zig/lib/std/array_list.zig
mlugg d11bbde5f9
compiler: remove anonymous struct types, unify all tuples
This commit reworks how anonymous struct literals and tuples work.

Previously, an untyped anonymous struct literal
(e.g. `const x = .{ .a = 123 }`) was given an "anonymous struct type",
which is a special kind of struct which coerces using structural
equivalence. This mechanism was a holdover from before we used
RLS / result types as the primary mechanism of type inference. This
commit changes the language so that the type assigned here is a "normal"
struct type. It uses a form of equivalence based on the AST node and the
type's structure, much like a reified (`@Type`) type.

Additionally, tuples have been simplified. The distinction between
"simple" and "complex" tuple types is eliminated. All tuples, even those
explicitly declared using `struct { ... }` syntax, use structural
equivalence, and do not undergo staged type resolution. Tuples are very
restricted: they cannot have non-`auto` layouts, cannot have aligned
fields, and cannot have default values with the exception of `comptime`
fields. Tuples currently do not have optimized layout, but this can be
changed in the future.

This change simplifies the language, and fixes some problematic
coercions through pointers which led to unintuitive behavior.

Resolves: #16865
2024-10-31 20:42:53 +00:00

2278 lines
86 KiB
Zig

const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const math = std.math;
const Allocator = mem.Allocator;
/// A contiguous, growable list of items in memory.
/// This is a wrapper around an array of T values. Initialize with `init`.
///
/// This struct internally stores a `std.mem.Allocator` for memory management.
/// To manually specify an allocator with each function call see `ArrayListUnmanaged`.
pub fn ArrayList(comptime T: type) type {
return ArrayListAligned(T, null);
}
/// A contiguous, growable list of arbitrarily aligned items in memory.
/// This is a wrapper around an array of T values aligned to `alignment`-byte
/// addresses. If the specified alignment is `null`, then `@alignOf(T)` is used.
/// Initialize with `init`.
///
/// This struct internally stores a `std.mem.Allocator` for memory management.
/// To manually specify an allocator with each function call see `ArrayListAlignedUnmanaged`.
pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
if (alignment) |a| {
if (a == @alignOf(T)) {
return ArrayListAligned(T, null);
}
}
return struct {
const Self = @This();
/// Contents of the list. This field is intended to be accessed
/// directly.
///
/// Pointers to elements in this slice are invalidated by various
/// functions of this ArrayList in accordance with the respective
/// documentation. In all cases, "invalidated" means that the memory
/// has been passed to this allocator's resize or free function.
items: Slice,
/// How many T values this list can hold without allocating
/// additional memory.
capacity: usize,
allocator: Allocator,
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
pub fn SentinelSlice(comptime s: T) type {
return if (alignment) |a| ([:s]align(a) T) else [:s]T;
}
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn init(allocator: Allocator) Self {
return Self{
.items = &[_]T{},
.capacity = 0,
.allocator = allocator,
};
}
/// Initialize with capacity to hold `num` elements.
/// The resulting capacity will equal `num` exactly.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn initCapacity(allocator: Allocator, num: usize) Allocator.Error!Self {
var self = Self.init(allocator);
try self.ensureTotalCapacityPrecise(num);
return self;
}
/// Release all allocated memory.
pub fn deinit(self: Self) void {
if (@sizeOf(T) > 0) {
self.allocator.free(self.allocatedSlice());
}
}
/// ArrayList takes ownership of the passed in slice. The slice must have been
/// allocated with `allocator`.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn fromOwnedSlice(allocator: Allocator, slice: Slice) Self {
return Self{
.items = slice,
.capacity = slice.len,
.allocator = allocator,
};
}
/// ArrayList takes ownership of the passed in slice. The slice must have been
/// allocated with `allocator`.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn fromOwnedSliceSentinel(allocator: Allocator, comptime sentinel: T, slice: [:sentinel]T) Self {
return Self{
.items = slice,
.capacity = slice.len + 1,
.allocator = allocator,
};
}
/// Initializes an ArrayListUnmanaged with the `items` and `capacity` fields
/// of this ArrayList. Empties this ArrayList.
pub fn moveToUnmanaged(self: *Self) ArrayListAlignedUnmanaged(T, alignment) {
const allocator = self.allocator;
const result: ArrayListAlignedUnmanaged(T, alignment) = .{ .items = self.items, .capacity = self.capacity };
self.* = init(allocator);
return result;
}
/// The caller owns the returned memory. Empties this ArrayList,
/// Its capacity is cleared, making deinit() safe but unnecessary to call.
pub fn toOwnedSlice(self: *Self) Allocator.Error!Slice {
const allocator = self.allocator;
const old_memory = self.allocatedSlice();
if (allocator.resize(old_memory, self.items.len)) {
const result = self.items;
self.* = init(allocator);
return result;
}
const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len);
@memcpy(new_memory, self.items);
@memset(self.items, undefined);
self.clearAndFree();
return new_memory;
}
/// The caller owns the returned memory. Empties this ArrayList.
pub fn toOwnedSliceSentinel(self: *Self, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) {
// This addition can never overflow because `self.items` can never occupy the whole address space
try self.ensureTotalCapacityPrecise(self.items.len + 1);
self.appendAssumeCapacity(sentinel);
const result = try self.toOwnedSlice();
return result[0 .. result.len - 1 :sentinel];
}
/// Creates a copy of this ArrayList, using the same allocator.
pub fn clone(self: Self) Allocator.Error!Self {
var cloned = try Self.initCapacity(self.allocator, self.capacity);
cloned.appendSliceAssumeCapacity(self.items);
return cloned;
}
/// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
/// If `i` is equal to the length of the list this operation is equivalent to append.
