zig/lib/std/time.zig
2022-01-07 00:06:06 -05:00

292 lines
11 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const os = std.os;
const math = std.math;
const is_windows = builtin.os.tag == .windows;
pub const epoch = @import("time/epoch.zig");
/// Spurious wakeups are possible and no precision of timing is guaranteed.
pub fn sleep(nanoseconds: u64) void {
// TODO: opting out of async sleeping?
if (std.io.is_async)
return std.event.Loop.instance.?.sleep(nanoseconds);
if (is_windows) {
const big_ms_from_ns = nanoseconds / ns_per_ms;
const ms = math.cast(os.windows.DWORD, big_ms_from_ns) catch math.maxInt(os.windows.DWORD);
os.windows.kernel32.Sleep(ms);
return;
}
if (builtin.os.tag == .wasi) {
const w = std.os.wasi;
const userdata: w.userdata_t = 0x0123_45678;
const clock = w.subscription_clock_t{
.id = w.CLOCK.MONOTONIC,
.timeout = nanoseconds,
.precision = 0,
.flags = 0,
};
const in = w.subscription_t{
.userdata = userdata,
.u = w.subscription_u_t{
.tag = w.EVENTTYPE_CLOCK,
.u = w.subscription_u_u_t{
.clock = clock,
},
},
};
var event: w.event_t = undefined;
var nevents: usize = undefined;
_ = w.poll_oneoff(&in, &event, 1, &nevents);
return;
}
const s = nanoseconds / ns_per_s;
const ns = nanoseconds % ns_per_s;
std.os.nanosleep(s, ns);
}
/// Get a calendar timestamp, in seconds, relative to UTC 1970-01-01.
/// Precision of timing depends on the hardware and operating system.
/// The return value is signed because it is possible to have a date that is
/// before the epoch.
/// See `std.os.clock_gettime` for a POSIX timestamp.
pub fn timestamp() i64 {
return @divFloor(milliTimestamp(), ms_per_s);
}
/// Get a calendar timestamp, in milliseconds, relative to UTC 1970-01-01.
/// Precision of timing depends on the hardware and operating system.
/// The return value is signed because it is possible to have a date that is
/// before the epoch.
/// See `std.os.clock_gettime` for a POSIX timestamp.
pub fn milliTimestamp() i64 {
return @intCast(i64, @divFloor(nanoTimestamp(), ns_per_ms));
}
/// Get a calendar timestamp, in nanoseconds, relative to UTC 1970-01-01.
/// Precision of timing depends on the hardware and operating system.
/// On Windows this has a maximum granularity of 100 nanoseconds.
/// The return value is signed because it is possible to have a date that is
/// before the epoch.
/// See `std.os.clock_gettime` for a POSIX timestamp.
pub fn nanoTimestamp() i128 {
if (is_windows) {
// FileTime has a granularity of 100 nanoseconds and uses the NTFS/Windows epoch,
// which is 1601-01-01.
const epoch_adj = epoch.windows * (ns_per_s / 100);
var ft: os.windows.FILETIME = undefined;
os.windows.kernel32.GetSystemTimeAsFileTime(&ft);
const ft64 = (@as(u64, ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
return @as(i128, @bitCast(i64, ft64) + epoch_adj) * 100;
}
if (builtin.os.tag == .wasi and !builtin.link_libc) {
var ns: os.wasi.timestamp_t = undefined;
const err = os.wasi.clock_time_get(os.wasi.CLOCK.REALTIME, 1, &ns);
assert(err == .SUCCESS);
return ns;
}
var ts: os.timespec = undefined;
os.clock_gettime(os.CLOCK.REALTIME, &ts) catch |err| switch (err) {
error.UnsupportedClock, error.Unexpected => return 0, // "Precision of timing depends on hardware and OS".
};
return (@as(i128, ts.tv_sec) * ns_per_s) + ts.tv_nsec;
}
// Divisions of a nanosecond.
pub const ns_per_us = 1000;
pub const ns_per_ms = 1000 * ns_per_us;
pub const ns_per_s = 1000 * ns_per_ms;
pub const ns_per_min = 60 * ns_per_s;
pub const ns_per_hour = 60 * ns_per_min;
pub const ns_per_day = 24 * ns_per_hour;
pub const ns_per_week = 7 * ns_per_day;
// Divisions of a microsecond.
pub const us_per_ms = 1000;
pub const us_per_s = 1000 * us_per_ms;
pub const us_per_min = 60 * us_per_s;
pub const us_per_hour = 60 * us_per_min;
pub const us_per_day = 24 * us_per_hour;
pub const us_per_week = 7 * us_per_day;
// Divisions of a millisecond.
pub const ms_per_s = 1000;
pub const ms_per_min = 60 * ms_per_s;
pub const ms_per_hour = 60 * ms_per_min;
pub const ms_per_day = 24 * ms_per_hour;
pub const ms_per_week = 7 * ms_per_day;
// Divisions of a second.
pub const s_per_min = 60;
pub const s_per_hour = s_per_min * 60;
pub const s_per_day = s_per_hour * 24;
pub const s_per_week = s_per_day * 7;
/// A monotonic high-performance timer.
/// Timer.start() must be called to initialize the struct, which captures
/// the counter frequency on windows and darwin, records the resolution,
/// and gives the user an opportunity to check for the existnece of
/// monotonic clocks without forcing them to check for error on each read.
