mirror of
https://github.com/ziglang/zig.git
synced 2024-11-15 08:33:06 +00:00
41dd2beaac
* unify the logic for exporting math functions from compiler-rt, with the appropriate suffixes and prefixes. - add all missing f128 and f80 exports. Functions with missing implementations call other functions and have TODO comments. - also add f16 functions * move math functions from freestanding libc to compiler-rt (#7265) * enable all the f128 and f80 code in the stage2 compiler and behavior tests (#11161). * update std lib to use builtins rather than `std.math`.
709 lines
20 KiB
Zig
709 lines
20 KiB
Zig
const std = @import("../std.zig");
|
|
const enum3 = @import("errol/enum3.zig").enum3;
|
|
const enum3_data = @import("errol/enum3.zig").enum3_data;
|
|
const lookup_table = @import("errol/lookup.zig").lookup_table;
|
|
const HP = @import("errol/lookup.zig").HP;
|
|
const math = std.math;
|
|
const mem = std.mem;
|
|
const assert = std.debug.assert;
|
|
|
|
pub const FloatDecimal = struct {
|
|
digits: []u8,
|
|
exp: i32,
|
|
};
|
|
|
|
pub const RoundMode = enum {
|
|
// Round only the fractional portion (e.g. 1234.23 has precision 2)
|
|
Decimal,
|
|
// Round the entire whole/fractional portion (e.g. 1.23423e3 has precision 5)
|
|
Scientific,
|
|
};
|
|
|
|
/// Round a FloatDecimal as returned by errol3 to the specified fractional precision.
|
|
/// All digits after the specified precision should be considered invalid.
|
|
pub fn roundToPrecision(float_decimal: *FloatDecimal, precision: usize, mode: RoundMode) void {
|
|
// The round digit refers to the index which we should look at to determine
|
|
// whether we need to round to match the specified precision.
|
|
var round_digit: usize = 0;
|
|
|
|
switch (mode) {
|
|
RoundMode.Decimal => {
|
|
if (float_decimal.exp >= 0) {
|
|
round_digit = precision + @intCast(usize, float_decimal.exp);
|
|
} else {
|
|
// if a small negative exp, then adjust we need to offset by the number
|
|
// of leading zeros that will occur.
|
|
const min_exp_required = @intCast(usize, -float_decimal.exp);
|
|
if (precision > min_exp_required) {
|
|
round_digit = precision - min_exp_required;
|
|
}
|
|
}
|
|
},
|
|
RoundMode.Scientific => {
|
|
round_digit = 1 + precision;
|
|
},
|
|
}
|
|
|
|
// It suffices to look at just this digit. We don't round and propagate say 0.04999 to 0.05
|
|
// first, and then to 0.1 in the case of a {.1} single precision.
|
|
|
|
// Find the digit which will signify the round point and start rounding backwards.
|
|
if (round_digit < float_decimal.digits.len and float_decimal.digits[round_digit] - '0' >= 5) {
|
|
assert(round_digit >= 0);
|
|
|
|
var i = round_digit;
|
|
while (true) {
|
|
if (i == 0) {
|
|
// Rounded all the way past the start. This was of the form 9.999...
|
|
// Slot the new digit in place and increase the exponent.
|
|
float_decimal.exp += 1;
|
|
|
|
// Re-size the buffer to use the reserved leading byte.
|
|
const one_before = @intToPtr([*]u8, @ptrToInt(&float_decimal.digits[0]) - 1);
|
|
float_decimal.digits = one_before[0 .. float_decimal.digits.len + 1];
|
|
float_decimal.digits[0] = '1';
|
|
return;
|
|
}
|
|
|
|
i -= 1;
|
|
|
|
const new_value = (float_decimal.digits[i] - '0' + 1) % 10;
|
|
float_decimal.digits[i] = new_value + '0';
|
|
|
|
// must continue rounding until non-9
|
|
if (new_value != 0) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Corrected Errol3 double to ASCII conversion.