/// This operation is O(N).
/// Invalidates element pointers if additional memory is needed.
/// Asserts that the index is in bounds or equal to the length.
pub fn insert(self: *Self, i: usize, item: T) Allocator.Error!void {
const dst = try self.addManyAt(i, 1);
dst[0] = item;
}
/// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
/// If `i` is equal to the length of the list this operation is
/// equivalent to appendAssumeCapacity.
/// This operation is O(N).
/// Asserts that there is enough capacity for the new item.
/// Asserts that the index is in bounds or equal to the length.
pub fn insertAssumeCapacity(self: *Self, i: usize, item: T) void {
assert(self.items.len < self.capacity);
self.items.len += 1;
mem.copyBackwards(T, self.items[i + 1 .. self.items.len], self.items[i .. self.items.len - 1]);
self.items[i] = item;
}
/// Add `count` new elements at position `index`, which have
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accommodate the new elements.
/// Asserts that the index is in bounds or equal to the length.
pub fn addManyAt(self: *Self, index: usize, count: usize) Allocator.Error![]T {
const new_len = try addOrOom(self.items.len, count);
if (self.capacity >= new_len)
return addManyAtAssumeCapacity(self, index, count);
// Here we avoid copying allocated but unused bytes by
// attempting a resize in place, and falling back to allocating
// a new buffer and doing our own copy. With a realloc() call,
// the allocator implementation would pointlessly copy our
// extra capacity.
const new_capacity = growCapacity(self.capacity, new_len);
const old_memory = self.allocatedSlice();
if (self.allocator.resize(old_memory, new_capacity)) {
self.capacity = new_capacity;
return addManyAtAssumeCapacity(self, index, count);
}
// Make a new allocation, avoiding `ensureTotalCapacity` in order
// to avoid extra memory copies.
const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity);
const to_move = self.items[index..];
@memcpy(new_memory[0..index], self.items[0..index]);
@memcpy(new_memory[index + count ..][0..to_move.len], to_move);
self.allocator.free(old_memory);
self.items = new_memory[0..new_len];
self.capacity = new_memory.len;
// The inserted elements at `new_memory[index..][0..count]` have
// already been set to `undefined` by memory allocation.
return new_memory[index..][0..count];
}
/// Add `count` new elements at position `index`, which have
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Asserts that there is enough capacity for the new elements.
/// Invalidates pre-existing pointers to elements at and after `index`, but
/// does not invalidate any before that.
/// Asserts that the index is in bounds or equal to the length.
pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T {
const new_len = self.items.len + count;
assert(self.capacity >= new_len);
const to_move = self.items[index..];
self.items.len = new_len;
mem.copyBackwards(T, self.items[index + count ..], to_move);
const result = self.items[index..][0..count];
@memset(result, undefined);
return result;
}
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
/// This operation is O(N).
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accommodate the new elements.
/// Asserts that the index is in bounds or equal to the length.
pub fn insertSlice(
self: *Self,
index: usize,
items: []const T,
) Allocator.Error!void {
const dst = try self.addManyAt(index, items.len);
@memcpy(dst, items);
}
/// Grows or shrinks the list as necessary.
/// Invalidates element pointers if additional capacity is allocated.
/// Asserts that the range is in bounds.
pub fn replaceRange(self: *Self, start: usize, len: usize, new_items: []const T) Allocator.Error!void {
var unmanaged = self.moveToUnmanaged();
defer self.* = unmanaged.toManaged(self.allocator);
return unmanaged.replaceRange(self.allocator, start, len, new_items);
}
/// Grows or shrinks the list as necessary.
/// Never invalidates element pointers.
/// Asserts the capacity is enough for additional items.
pub fn replaceRangeAssumeCapacity(self: *Self, start: usize, len: usize, new_items: []const T) void {
var unmanaged = self.moveToUnmanaged();
defer self.* = unmanaged.toManaged(self.allocator);
return unmanaged.replaceRangeAssumeCapacity(start, len, new_items);
}
/// Extends the list by 1 element. Allocates more memory as necessary.
/// Invalidates element pointers if additional memory is needed.
pub fn append(self: *Self, item: T) Allocator.Error!void {
const new_item_ptr = try self.addOne();
new_item_ptr.* = item;
}
/// Extends the list by 1 element.
/// Never invalidates element pointers.