/// .resolution is in nanoseconds on all platforms but .start_time's meaning
/// depends on the OS. On Windows and Darwin it is a hardware counter
/// value that requires calculation to convert to a meaninful unit.
pub const Timer = struct {
///if we used resolution's value when performing the
/// performance counter calc on windows/darwin, it would
/// be less precise
frequency: switch (builtin.os.tag) {
.windows => u64,
.macos, .ios, .tvos, .watchos => os.darwin.mach_timebase_info_data,
else => void,
},
resolution: u64,
start_time: u64,
pub const Error = error{TimerUnsupported};
/// At some point we may change our minds on RAW, but for now we're
/// sticking with posix standard MONOTONIC. For more information, see:
/// https://github.com/ziglang/zig/pull/933
const monotonic_clock_id = os.CLOCK.MONOTONIC;
/// Initialize the timer structure.
/// Can only fail when running in a hostile environment that intentionally injects
/// error values into syscalls, such as using seccomp on Linux to intercept
/// `clock_gettime`.
pub fn start() Error!Timer {
// This gives us an opportunity to grab the counter frequency in windows.
// On Windows: QueryPerformanceCounter will succeed on anything >= XP/2000.
// On Posix: CLOCK.MONOTONIC will only fail if the monotonic counter is not
// supported, or if the timespec pointer is out of bounds, which should be
// impossible here barring cosmic rays or other such occurrences of
// incredibly bad luck.
// On Darwin: This cannot fail, as far as I am able to tell.
if (is_windows) {
const freq = os.windows.QueryPerformanceFrequency();
return Timer{
.frequency = freq,
.resolution = @divFloor(ns_per_s, freq),
.start_time = os.windows.QueryPerformanceCounter(),
};
} else if (comptime builtin.target.isDarwin()) {
var freq: os.darwin.mach_timebase_info_data = undefined;
os.darwin.mach_timebase_info(&freq);
return Timer{
.frequency = freq,
.resolution = @divFloor(freq.numer, freq.denom),
.start_time = os.darwin.mach_absolute_time(),
};
} else {
// On Linux, seccomp can do arbitrary things to our ability to call
// syscalls, including return any errno value it wants and
// inconsistently throwing errors. Since we can't account for
// abuses of seccomp in a reasonable way, we'll assume that if
// seccomp is going to block us it will at least do so consistently
var res: os.timespec = undefined;
os.clock_getres(monotonic_clock_id, &res) catch return error.TimerUnsupported;
var ts: os.timespec = undefined;
os.clock_gettime(monotonic_clock_id, &ts) catch return error.TimerUnsupported;
return Timer{
.resolution = @intCast(u64, res.tv_sec) * ns_per_s + @intCast(u64, res.tv_nsec),
.start_time = @intCast(u64, ts.tv_sec) * ns_per_s + @intCast(u64, ts.tv_nsec),
.frequency = {},
};
}
}
/// Reads the timer value since start or the last reset in nanoseconds
pub fn read(self: Timer) u64 {
var clock = clockNative() - self.start_time;
return self.nativeDurationToNanos(clock);
}
/// Resets the timer value to 0/now.
pub fn reset(self: *Timer) void {
self.start_time = clockNative();
}
/// Returns the current value of the timer in nanoseconds, then resets it
pub fn lap(self: *Timer) u64 {
var now = clockNative();
var lap_time = self.nativeDurationToNanos(now - self.start_time);
self.start_time = now;
return lap_time;
}
fn clockNative() u64 {
if (is_windows) {
return os.windows.QueryPerformanceCounter();
}
if (comptime builtin.target.isDarwin()) {
return os.darwin.mach_absolute_time();
}
var ts: os.timespec = undefined;
os.clock_gettime(monotonic_clock_id, &ts) catch unreachable;
return @intCast(u64, ts.tv_sec) * @as(u64, ns_per_s) + @intCast(u64, ts.tv_nsec);
}
fn nativeDurationToNanos(self: Timer, duration: u64) u64 {
if (is_windows) {
return safeMulDiv(duration, ns_per_s, self.frequency);
}
if (comptime builtin.target.isDarwin()) {
return safeMulDiv(duration, self.frequency.numer, self.frequency.denom);
}
return duration;
}
};
// Calculate (a * b) / c without risk of overflowing too early because of the
// multiplication.
fn safeMulDiv(a: u64, b: u64, c: u64) u64 {
const q = a / c;
const r = a % c;
// (a * b) / c == (a / c) * b + ((a % c) * b) / c
return (q * b) + (r * b) / c;
}
test "sleep" {
sleep(1);
}
test "timestamp" {
const margin = ns_per_ms * 50;
const time_0 = milliTimestamp();
sleep(ns_per_ms);
const time_1 = milliTimestamp();
const interval = time_1 - time_0;
try testing.expect(interval > 0);
// Tests should not depend on timings: skip test if outside margin.
if (!(interval < margin)) return error.SkipZigTest;
}
test "Timer" {
const margin = ns_per_ms * 150;
var timer = try Timer.start();
sleep(10 * ns_per_ms);
const time_0 = timer.read();
try testing.expect(time_0 > 0);
// Tests should not depend on timings: skip test if outside margin.
if (!(time_0 < margin)) return error.SkipZigTest;
const time_1 = timer.lap();
try testing.expect(time_1 >= time_0);
timer.reset();
try testing.expect(timer.read() < time_1);
}
test {
_ = epoch;
}