|
|
pub fn errol3(value: f64, buffer: []u8) FloatDecimal {
|
|
const bits = @bitCast(u64, value);
|
|
const i = tableLowerBound(bits);
|
|
if (i < enum3.len and enum3[i] == bits) {
|
|
const data = enum3_data[i];
|
|
const digits = buffer[1 .. data.str.len + 1];
|
|
mem.copy(u8, digits, data.str);
|
|
return FloatDecimal{
|
|
.digits = digits,
|
|
.exp = data.exp,
|
|
};
|
|
}
|
|
|
|
// We generate digits starting at index 1. If rounding a buffer later then it may be
|
|
// required to generate a preceding digit in some cases (9.999) in which case we use
|
|
// the 0-index for this extra digit.
|
|
return errol3u(value, buffer[1..]);
|
|
}
|
|
|
|
/// Uncorrected Errol3 double to ASCII conversion.
|
|
fn errol3u(val: f64, buffer: []u8) FloatDecimal {
|
|
// check if in integer or fixed range
|
|
if (val > 9.007199254740992e15 and val < 3.40282366920938e+38) {
|
|
return errolInt(val, buffer);
|
|
} else if (val >= 16.0 and val < 9.007199254740992e15) {
|
|
return errolFixed(val, buffer);
|
|
}
|
|
return errolSlow(val, buffer);
|
|
}
|
|
|
|
fn errolSlow(val: f64, buffer: []u8) FloatDecimal {
|
|
// normalize the midpoint
|
|
|
|
const e = math.frexp(val).exponent;
|
|
var exp = @floatToInt(i16, @floor(307 + @intToFloat(f64, e) * 0.30103));
|
|
if (exp < 20) {
|
|
exp = 20;
|
|
} else if (@intCast(usize, exp) >= lookup_table.len) {
|
|
exp = @intCast(i16, lookup_table.len - 1);
|
|
}
|
|
|
|
var mid = lookup_table[@intCast(usize, exp)];
|
|
mid = hpProd(mid, val);
|
|
const lten = lookup_table[@intCast(usize, exp)].val;
|
|
|
|
exp -= 307;
|
|
|
|
var ten: f64 = 1.0;
|
|
|
|
while (mid.val > 10.0 or (mid.val == 10.0 and mid.off >= 0.0)) {
|
|
exp += 1;
|
|
hpDiv10(&mid);
|
|
ten /= 10.0;
|
|
}
|
|
|
|
while (mid.val < 1.0 or (mid.val == 1.0 and mid.off < 0.0)) {
|
|
exp -= 1;
|
|
hpMul10(&mid);
|
|
ten *= 10.0;
|
|
}
|
|
|
|
// compute boundaries
|
|
var high = HP{
|
|
.val = mid.val,
|
|
.off = mid.off + (fpnext(val) - val) * lten * ten / 2.0,
|
|
};
|
|
var low = HP{
|
|
.val = mid.val,
|
|
.off = mid.off + (fpprev(val) - val) * lten * ten / 2.0,
|
|
};
|
|
|
|
hpNormalize(&high);
|
|
hpNormalize(&low);
|
|
|
|
// normalized boundaries
|
|
|
|
while (high.val > 10.0 or (high.val == 10.0 and high.off >= 0.0)) {
|
|
exp += 1;
|
|
hpDiv10(&high);
|
|
hpDiv10(&low);
|
|
}
|
|
|
|
while (high.val < 1.0 or (high.val == 1.0 and high.off < 0.0)) {
|
|
exp -= 1;
|
|
hpMul10(&high);
|
|
hpMul10(&low);
|
|
}
|
|
|
|
// digit generation
|
|
var buf_index: usize = 0;
|
|
while (true) {
|
|
var hdig = @floatToInt(u8, @floor(high.val));
|
|
if ((high.val == @intToFloat(f64, hdig)) and (high.off < 0)) hdig -= 1;
|
|
|
|
var ldig = @floatToInt(u8, @floor(low.val));
|
|