/// Asserts that the list can hold one additional item.
pub fn appendAssumeCapacity(self: *Self, item: T) void {
const new_item_ptr = self.addOneAssumeCapacity();
new_item_ptr.* = item;
}
/// Remove the element at index `i`, shift elements after index
/// `i` forward, and return the removed element.
/// Invalidates element pointers to end of list.
/// This operation is O(N).
/// This preserves item order. Use `swapRemove` if order preservation is not important.
/// Asserts that the index is in bounds.
/// Asserts that the list is not empty.
pub fn orderedRemove(self: *Self, i: usize) T {
const old_item = self.items[i];
self.replaceRangeAssumeCapacity(i, 1, &.{});
return old_item;
}
/// Removes the element at the specified index and returns it.
/// The empty slot is filled from the end of the list.
/// This operation is O(1).
/// This may not preserve item order. Use `orderedRemove` if you need to preserve order.
/// Asserts that the list is not empty.
/// Asserts that the index is in bounds.
pub fn swapRemove(self: *Self, i: usize) T {
if (self.items.len - 1 == i) return self.pop();
const old_item = self.items[i];
self.items[i] = self.pop();
return old_item;
}
/// Append the slice of items to the list. Allocates more
/// memory as necessary.
/// Invalidates element pointers if additional memory is needed.
pub fn appendSlice(self: *Self, items: []const T) Allocator.Error!void {
try self.ensureUnusedCapacity(items.len);
self.appendSliceAssumeCapacity(items);
}
/// Append the slice of items to the list.
/// Never invalidates element pointers.
/// Asserts that the list can hold the additional items.
pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
@memcpy(self.items[old_len..][0..items.len], items);
}
/// Append an unaligned slice of items to the list. Allocates more
/// memory as necessary. Only call this function if calling
/// `appendSlice` instead would be a compile error.
/// Invalidates element pointers if additional memory is needed.
pub fn appendUnalignedSlice(self: *Self, items: []align(1) const T) Allocator.Error!void {
try self.ensureUnusedCapacity(items.len);
self.appendUnalignedSliceAssumeCapacity(items);
}
/// Append the slice of items to the list.
/// Never invalidates element pointers.
/// This function is only needed when calling
/// `appendSliceAssumeCapacity` instead would be a compile error due to the
/// alignment of the `items` parameter.
/// Asserts that the list can hold the additional items.
pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
@memcpy(self.items[old_len..][0..items.len], items);
}
pub const Writer = if (T != u8)
@compileError("The Writer interface is only defined for ArrayList(u8) " ++
"but the given type is ArrayList(" ++ @typeName(T) ++ ")")
else
std.io.Writer(*Self, Allocator.Error, appendWrite);
/// Initializes a Writer which will append to the list.
pub fn writer(self: *Self) Writer {
return .{ .context = self };
}
/// Same as `append` except it returns the number of bytes written, which is always the same
/// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
/// Invalidates element pointers if additional memory is needed.
fn appendWrite(self: *Self, m: []const u8) Allocator.Error!usize {
try self.appendSlice(m);
return m.len;
}
pub const FixedWriter = std.io.Writer(*Self, Allocator.Error, appendWriteFixed);
/// Initializes a Writer which will append to the list but will return
/// `error.OutOfMemory` rather than increasing capacity.
pub fn fixedWriter(self: *Self) FixedWriter {
return .{ .context = self };
}
/// The purpose of this function existing is to match `std.io.Writer` API.
fn appendWriteFixed(self: *Self, m: []const u8) error{OutOfMemory}!usize {
const available_capacity = self.capacity - self.items.len;
if (m.len > available_capacity)
return error.OutOfMemory;
self.appendSliceAssumeCapacity(m);
return m.len;
}
/// Append a value to the list `n` times.
/// Allocates more memory as necessary.
/// Invalidates element pointers if additional memory is needed.
/// The function is inline so that a comptime-known `value` parameter will
/// have a more optimal memset codegen in case it has a repeated byte pattern.
pub inline fn appendNTimes(self: *Self, value: T, n: usize) Allocator.Error!void {
const old_len = self.items.len;
try self.resize(try addOrOom(old_len, n));
@memset(self.items[old_len..self.items.len], value);
}
/// Append a value to the list `n` times.
/// Never invalidates element pointers.
/// The function is inline so that a comptime-known `value` parameter will
/// have a more optimal memset codegen in case it has a repeated byte pattern.
/// Asserts that the list can hold the additional items.
pub inline fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
const new_len = self.items.len + n;
assert(new_len <= self.capacity);
@memset(self.items.ptr[self.items.len..new_len], value);
self.items.len = new_len;
}
/// Adjust the list length to `new_len`.
/// Additional elements contain the value `undefined`.
/// Invalidates element pointers if additional memory is needed.
pub fn resize(self: *Self, new_len: usize) Allocator.Error!void {
try self.ensureTotalCapacity(new_len);
self.items.len = new_len;
}
/// Reduce allocated capacity to `new_len`.
