf8;
}
test wtf8ToUtf8Lossy {
var buf: [32]u8 = undefined;
const invalid_utf8 = "\xff";
try testing.expectError(error.InvalidWtf8, wtf8ToUtf8Lossy(&buf, invalid_utf8));
const ascii = "abcd";
try wtf8ToUtf8Lossy(&buf, ascii);
try testing.expectEqualStrings("abcd", buf[0..ascii.len]);
const high_surrogate_half = "ab\xed\xa0\xbdcd";
try wtf8ToUtf8Lossy(&buf, high_surrogate_half);
try testing.expectEqualStrings("ab\u{FFFD}cd", buf[0..high_surrogate_half.len]);
const low_surrogate_half = "ab\xed\xb2\xa9cd";
try wtf8ToUtf8Lossy(&buf, low_surrogate_half);
try testing.expectEqualStrings("ab\u{FFFD}cd", buf[0..low_surrogate_half.len]);
// If the WTF-8 is not well-formed, each surrogate half is converted into a separate
// replacement character instead of being interpreted as a surrogate pair.
const encoded_surrogate_pair = "ab\xed\xa0\xbd\xed\xb2\xa9cd";
try wtf8ToUtf8Lossy(&buf, encoded_surrogate_pair);
try testing.expectEqualStrings("ab\u{FFFD}\u{FFFD}cd", buf[0..encoded_surrogate_pair.len]);
// in place
@memcpy(buf[0..low_surrogate_half.len], low_surrogate_half);
const slice = buf[0..low_surrogate_half.len];
try wtf8ToUtf8Lossy(slice, slice);
try testing.expectEqualStrings("ab\u{FFFD}cd", slice);
}
test wtf8ToUtf8LossyAlloc {
const invalid_utf8 = "\xff";
try testing.expectError(error.InvalidWtf8, wtf8ToUtf8LossyAlloc(testing.allocator, invalid_utf8));
{
const ascii = "abcd";
const utf8 = try wtf8ToUtf8LossyAlloc(testing.allocator, ascii);
defer testing.allocator.free(utf8);
try testing.expectEqualStrings("abcd", utf8);
}
{
const surrogate_half = "ab\xed\xa0\xbdcd";
const utf8 = try wtf8ToUtf8LossyAlloc(testing.allocator, surrogate_half);
defer testing.allocator.free(utf8);
try testing.expectEqualStrings("ab\u{FFFD}cd", utf8);
}
{
// If the WTF-8 is not well-formed, each surrogate half is converted into a separate
// replacement character instead of being interpreted as a surrogate pair.
const encoded_surrogate_pair = "ab\xed\xa0\xbd\xed\xb2\xa9cd";
const utf8 = try wtf8ToUtf8LossyAlloc(testing.allocator, encoded_surrogate_pair);
defer testing.allocator.free(utf8);
try testing.expectEqualStrings("ab\u{FFFD}\u{FFFD}cd", utf8);
}
}
test wtf8ToUtf8LossyAllocZ {
const invalid_utf8 = "\xff";
try testing.expectError(error.InvalidWtf8, wtf8ToUtf8LossyAllocZ(testing.allocator, invalid_utf8));
{
const ascii = "abcd";
const utf8 = try wtf8ToUtf8LossyAllocZ(testing.allocator, ascii);
defer testing.allocator.free(utf8);
try testing.expectEqualStrings("abcd", utf8);
}
{
const surrogate_half = "ab\xed\xa0\xbdcd";
const utf8 = try wtf8ToUtf8LossyAllocZ(testing.allocator, surrogate_half);
defer testing.allocator.free(utf8);
try testing.expectEqualStrings("ab\u{FFFD}cd", utf8);
}
{
// If the WTF-8 is not well-formed, each surrogate half is converted into a separate
// replacement character instead of being interpreted as a surrogate pair.
const encoded_surrogate_pair = "ab\xed\xa0\xbd\xed\xb2\xa9cd";
const utf8 = try wtf8ToUtf8LossyAllocZ(testing.allocator, encoded_surrogate_pair);
defer testing.allocator.free(utf8);
try testing.expectEqualStrings("ab\u{FFFD}\u{FFFD}cd", utf8);
}
}
pub const Wtf16LeIterator = struct {
bytes: []const u8,
i: usize,
pub fn init(s: []const u16) Wtf16LeIterator {
return Wtf16LeIterator{
.bytes = mem.sliceAsBytes(s),
.i = 0,
};
}
/// If the next codepoint is encoded by a surrogate pair, returns the
/// codepoint that the surrogate pair represents.