if ((low.val == @intToFloat(f64, ldig)) and (low.off < 0)) ldig -= 1;
|
|
|
|
if (ldig != hdig) break;
|
|
|
|
buffer[buf_index] = hdig + '0';
|
|
buf_index += 1;
|
|
high.val -= @intToFloat(f64, hdig);
|
|
low.val -= @intToFloat(f64, ldig);
|
|
hpMul10(&high);
|
|
hpMul10(&low);
|
|
}
|
|
|
|
const tmp = (high.val + low.val) / 2.0;
|
|
var mdig = @floatToInt(u8, @floor(tmp + 0.5));
|
|
if ((@intToFloat(f64, mdig) - tmp) == 0.5 and (mdig & 0x1) != 0) mdig -= 1;
|
|
|
|
buffer[buf_index] = mdig + '0';
|
|
buf_index += 1;
|
|
|
|
return FloatDecimal{
|
|
.digits = buffer[0..buf_index],
|
|
.exp = exp,
|
|
};
|
|
}
|
|
|
|
fn tableLowerBound(k: u64) usize {
|
|
var i = enum3.len;
|
|
var j: usize = 0;
|
|
|
|
while (j < enum3.len) {
|
|
if (enum3[j] < k) {
|
|
j = 2 * j + 2;
|
|
} else {
|
|
i = j;
|
|
j = 2 * j + 1;
|
|
}
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
/// Compute the product of an HP number and a double.
|
|
/// @in: The HP number.
|
|
/// @val: The double.
|
|
/// &returns: The HP number.
|
|
fn hpProd(in: HP, val: f64) HP {
|
|
var hi: f64 = undefined;
|
|
var lo: f64 = undefined;
|
|
split(in.val, &hi, &lo);
|
|
|
|
var hi2: f64 = undefined;
|
|
var lo2: f64 = undefined;
|
|
split(val, &hi2, &lo2);
|
|
|
|
const p = in.val * val;
|
|
const e = ((hi * hi2 - p) + lo * hi2 + hi * lo2) + lo * lo2;
|
|
|
|
return HP{
|
|
.val = p,
|
|
.off = in.off * val + e,
|
|
};
|
|
}
|
|
|
|
/// Split a double into two halves.
|
|
/// @val: The double.
|
|
/// @hi: The high bits.
|
|
/// @lo: The low bits.
|
|
fn split(val: f64, hi: *f64, lo: *f64) void {
|
|
hi.* = gethi(val);
|
|
lo.* = val - hi.*;
|
|
}
|
|
|
|
fn gethi(in: f64) f64 {
|
|
const bits = @bitCast(u64, in);
|
|
const new_bits = bits & 0xFFFFFFFFF8000000;
|
|
return @bitCast(f64, new_bits);
|
|
}
|
|
|
|
/// Normalize the number by factoring in the error.
|
|
/// @hp: The float pair.
|
|
fn hpNormalize(hp: *HP) void {
|
|
const val = hp.val;
|
|
hp.val += hp.off;
|
|
hp.off += val - hp.val;
|
|
}
|
|
|
|
/// Divide the high-precision number by ten.
|
|
/// @hp: The high-precision number
|
|
fn hpDiv10(hp: *HP) void {
|
|
var val = hp.val;
|
|
|
|
hp.val /= 10.0;
|
|
hp.off /= 10.0;
|
|
|
|
val -= hp.val * 8.0;
|
|
val -= hp.val * 2.0;
|
|
|
|
hp.off += val / 10.0;
|
|
|
|
hpNormalize(hp);
|
|
}
|
|
|
|
/// Multiply the high-precision number by ten.
|
|
/// @hp: The high-precision number
|
|
fn hpMul10(hp: *HP) void {
|
|
const val = hp.val;
|
|
|
|
hp.val *= 10.0;
|
|
hp.off *= 10.0;
|
|
|
|
var off = hp.val;
|
|
off -= val * 8.0;
|
|
off -= val * 2.0;
|
|
|
|
hp.off -= off;
|
|
|
|
hpNormalize(hp);
|
|
}
|
|
|
|
/// Integer conversion algorithm, guaranteed correct, optimal, and best.