/// May invalidate element pointers.
/// Asserts that the new length is less than or equal to the previous length.
pub fn shrinkAndFree(self: *Self, new_len: usize) void {
var unmanaged = self.moveToUnmanaged();
unmanaged.shrinkAndFree(self.allocator, new_len);
self.* = unmanaged.toManaged(self.allocator);
}
/// Reduce length to `new_len`.
/// Invalidates element pointers for the elements `items[new_len..]`.
/// Asserts that the new length is less than or equal to the previous length.
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
self.items.len = new_len;
}
/// Invalidates all element pointers.
pub fn clearRetainingCapacity(self: *Self) void {
self.items.len = 0;
}
/// Invalidates all element pointers.
pub fn clearAndFree(self: *Self) void {
self.allocator.free(self.allocatedSlice());
self.items.len = 0;
self.capacity = 0;
}
/// If the current capacity is less than `new_capacity`, this function will
/// modify the array so that it can hold at least `new_capacity` items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureTotalCapacity(self: *Self, new_capacity: usize) Allocator.Error!void {
if (@sizeOf(T) == 0) {
self.capacity = math.maxInt(usize);
return;
}
if (self.capacity >= new_capacity) return;
const better_capacity = growCapacity(self.capacity, new_capacity);
return self.ensureTotalCapacityPrecise(better_capacity);
}
/// If the current capacity is less than `new_capacity`, this function will
/// modify the array so that it can hold exactly `new_capacity` items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureTotalCapacityPrecise(self: *Self, new_capacity: usize) Allocator.Error!void {
if (@sizeOf(T) == 0) {
self.capacity = math.maxInt(usize);
return;
}
if (self.capacity >= new_capacity) return;
// Here we avoid copying allocated but unused bytes by
// attempting a resize in place, and falling back to allocating
// a new buffer and doing our own copy. With a realloc() call,
// the allocator implementation would pointlessly copy our
// extra capacity.
const old_memory = self.allocatedSlice();
if (self.allocator.resize(old_memory, new_capacity)) {
self.capacity = new_capacity;
} else {
const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity);
@memcpy(new_memory[0..self.items.len], self.items);
self.allocator.free(old_memory);
self.items.ptr = new_memory.ptr;
self.capacity = new_memory.len;
}
}
/// Modify the array so that it can hold at least `additional_count` **more** items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureUnusedCapacity(self: *Self, additional_count: usize) Allocator.Error!void {
return self.ensureTotalCapacity(try addOrOom(self.items.len, additional_count));
}
/// Increases the array's length to match the full capacity that is already allocated.
/// The new elements have `undefined` values.
/// Never invalidates element pointers.
pub fn expandToCapacity(self: *Self) void {
self.items.len = self.capacity;
}
/// Increase length by 1, returning pointer to the new item.
/// The returned pointer becomes invalid when the list resized.
pub fn addOne(self: *Self) Allocator.Error!*T {
// This can never overflow because `self.items` can never occupy the whole address space
const newlen = self.items.len + 1;
try self.ensureTotalCapacity(newlen);
return self.addOneAssumeCapacity();
}
/// Increase length by 1, returning pointer to the new item.
/// The returned pointer becomes invalid when the list is resized.
/// Never invalidates element pointers.
/// Asserts that the list can hold one additional item.
pub fn addOneAssumeCapacity(self: *Self) *T {
assert(self.items.len < self.capacity);
self.items.len += 1;
return &self.items[self.items.len - 1];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// The returned pointer becomes invalid when the list is resized.
/// Resizes list if `self.capacity` is not large enough.
pub fn addManyAsArray(self: *Self, comptime n: usize) Allocator.Error!*[n]T {
const prev_len = self.items.len;
try self.resize(try addOrOom(self.items.len, n));
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// Never invalidates element pointers.
/// The returned pointer becomes invalid when the list is resized.
/// Asserts that the list can hold the additional items.
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
self.items.len += n;
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements.
/// The returned pointer becomes invalid when the list is resized.
/// Resizes list if `self.capacity` is not large enough.
pub fn addManyAsSlice(self: *Self, n: usize) Allocator.Error![]T {
const prev_len = self.items.len;
try self.resize(try addOrOom(self.items.len, n));
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements.
/// Never invalidates element pointers.
/// The returned pointer becomes invalid when the list is resized.
/// Asserts that the list can hold the additional items.
pub fn addManyAsSliceAssumeCapacity(self: *Self, n: usize) []T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
self.items.len += n;
return self.items[prev_len..][0..n];
}
/// Remove and return the last element from the list.
/// Invalidates element pointers to the removed element.
/// Asserts that the list is not empty.
pub fn pop(self: *Self) T {
const val = self.items[self.items.len - 1];
self.items.len -= 1;
return val;
}
/// Remove and return the last element from the list, or
/// return `null` if list is empty.