/// If the next codepoint is an unpaired surrogate, returns the codepoint
/// of the unpaired surrogate.
pub fn nextCodepoint(it: *Wtf16LeIterator) ?u21 {
assert(it.i <= it.bytes.len);
if (it.i == it.bytes.len) return null;
var code_units: [2]u16 = undefined;
code_units[0] = mem.readInt(u16, it.bytes[it.i..][0..2], .little);
it.i += 2;
surrogate_pair: {
if (utf16IsHighSurrogate(code_units[0])) {
if (it.i >= it.bytes.len) break :surrogate_pair;
code_units[1] = mem.readInt(u16, it.bytes[it.i..][0..2], .little);
const codepoint = utf16DecodeSurrogatePair(&code_units) catch break :surrogate_pair;
it.i += 2;
return codepoint;
}
}
return code_units[0];
}
};
test "non-well-formed WTF-8 does not roundtrip" {
// This encodes the surrogate pair U+D83D U+DCA9.
// The well-formed version of this would be U+1F4A9 which is \xF0\x9F\x92\xA9.
const non_well_formed_wtf8 = "\xed\xa0\xbd\xed\xb2\xa9";
var wtf16_buf: [2]u16 = undefined;
const wtf16_len = try wtf8ToWtf16Le(&wtf16_buf, non_well_formed_wtf8);
const wtf16 = wtf16_buf[0..wtf16_len];
try testing.expectEqualSlices(u16, &[_]u16{
mem.nativeToLittle(u16, 0xD83D), // high surrogate
mem.nativeToLittle(u16, 0xDCA9), // low surrogate
}, wtf16);
var wtf8_buf: [4]u8 = undefined;
const wtf8_len = wtf16LeToWtf8(&wtf8_buf, wtf16);
const wtf8 = wtf8_buf[0..wtf8_len];
// Converting to WTF-16 and back results in well-formed WTF-8,
// but it does not match the input WTF-8
try testing.expectEqualSlices(u8, "\xf0\x9f\x92\xa9", wtf8);
}
fn testRoundtripWtf8(wtf8: []const u8) !void {
// Buffer
{
var wtf16_buf: [32]u16 = undefined;
const wtf16_len = try wtf8ToWtf16Le(&wtf16_buf, wtf8);
const wtf16 = wtf16_buf[0..wtf16_len];
var roundtripped_buf: [32]u8 = undefined;
const roundtripped_len = wtf16LeToWtf8(&roundtripped_buf, wtf16);
const roundtripped = roundtripped_buf[0..roundtripped_len];
try testing.expectEqualSlices(u8, wtf8, roundtripped);
}
// Alloc
{
const wtf16 = try wtf8ToWtf16LeAlloc(testing.allocator, wtf8);
defer testing.allocator.free(wtf16);
const roundtripped = try wtf16LeToWtf8Alloc(testing.allocator, wtf16);
defer testing.allocator.free(roundtripped);
try testing.expectEqualSlices(u8, wtf8, roundtripped);
}
// AllocZ
{
const wtf16 = try wtf8ToWtf16LeAllocZ(testing.allocator, wtf8);
defer testing.allocator.free(wtf16);
const roundtripped = try wtf16LeToWtf8AllocZ(testing.allocator, wtf16);
defer testing.allocator.free(roundtripped);
try testing.expectEqualSlices(u8, wtf8, roundtripped);
}
}
test "well-formed WTF-8 roundtrips" {
try testRoundtripWtf8("\xed\x9f\xbf"); // not a surrogate half
try testRoundtripWtf8("\xed\xa0\xbd"); // high surrogate
try testRoundtripWtf8("\xed\xb2\xa9"); // low surrogate
try testRoundtripWtf8("\xed\xa0\xbd \xed\xb2\xa9"); // <high surrogate><space><low surrogate>
try testRoundtripWtf8("\xed\xa0\x80\xed\xaf\xbf"); // <high surrogate><high surrogate>
try testRoundtripWtf8("\xed\xa0\x80\xee\x80\x80"); // <high surrogate><not surrogate>
try testRoundtripWtf8("\xed\x9f\xbf\xed\xb0\x80"); // <not surrogate><low surrogate>
try testRoundtripWtf8("a\xed\xb0\x80"); // <not surrogate><low surrogate>
try testRoundtripWtf8("\xf0\x9f\x92\xa9"); // U+1F4A9, encoded as a surrogate pair in WTF-16
}
