zig/lib/std/heap/arena_allocator.zig

124 lines
4.6 KiB
Zig

const std = @import("../std.zig");
const assert = std.debug.assert;
const mem = std.mem;
const Allocator = std.mem.Allocator;
/// This allocator takes an existing allocator, wraps it, and provides an interface
/// where you can allocate without freeing, and then free it all together.
pub const ArenaAllocator = struct {
child_allocator: Allocator,
state: State,
/// Inner state of ArenaAllocator. Can be stored rather than the entire ArenaAllocator
/// as a memory-saving optimization.
pub const State = struct {
buffer_list: std.SinglyLinkedList([]u8) = @as(std.SinglyLinkedList([]u8), .{}),
end_index: usize = 0,
pub fn promote(self: State, child_allocator: Allocator) ArenaAllocator {
return .{
.child_allocator = child_allocator,
.state = self,
};
}
};
pub fn allocator(self: *ArenaAllocator) Allocator {
return Allocator.init(self, alloc, resize, free);
}
const BufNode = std.SinglyLinkedList([]u8).Node;
pub fn init(child_allocator: Allocator) ArenaAllocator {
return (State{}).promote(child_allocator);
}
pub fn deinit(self: ArenaAllocator) void {
var it = self.state.buffer_list.first;
while (it) |node| {
// this has to occur before the free because the free frees node
const next_it = node.next;
self.child_allocator.free(node.data);
it = next_it;
}
}
fn createNode(self: *ArenaAllocator, prev_len: usize, minimum_size: usize) !*BufNode {
const actual_min_size = minimum_size + (@sizeOf(BufNode) + 16);
const big_enough_len = prev_len + actual_min_size;
const len = big_enough_len + big_enough_len / 2;
const buf = try self.child_allocator.rawAlloc(len, @alignOf(BufNode), 1, @returnAddress());
const buf_node = @ptrCast(*BufNode, @alignCast(@alignOf(BufNode), buf.ptr));
buf_node.* = BufNode{
.data = buf,
.next = null,
};
self.state.buffer_list.prepend(buf_node);
self.state.end_index = 0;
return buf_node;
}
fn alloc(self: *ArenaAllocator, n: usize, ptr_align: u29, len_align: u29, ra: usize) ![]u8 {
_ = len_align;
_ = ra;
var cur_node = if (self.state.buffer_list.first) |first_node| first_node else try self.createNode(0, n + ptr_align);
while (true) {
const cur_buf = cur_node.data[@sizeOf(BufNode)..];
const addr = @ptrToInt(cur_buf.ptr) + self.state.end_index;
const adjusted_addr = mem.alignForward(addr, ptr_align);
const adjusted_index = self.state.end_index + (adjusted_addr - addr);
const new_end_index = adjusted_index + n;
if (new_end_index <= cur_buf.len) {
const result = cur_buf[adjusted_index..new_end_index];
self.state.end_index = new_end_index;
return result;
}
const bigger_buf_size = @sizeOf(BufNode) + new_end_index;
// Try to grow the buffer in-place
cur_node.data = self.child_allocator.resize(cur_node.data, bigger_buf_size) orelse {
// Allocate a new node if that's not possible
cur_node = try self.createNode(cur_buf.len, n + ptr_align);
continue;
};
}
}
fn resize(self: *ArenaAllocator, buf: []u8, buf_align: u29, new_len: usize, len_align: u29, ret_addr: usize) ?usize {
_ = buf_align;
_ = len_align;
_ = ret_addr;
const cur_node = self.state.buffer_list.first orelse return null;
const cur_buf = cur_node.data[@sizeOf(BufNode)..];
if (@ptrToInt(cur_buf.ptr) + self.state.end_index != @ptrToInt(buf.ptr) + buf.len) {
if (new_len > buf.len) return null;
return new_len;
}
if (buf.len >= new_len) {
self.state.end_index -= buf.len - new_len;
return new_len;
} else if (cur_buf.len - self.state.end_index >= new_len - buf.len) {
self.state.end_index += new_len - buf.len;
return new_len;
} else {
return null;
}
}
fn free(self: *ArenaAllocator, buf: []u8, buf_align: u29, ret_addr: usize) void {
_ = buf_align;
_ = ret_addr;
const cur_node = self.state.buffer_list.first orelse return;
const cur_buf = cur_node.data[@sizeOf(BufNode)..];
if (@ptrToInt(cur_buf.ptr) + self.state.end_index == @ptrToInt(buf.ptr) + buf.len) {
self.state.end_index -= buf.len;
}
}
};