/// Invalidates element pointers to the removed element, if any.
pub fn popOrNull(self: *Self) ?T {
if (self.items.len == 0) return null;
return self.pop();
}
/// Returns a slice of all the items plus the extra capacity, whose memory
/// contents are `undefined`.
pub fn allocatedSlice(self: Self) Slice {
// `items.len` is the length, not the capacity.
return self.items.ptr[0..self.capacity];
}
/// Returns a slice of only the extra capacity after items.
/// This can be useful for writing directly into an ArrayList.
/// Note that such an operation must be followed up with a direct
/// modification of `self.items.len`.
pub fn unusedCapacitySlice(self: Self) []T {
return self.allocatedSlice()[self.items.len..];
}
/// Returns the last element from the list.
/// Asserts that the list is not empty.
pub fn getLast(self: Self) T {
const val = self.items[self.items.len - 1];
return val;
}
/// Returns the last element from the list, or `null` if list is empty.
pub fn getLastOrNull(self: Self) ?T {
if (self.items.len == 0) return null;
return self.getLast();
}
};
}
/// An ArrayList, but the allocator is passed as a parameter to the relevant functions
/// rather than stored in the struct itself. The same allocator must be used throughout
/// the entire lifetime of an ArrayListUnmanaged. Initialize directly or with
/// `initCapacity`, and deinitialize with `deinit` or use `toOwnedSlice`.
pub fn ArrayListUnmanaged(comptime T: type) type {
return ArrayListAlignedUnmanaged(T, null);
}
/// A contiguous, growable list of arbitrarily aligned items in memory.
/// This is a wrapper around an array of T values aligned to `alignment`-byte
/// addresses. If the specified alignment is `null`, then `@alignOf(T)` is used.
///
/// Functions that potentially allocate memory accept an `Allocator` parameter.
/// Initialize directly or with `initCapacity`, and deinitialize with `deinit`
/// or use `toOwnedSlice`.
///
/// Default initialization of this struct is deprecated; use `.empty` instead.
pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) type {
if (alignment) |a| {
if (a == @alignOf(T)) {
return ArrayListAlignedUnmanaged(T, null);
}
}
return struct {
const Self = @This();
/// Contents of the list. This field is intended to be accessed
/// directly.
///
/// Pointers to elements in this slice are invalidated by various
/// functions of this ArrayList in accordance with the respective
/// documentation. In all cases, "invalidated" means that the memory
/// has been passed to an allocator's resize or free function.
items: Slice = &[_]T{},
/// How many T values this list can hold without allocating
/// additional memory.
capacity: usize = 0,
/// An ArrayList containing no elements.
pub const empty: Self = .{
.items = &.{},
.capacity = 0,
};
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
pub fn SentinelSlice(comptime s: T) type {
return if (alignment) |a| ([:s]align(a) T) else [:s]T;
}
/// Initialize with capacity to hold `num` elements.
/// The resulting capacity will equal `num` exactly.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn initCapacity(allocator: Allocator, num: usize) Allocator.Error!Self {
var self = Self{};
try self.ensureTotalCapacityPrecise(allocator, num);
return self;
}
/// Initialize with externally-managed memory. The buffer determines the
/// capacity, and the length is set to zero.
/// When initialized this way, all functions that accept an Allocator
/// argument cause illegal behavior.
pub fn initBuffer(buffer: Slice) Self {
return .{
.items = buffer[0..0],
.capacity = buffer.len,
};
}
/// Release all allocated memory.
pub fn deinit(self: *Self, allocator: Allocator) void {
allocator.free(self.allocatedSlice());
self.* = undefined;
}
/// Convert this list into an analogous memory-managed one.
/// The returned list has ownership of the underlying memory.
pub fn toManaged(self: *Self, allocator: Allocator) ArrayListAligned(T, alignment) {
return .{ .items = self.items, .capacity = self.capacity, .allocator = allocator };
}
/// ArrayListUnmanaged takes ownership of the passed in slice. The slice must have been
/// allocated with `allocator`.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn fromOwnedSlice(slice: Slice) Self {
return Self{
.items = slice,
.capacity = slice.len,
};
}
/// ArrayListUnmanaged takes ownership of the passed in slice. The slice must have been
/// allocated with `allocator`.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn fromOwnedSliceSentinel(comptime sentinel: T, slice: [:sentinel]T) Self {
return Self{
.items = slice,
.capacity = slice.len + 1,
};
}
/// The caller owns the returned memory. Empties this ArrayList.
/// Its capacity is cleared, making deinit() safe but unnecessary to call.
pub fn toOwnedSlice(self: *Self, allocator: Allocator) Allocator.Error!Slice {
const old_memory = self.allocatedSlice();
if (allocator.resize(old_memory, self.items.len)) {
const result = self.items;
self.* = .empty;
return result;
}
const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len);
@memcpy(new_memory, self.items);
@memset(self.items, undefined);
self.clearAndFree(allocator);
return new_memory;
}
/// The caller owns the returned memory. ArrayList becomes empty.
pub fn toOwnedSliceSentinel(self: *Self, allocator: Allocator, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) {
// This addition can never overflow because `self.items` can never occupy the whole address space
try self.ensureTotalCapacityPrecise(allocator, self.items.len + 1);
self.appendAssumeCapacity(sentinel);
const result = try self.toOwnedSlice(allocator);
return result[0 .. result.len - 1 :sentinel];
}
/// Creates a copy of this ArrayList.
pub fn clone(self: Self, allocator: Allocator) Allocator.Error!Self {
var cloned = try Self.initCapacity(allocator, self.capacity);
cloned.appendSliceAssumeCapacity(self.items);
return cloned;
}
/// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
/// If `i` is equal to the length of the list this operation is equivalent to append.