|
|
/// @val: The val.
|
|
/// @buf: The output buffer.
|
|
/// &return: The exponent.
|
|
fn errolInt(val: f64, buffer: []u8) FloatDecimal {
|
|
const pow19 = @as(u128, 1e19);
|
|
|
|
assert((val > 9.007199254740992e15) and val < (3.40282366920938e38));
|
|
|
|
var mid = @floatToInt(u128, val);
|
|
var low: u128 = mid - fpeint((fpnext(val) - val) / 2.0);
|
|
var high: u128 = mid + fpeint((val - fpprev(val)) / 2.0);
|
|
|
|
if (@bitCast(u64, val) & 0x1 != 0) {
|
|
high -= 1;
|
|
} else {
|
|
low -= 1;
|
|
}
|
|
|
|
var l64 = @intCast(u64, low % pow19);
|
|
const lf = @intCast(u64, (low / pow19) % pow19);
|
|
|
|
var h64 = @intCast(u64, high % pow19);
|
|
const hf = @intCast(u64, (high / pow19) % pow19);
|
|
|
|
if (lf != hf) {
|
|
l64 = lf;
|
|
h64 = hf;
|
|
mid = mid / (pow19 / 10);
|
|
}
|
|
|
|
var mi: i32 = mismatch10(l64, h64);
|
|
var x: u64 = 1;
|
|
{
|
|
var i: i32 = @boolToInt(lf == hf);
|
|
while (i < mi) : (i += 1) {
|
|
x *= 10;
|
|
}
|
|
}
|
|
const m64 = @truncate(u64, @divTrunc(mid, x));
|
|
|
|
if (lf != hf) mi += 19;
|
|
|
|
var buf_index = u64toa(m64, buffer) - 1;
|
|
|
|
if (mi != 0) {
|
|
const round_up = buffer[buf_index] >= '5';
|
|
if (buf_index == 0 or (round_up and buffer[buf_index - 1] == '9')) return errolSlow(val, buffer);
|
|
buffer[buf_index - 1] += @boolToInt(round_up);
|
|
} else {
|
|
buf_index += 1;
|
|
}
|
|
|
|
return FloatDecimal{
|
|
.digits = buffer[0..buf_index],
|
|
.exp = @intCast(i32, buf_index) + mi,
|
|
};
|
|
}
|
|
|
|
/// Fixed point conversion algorithm, guaranteed correct, optimal, and best.
|
|
/// @val: The val.
|
|
/// @buf: The output buffer.
|
|
/// &return: The exponent.
|
|
fn errolFixed(val: f64, buffer: []u8) FloatDecimal {
|
|
assert((val >= 16.0) and (val < 9.007199254740992e15));
|
|
|
|
const u = @floatToInt(u64, val);
|
|
const n = @intToFloat(f64, u);
|
|
|
|
var mid = val - n;
|
|
var lo = ((fpprev(val) - n) + mid) / 2.0;
|
|
var hi = ((fpnext(val) - n) + mid) / 2.0;
|
|
|
|
var buf_index = u64toa(u, buffer);
|
|
var exp = @intCast(i32, buf_index);
|
|
var j = buf_index;
|
|
buffer[j] = 0;
|
|
|
|
if (mid != 0.0) {
|
|
while (mid != 0.0) {
|
|
lo *= 10.0;
|
|
const ldig = @floatToInt(i32, lo);
|
|
lo -= @intToFloat(f64, ldig);
|
|
|
|
mid *= 10.0;
|
|
const mdig = @floatToInt(i32, mid);
|
|
mid -= @intToFloat(f64, mdig);
|
|
|
|
hi *= 10.0;
|
|
const hdig = @floatToInt(i32, hi);
|
|
hi -= @intToFloat(f64, hdig);
|
|
|
|
buffer[j] = @intCast(u8, mdig + '0');
|
|
j += 1;
|
|
|
|
if (hdig != ldig or j > 50) break;
|
|
}
|
|
|
|
if (mid > 0.5) {
|
|
buffer[j - 1] += 1;
|
|
} else if ((mid == 0.5) and (buffer[j - 1] & 0x1) != 0) {
|
|
buffer[j - 1] += 1;
|
|
}
|
|
} else {
|
|
while (buffer[j - 1] == '0') {
|
|
buffer[j - 1] = 0;
|
|
j -= 1;
|
|
}
|
|
}
|
|
|
|
buffer[j] = 0;
|
|
|
|
return FloatDecimal{