fn testRoundtripWtf16(wtf16le: []const u16) !void {
// Buffer
{
var wtf8_buf: [32]u8 = undefined;
const wtf8_len = wtf16LeToWtf8(&wtf8_buf, wtf16le);
const wtf8 = wtf8_buf[0..wtf8_len];
var roundtripped_buf: [32]u16 = undefined;
const roundtripped_len = try wtf8ToWtf16Le(&roundtripped_buf, wtf8);
const roundtripped = roundtripped_buf[0..roundtripped_len];
try testing.expectEqualSlices(u16, wtf16le, roundtripped);
}
// Alloc
{
const wtf8 = try wtf16LeToWtf8Alloc(testing.allocator, wtf16le);
defer testing.allocator.free(wtf8);
const roundtripped = try wtf8ToWtf16LeAlloc(testing.allocator, wtf8);
defer testing.allocator.free(roundtripped);
try testing.expectEqualSlices(u16, wtf16le, roundtripped);
}
// AllocZ
{
const wtf8 = try wtf16LeToWtf8AllocZ(testing.allocator, wtf16le);
defer testing.allocator.free(wtf8);
const roundtripped = try wtf8ToWtf16LeAllocZ(testing.allocator, wtf8);
defer testing.allocator.free(roundtripped);
try testing.expectEqualSlices(u16, wtf16le, roundtripped);
}
}
test "well-formed WTF-16 roundtrips" {
try testRoundtripWtf16(&[_]u16{
mem.nativeToLittle(u16, 0xD83D), // high surrogate
mem.nativeToLittle(u16, 0xDCA9), // low surrogate
});
try testRoundtripWtf16(&[_]u16{
mem.nativeToLittle(u16, 0xD83D), // high surrogate
mem.nativeToLittle(u16, ' '), // not surrogate
mem.nativeToLittle(u16, 0xDCA9), // low surrogate
});
try testRoundtripWtf16(&[_]u16{
mem.nativeToLittle(u16, 0xD800), // high surrogate
mem.nativeToLittle(u16, 0xDBFF), // high surrogate
});
try testRoundtripWtf16(&[_]u16{
mem.nativeToLittle(u16, 0xD800), // high surrogate
mem.nativeToLittle(u16, 0xE000), // not surrogate
});
try testRoundtripWtf16(&[_]u16{
mem.nativeToLittle(u16, 0xD7FF), // not surrogate
mem.nativeToLittle(u16, 0xDC00), // low surrogate
});
try testRoundtripWtf16(&[_]u16{
mem.nativeToLittle(u16, 0x61), // not surrogate
mem.nativeToLittle(u16, 0xDC00), // low surrogate
});
try testRoundtripWtf16(&[_]u16{
mem.nativeToLittle(u16, 0xDC00), // low surrogate
});
}
/// Returns the length, in bytes, that would be necessary to encode the
/// given WTF-16 LE slice as WTF-8.
pub fn calcWtf8Len(wtf16le: []const u16) usize {
var it = Wtf16LeIterator.init(wtf16le);
var num_wtf8_bytes: usize = 0;
while (it.nextCodepoint()) |codepoint| {
// Note: If utf8CodepointSequenceLength is ever changed to error on surrogate
// codepoints, then it would no longer be eligible to be used in this context.
num_wtf8_bytes += utf8CodepointSequenceLength(codepoint) catch |err| switch (err) {
error.CodepointTooLarge => unreachable,
};
}
return num_wtf8_bytes;
}
fn testCalcWtf8Len() !void {
const L = utf8ToUtf16LeStringLiteral;
try testing.expectEqual(@as(usize, 1), calcWtf8Len(L("a")));
try testing.expectEqual(@as(usize, 10), calcWtf8Len(L("abcdefghij")));
// unpaired surrogate
try testing.expectEqual(@as(usize, 3), calcWtf8Len(&[_]u16{
mem.nativeToLittle(u16, 0xD800),
}));
try testing.expectEqual(@as(usize, 15), calcWtf8Len(L("こんにちは")));
// First codepoints that are encoded as 1, 2, 3, and 4 bytes
try testing.expectEqual(@as(usize, 1 + 2 + 3 + 4), calcWtf8Len(L("\u{0}\u{80}\u{800}\u{10000}")));
}
test "calculate wtf8 string length of given wtf16 string" {
try testCalcWtf8Len();
try comptime testCalcWtf8Len();
}