/// This operation is O(N).
/// Invalidates element pointers if additional memory is needed.
/// Asserts that the index is in bounds or equal to the length.
pub fn insert(self: *Self, allocator: Allocator, i: usize, item: T) Allocator.Error!void {
const dst = try self.addManyAt(allocator, i, 1);
dst[0] = item;
}
/// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
/// If in` is equal to the length of the list this operation is equivalent to append.
/// This operation is O(N).
/// Asserts that the list has capacity for one additional item.
/// Asserts that the index is in bounds or equal to the length.
pub fn insertAssumeCapacity(self: *Self, i: usize, item: T) void {
assert(self.items.len < self.capacity);
self.items.len += 1;
mem.copyBackwards(T, self.items[i + 1 .. self.items.len], self.items[i .. self.items.len - 1]);
self.items[i] = item;
}
/// Add `count` new elements at position `index`, which have
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accommodate the new elements.
/// Asserts that the index is in bounds or equal to the length.
pub fn addManyAt(
self: *Self,
allocator: Allocator,
index: usize,
count: usize,
) Allocator.Error![]T {
var managed = self.toManaged(allocator);
defer self.* = managed.moveToUnmanaged();
return managed.addManyAt(index, count);
}
/// Add `count` new elements at position `index`, which have
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Invalidates pre-existing pointers to elements at and after `index`, but
/// does not invalidate any before that.
/// Asserts that the list has capacity for the additional items.
/// Asserts that the index is in bounds or equal to the length.
pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T {
const new_len = self.items.len + count;
assert(self.capacity >= new_len);
const to_move = self.items[index..];
self.items.len = new_len;
mem.copyBackwards(T, self.items[index + count ..], to_move);
const result = self.items[index..][0..count];
@memset(result, undefined);
return result;
}
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
/// This operation is O(N).
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accommodate the new elements.
/// Asserts that the index is in bounds or equal to the length.
pub fn insertSlice(
self: *Self,
allocator: Allocator,
index: usize,
items: []const T,
) Allocator.Error!void {
const dst = try self.addManyAt(
allocator,
index,
items.len,
);
@memcpy(dst, items);
}
/// Grows or shrinks the list as necessary.
/// Invalidates element pointers if additional capacity is allocated.
/// Asserts that the range is in bounds.
pub fn replaceRange(
self: *Self,
allocator: Allocator,
start: usize,
len: usize,
new_items: []const T,
) Allocator.Error!void {
const after_range = start + len;
const range = self.items[start..after_range];
if (range.len < new_items.len) {
const first = new_items[0..range.len];
const rest = new_items[range.len..];
@memcpy(range[0..first.len], first);
try self.insertSlice(allocator, after_range, rest);
} else {
self.replaceRangeAssumeCapacity(start, len, new_items);
}
}
/// Grows or shrinks the list as necessary.
/// Never invalidates element pointers.
/// Asserts the capacity is enough for additional items.
pub fn replaceRangeAssumeCapacity(self: *Self, start: usize, len: usize, new_items: []const T) void {
const after_range = start + len;
const range = self.items[start..after_range];
if (range.len == new_items.len)
@memcpy(range[0..new_items.len], new_items)
else if (range.len < new_items.len) {
const first = new_items[0..range.len];
const rest = new_items[range.len..];
@memcpy(range[0..first.len], first);
const dst = self.addManyAtAssumeCapacity(after_range, rest.len);
@memcpy(dst, rest);
} else {
const extra = range.len - new_items.len;
@memcpy(range[0..new_items.len], new_items);
std.mem.copyForwards(
T,
self.items[after_range - extra ..],
self.items[after_range..],
);
@memset(self.items[self.items.len - extra ..], undefined);
self.items.len -= extra;
}
}
/// Extend the list by 1 element. Allocates more memory as necessary.
/// Invalidates element pointers if additional memory is needed.
pub fn append(self: *Self, allocator: Allocator, item: T) Allocator.Error!void {
const new_item_ptr = try self.addOne(allocator);
new_item_ptr.* = item;
}
/// Extend the list by 1 element.
/// Never invalidates element pointers.
/// Asserts that the list can hold one additional item.
pub fn appendAssumeCapacity(self: *Self, item: T) void {
const new_item_ptr = self.addOneAssumeCapacity();
new_item_ptr.* = item;
}
/// Remove the element at index `i` from the list and return its value.
/// Invalidates pointers to the last element.
/// This operation is O(N).