|
|
.digits = buffer[0..j],
|
|
.exp = exp,
|
|
};
|
|
}
|
|
|
|
fn fpnext(val: f64) f64 {
|
|
return @bitCast(f64, @bitCast(u64, val) +% 1);
|
|
}
|
|
|
|
fn fpprev(val: f64) f64 {
|
|
return @bitCast(f64, @bitCast(u64, val) -% 1);
|
|
}
|
|
|
|
pub const c_digits_lut = [_]u8{
|
|
'0', '0', '0', '1', '0', '2', '0', '3', '0', '4', '0', '5', '0', '6',
|
|
'0', '7', '0', '8', '0', '9', '1', '0', '1', '1', '1', '2', '1', '3',
|
|
'1', '4', '1', '5', '1', '6', '1', '7', '1', '8', '1', '9', '2', '0',
|
|
'2', '1', '2', '2', '2', '3', '2', '4', '2', '5', '2', '6', '2', '7',
|
|
'2', '8', '2', '9', '3', '0', '3', '1', '3', '2', '3', '3', '3', '4',
|
|
'3', '5', '3', '6', '3', '7', '3', '8', '3', '9', '4', '0', '4', '1',
|
|
'4', '2', '4', '3', '4', '4', '4', '5', '4', '6', '4', '7', '4', '8',
|
|
'4', '9', '5', '0', '5', '1', '5', '2', '5', '3', '5', '4', '5', '5',
|
|
'5', '6', '5', '7', '5', '8', '5', '9', '6', '0', '6', '1', '6', '2',
|
|
'6', '3', '6', '4', '6', '5', '6', '6', '6', '7', '6', '8', '6', '9',
|
|
'7', '0', '7', '1', '7', '2', '7', '3', '7', '4', '7', '5', '7', '6',
|
|
'7', '7', '7', '8', '7', '9', '8', '0', '8', '1', '8', '2', '8', '3',
|
|
'8', '4', '8', '5', '8', '6', '8', '7', '8', '8', '8', '9', '9', '0',
|
|
'9', '1', '9', '2', '9', '3', '9', '4', '9', '5', '9', '6', '9', '7',
|
|
'9', '8', '9', '9',
|
|
};
|
|
|
|
fn u64toa(value_param: u64, buffer: []u8) usize {
|
|
var value = value_param;
|
|
const kTen8: u64 = 100000000;
|
|
const kTen9: u64 = kTen8 * 10;
|
|
const kTen10: u64 = kTen8 * 100;
|
|
const kTen11: u64 = kTen8 * 1000;
|
|
const kTen12: u64 = kTen8 * 10000;
|
|
const kTen13: u64 = kTen8 * 100000;
|
|
const kTen14: u64 = kTen8 * 1000000;
|
|
const kTen15: u64 = kTen8 * 10000000;
|
|
const kTen16: u64 = kTen8 * kTen8;
|
|
|
|
var buf_index: usize = 0;
|
|
|
|
if (value < kTen8) {
|
|
const v = @intCast(u32, value);
|
|
if (v < 10000) {
|
|
const d1: u32 = (v / 100) << 1;
|
|
const d2: u32 = (v % 100) << 1;
|
|
|
|
if (v >= 1000) {
|
|
buffer[buf_index] = c_digits_lut[d1];
|
|
buf_index += 1;
|
|
}
|
|
if (v >= 100) {
|
|
buffer[buf_index] = c_digits_lut[d1 + 1];
|
|
buf_index += 1;
|
|
}
|
|
if (v >= 10) {
|
|
buffer[buf_index] = c_digits_lut[d2];
|
|
buf_index += 1;
|
|
}
|
|
buffer[buf_index] = c_digits_lut[d2 + 1];
|
|
buf_index += 1;
|
|
} else {
|
|
// value = bbbbcccc
|
|
const b: u32 = v / 10000;
|
|
const c: u32 = v % 10000;
|
|
|
|
const d1: u32 = (b / 100) << 1;
|
|
const d2: u32 = (b % 100) << 1;
|
|
|
|
const d3: u32 = (c / 100) << 1;
|
|
const d4: u32 = (c % 100) << 1;
|
|
|
|
if (value >= 10000000) {
|
|
buffer[buf_index] = c_digits_lut[d1];
|
|
buf_index += 1;
|
|
}
|
|
if (value >= 1000000) {
|
|
buffer[buf_index] = c_digits_lut[d1 + 1];
|
|
buf_index += 1;
|
|
}
|
|
if (value >= 100000) {
|
|
buffer[buf_index] = c_digits_lut[d2];