/// Asserts that the list is not empty.
/// Asserts that the index is in bounds.
pub fn orderedRemove(self: *Self, i: usize) T {
const old_item = self.items[i];
self.replaceRangeAssumeCapacity(i, 1, &.{});
return old_item;
}
/// Removes the element at the specified index and returns it.
/// The empty slot is filled from the end of the list.
/// Invalidates pointers to last element.
/// This operation is O(1).
/// Asserts that the list is not empty.
/// Asserts that the index is in bounds.
pub fn swapRemove(self: *Self, i: usize) T {
if (self.items.len - 1 == i) return self.pop();
const old_item = self.items[i];
self.items[i] = self.pop();
return old_item;
}
/// Append the slice of items to the list. Allocates more
/// memory as necessary.
/// Invalidates element pointers if additional memory is needed.
pub fn appendSlice(self: *Self, allocator: Allocator, items: []const T) Allocator.Error!void {
try self.ensureUnusedCapacity(allocator, items.len);
self.appendSliceAssumeCapacity(items);
}
/// Append the slice of items to the list.
/// Asserts that the list can hold the additional items.
pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
@memcpy(self.items[old_len..][0..items.len], items);
}
/// Append the slice of items to the list. Allocates more
/// memory as necessary. Only call this function if a call to `appendSlice` instead would
/// be a compile error.
/// Invalidates element pointers if additional memory is needed.
pub fn appendUnalignedSlice(self: *Self, allocator: Allocator, items: []align(1) const T) Allocator.Error!void {
try self.ensureUnusedCapacity(allocator, items.len);
self.appendUnalignedSliceAssumeCapacity(items);
}
/// Append an unaligned slice of items to the list.
/// Only call this function if a call to `appendSliceAssumeCapacity`
/// instead would be a compile error.
/// Asserts that the list can hold the additional items.
pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
@memcpy(self.items[old_len..][0..items.len], items);
}
pub const WriterContext = struct {
self: *Self,
allocator: Allocator,
};
pub const Writer = if (T != u8)
@compileError("The Writer interface is only defined for ArrayList(u8) " ++
"but the given type is ArrayList(" ++ @typeName(T) ++ ")")
else
std.io.Writer(WriterContext, Allocator.Error, appendWrite);
/// Initializes a Writer which will append to the list.
pub fn writer(self: *Self, allocator: Allocator) Writer {
return .{ .context = .{ .self = self, .allocator = allocator } };
}
/// Same as `append` except it returns the number of bytes written,
/// which is always the same as `m.len`. The purpose of this function
/// existing is to match `std.io.Writer` API.
/// Invalidates element pointers if additional memory is needed.
fn appendWrite(context: WriterContext, m: []const u8) Allocator.Error!usize {
try context.self.appendSlice(context.allocator, m);
return m.len;
}
pub const FixedWriter = std.io.Writer(*Self, Allocator.Error, appendWriteFixed);
/// Initializes a Writer which will append to the list but will return
/// `error.OutOfMemory` rather than increasing capacity.
pub fn fixedWriter(self: *Self) FixedWriter {
return .{ .context = self };
}
/// The purpose of this function existing is to match `std.io.Writer` API.
fn appendWriteFixed(self: *Self, m: []const u8) error{OutOfMemory}!usize {
const available_capacity = self.capacity - self.items.len;
if (m.len > available_capacity)
return error.OutOfMemory;
self.appendSliceAssumeCapacity(m);
return m.len;
}
/// Append a value to the list `n` times.
/// Allocates more memory as necessary.
/// Invalidates element pointers if additional memory is needed.
/// The function is inline so that a comptime-known `value` parameter will
/// have a more optimal memset codegen in case it has a repeated byte pattern.
pub inline fn appendNTimes(self: *Self, allocator: Allocator, value: T, n: usize) Allocator.Error!void {
const old_len = self.items.len;
try self.resize(allocator, try addOrOom(old_len, n));
@memset(self.items[old_len..self.items.len], value);
}
/// Append a value to the list `n` times.
/// Never invalidates element pointers.
/// The function is inline so that a comptime-known `value` parameter will
/// have better memset codegen in case it has a repeated byte pattern.
/// Asserts that the list can hold the additional items.
pub inline fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
const new_len = self.items.len + n;
assert(new_len <= self.capacity);
@memset(self.items.ptr[self.items.len..new_len], value);
self.items.len = new_len;
}
/// Adjust the list length to `new_len`.
/// Additional elements contain the value `undefined`.
/// Invalidates element pointers if additional memory is needed.
pub fn resize(self: *Self, allocator: Allocator, new_len: usize) Allocator.Error!void {
try self.ensureTotalCapacity(allocator, new_len);
self.items.len = new_len;
}
/// Reduce allocated capacity to `new_len`.
/// May invalidate element pointers.