|
|
buf_index += 1;
|
|
}
|
|
buffer[buf_index] = c_digits_lut[d2 + 1];
|
|
buf_index += 1;
|
|
|
|
buffer[buf_index] = c_digits_lut[d3];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d3 + 1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d4];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d4 + 1];
|
|
buf_index += 1;
|
|
}
|
|
} else if (value < kTen16) {
|
|
const v0: u32 = @intCast(u32, value / kTen8);
|
|
const v1: u32 = @intCast(u32, value % kTen8);
|
|
|
|
const b0: u32 = v0 / 10000;
|
|
const c0: u32 = v0 % 10000;
|
|
|
|
const d1: u32 = (b0 / 100) << 1;
|
|
const d2: u32 = (b0 % 100) << 1;
|
|
|
|
const d3: u32 = (c0 / 100) << 1;
|
|
const d4: u32 = (c0 % 100) << 1;
|
|
|
|
const b1: u32 = v1 / 10000;
|
|
const c1: u32 = v1 % 10000;
|
|
|
|
const d5: u32 = (b1 / 100) << 1;
|
|
const d6: u32 = (b1 % 100) << 1;
|
|
|
|
const d7: u32 = (c1 / 100) << 1;
|
|
const d8: u32 = (c1 % 100) << 1;
|
|
|
|
if (value >= kTen15) {
|
|
buffer[buf_index] = c_digits_lut[d1];
|
|
buf_index += 1;
|
|
}
|
|
if (value >= kTen14) {
|
|
buffer[buf_index] = c_digits_lut[d1 + 1];
|
|
buf_index += 1;
|
|
}
|
|
if (value >= kTen13) {
|
|
buffer[buf_index] = c_digits_lut[d2];
|
|
buf_index += 1;
|
|
}
|
|
if (value >= kTen12) {
|
|
buffer[buf_index] = c_digits_lut[d2 + 1];
|
|
buf_index += 1;
|
|
}
|
|
if (value >= kTen11) {
|
|
buffer[buf_index] = c_digits_lut[d3];
|
|
buf_index += 1;
|
|
}
|
|
if (value >= kTen10) {
|
|
buffer[buf_index] = c_digits_lut[d3 + 1];
|
|
buf_index += 1;
|
|
}
|
|
if (value >= kTen9) {
|
|
buffer[buf_index] = c_digits_lut[d4];
|
|
buf_index += 1;
|
|
}
|
|
if (value >= kTen8) {
|
|
buffer[buf_index] = c_digits_lut[d4 + 1];
|
|
buf_index += 1;
|
|
}
|
|
|
|
buffer[buf_index] = c_digits_lut[d5];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d5 + 1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d6];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d6 + 1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d7];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d7 + 1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d8];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d8 + 1];
|
|
buf_index += 1;
|
|
} else {
|
|
const a = @intCast(u32, value / kTen16); // 1 to 1844
|
|
value %= kTen16;
|
|
|
|
if (a < 10) {
|
|
buffer[buf_index] = '0' + @intCast(u8, a);
|
|
buf_index += 1;
|
|
} else if (a < 100) {
|
|
const i: u32 = a << 1;
|
|
buffer[buf_index] = c_digits_lut[i];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[i + 1];
|
|
buf_index += 1;
|
|
} else if (a < 1000) {
|
|
buffer[buf_index] = '0' + @intCast(u8, a / 100);
|
|
buf_index += 1;
|
|
|
|
const i: u32 = (a % 100) << 1;
|
|
buffer[buf_index] = c_digits_lut[i];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[i + 1];
|
|
buf_index += 1;
|
|
} else {
|
|
const i: u32 = (a / 100) << 1;
|
|
const j: u32 = (a % 100) << 1;
|
|
buffer[buf_index] = c_digits_lut[i];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[i + 1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[j];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[j + 1];
|
|
buf_index += 1;
|
|
}
|
|
|
|
const v0 = @intCast(u32, value / kTen8);
|
|
const v1 = @intCast(u32, value % kTen8);
|
|
|
|
const b0: u32 = v0 / 10000;
|
|
const c0: u32 = v0 % 10000;
|
|
|
|
const d1: u32 = (b0 / 100) << 1;
|
|
const d2: u32 = (b0 % 100) << 1;
|
|
|
|
const d3: u32 = (c0 / 100) << 1;
|
|
const d4: u32 = (c0 % 100) << 1;
|
|
|
|
const b1: u32 = v1 / 10000;
|
|
const c1: u32 = v1 % 10000;
|
|
|
|
const d5: u32 = (b1 / 100) << 1;
|
|
const d6: u32 = (b1 % 100) << 1;
|
|
|
|
const d7: u32 = (c1 / 100) << 1;
|
|
const d8: u32 = (c1 % 100) << 1;
|
|
|
|
buffer[buf_index] = c_digits_lut[d1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d1 + 1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d2];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d2 + 1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d3];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d3 + 1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d4];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d4 + 1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d5];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d5 + 1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d6];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d6 + 1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d7];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d7 + 1];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d8];
|
|
buf_index += 1;
|
|
buffer[buf_index] = c_digits_lut[d8 + 1];
|
|
buf_index += 1;
|
|
}
|
|
|
|
return buf_index;
|
|
}
|
|
|
|
fn fpeint(from: f64) u128 {
|
|
const bits = @bitCast(u64, from);
|
|
assert((bits & ((1 << 52) - 1)) == 0);
|
|
|
|
return @as(u128, 1) << @truncate(u7, (bits >> 52) -% 1023);
|
|
}
|
|
|
|
/// Given two different integers with the same length in terms of the number
|
|
/// of decimal digits, index the digits from the right-most position starting
|
|
/// from zero, find the first index where the digits in the two integers
|
|
/// divergent starting from the highest index.
|
|
/// @a: Integer a.
|
|
/// @b: Integer b.
|
|
/// &returns: An index within [0, 19).
|
|
fn mismatch10(a: u64, b: u64) i32 {
|
|
const pow10 = 10000000000;
|
|
const af = a / pow10;
|
|
const bf = b / pow10;
|
|
|
|
var i: i32 = 0;
|
|
var a_copy = a;
|
|
var b_copy = b;
|
|
|
|
if (af != bf) {
|
|
i = 10;
|
|
a_copy = af;
|
|
b_copy = bf;
|
|
}
|
|
|
|
while (true) : (i += 1) {
|
|
a_copy /= 10;
|
|
b_copy /= 10;
|
|
|
|
if (a_copy == b_copy) return i;
|
|
}
|
|
}
|