/// Asserts that the new length is less than or equal to the previous length.
pub fn shrinkAndFree(self: *Self, allocator: Allocator, new_len: usize) void {
assert(new_len <= self.items.len);
if (@sizeOf(T) == 0) {
self.items.len = new_len;
return;
}
const old_memory = self.allocatedSlice();
if (allocator.resize(old_memory, new_len)) {
self.capacity = new_len;
self.items.len = new_len;
return;
}
const new_memory = allocator.alignedAlloc(T, alignment, new_len) catch |e| switch (e) {
error.OutOfMemory => {
// No problem, capacity is still correct then.
self.items.len = new_len;
return;
},
};
@memcpy(new_memory, self.items[0..new_len]);
allocator.free(old_memory);
self.items = new_memory;
self.capacity = new_memory.len;
}
/// Reduce length to `new_len`.
/// Invalidates pointers to elements `items[new_len..]`.
/// Keeps capacity the same.
/// Asserts that the new length is less than or equal to the previous length.
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
self.items.len = new_len;
}
/// Invalidates all element pointers.
pub fn clearRetainingCapacity(self: *Self) void {
self.items.len = 0;
}
/// Invalidates all element pointers.
pub fn clearAndFree(self: *Self, allocator: Allocator) void {
allocator.free(self.allocatedSlice());
self.items.len = 0;
self.capacity = 0;
}
/// If the current capacity is less than `new_capacity`, this function will
/// modify the array so that it can hold at least `new_capacity` items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureTotalCapacity(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
if (self.capacity >= new_capacity) return;
const better_capacity = growCapacity(self.capacity, new_capacity);
return self.ensureTotalCapacityPrecise(allocator, better_capacity);
}
/// If the current capacity is less than `new_capacity`, this function will
/// modify the array so that it can hold exactly `new_capacity` items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureTotalCapacityPrecise(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
if (@sizeOf(T) == 0) {
self.capacity = math.maxInt(usize);
return;
}
if (self.capacity >= new_capacity) return;
// Here we avoid copying allocated but unused bytes by
// attempting a resize in place, and falling back to allocating
// a new buffer and doing our own copy. With a realloc() call,
// the allocator implementation would pointlessly copy our
// extra capacity.
const old_memory = self.allocatedSlice();
if (allocator.resize(old_memory, new_capacity)) {
self.capacity = new_capacity;
} else {
const new_memory = try allocator.alignedAlloc(T, alignment, new_capacity);
@memcpy(new_memory[0..self.items.len], self.items);
allocator.free(old_memory);
self.items.ptr = new_memory.ptr;
self.capacity = new_memory.len;
}
}
/// Modify the array so that it can hold at least `additional_count` **more** items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureUnusedCapacity(
self: *Self,
allocator: Allocator,
additional_count: usize,
) Allocator.Error!void {
return self.ensureTotalCapacity(allocator, try addOrOom(self.items.len, additional_count));
}
/// Increases the array's length to match the full capacity that is already allocated.
/// The new elements have `undefined` values.
/// Never invalidates element pointers.
pub fn expandToCapacity(self: *Self) void {
self.items.len = self.capacity;
}
/// Increase length by 1, returning pointer to the new item.
/// The returned element pointer becomes invalid when the list is resized.
pub fn addOne(self: *Self, allocator: Allocator) Allocator.Error!*T {
// This can never overflow because `self.items` can never occupy the whole address space
const newlen = self.items.len + 1;
try self.ensureTotalCapacity(allocator, newlen);
return self.addOneAssumeCapacity();
}
/// Increase length by 1, returning pointer to the new item.
/// Never invalidates element pointers.
/// The returned element pointer becomes invalid when the list is resized.
/// Asserts that the list can hold one additional item.
pub fn addOneAssumeCapacity(self: *Self) *T {
assert(self.items.len < self.capacity);
self.items.len += 1;
return &self.items[self.items.len - 1];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// The returned pointer becomes invalid when the list is resized.
pub fn addManyAsArray(self: *Self, allocator: Allocator, comptime n: usize) Allocator.Error!*[n]T {
const prev_len = self.items.len;
try self.resize(allocator, try addOrOom(self.items.len, n));
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// Never invalidates element pointers.
/// The returned pointer becomes invalid when the list is resized.
/// Asserts that the list can hold the additional items.
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
self.items.len += n;
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements.
/// The returned pointer becomes invalid when the list is resized.
/// Resizes list if `self.capacity` is not large enough.
pub fn addManyAsSlice(self: *Self, allocator: Allocator, n: usize) Allocator.Error![]T {
const prev_len = self.items.len;
try self.resize(allocator, try addOrOom(self.items.len, n));
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements.
/// Never invalidates element pointers.
/// The returned pointer becomes invalid when the list is resized.
/// Asserts that the list can hold the additional items.
pub fn addManyAsSliceAssumeCapacity(self: *Self, n: usize) []T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
self.items.len += n;
return self.items[prev_len..][0..n];
}
/// Remove and return the last element from the list.
/// Invalidates pointers to last element.
/// Asserts that the list is not empty.
pub fn pop(self: *Self) T {
const val = self.items[self.items.len - 1];
self.items.len -= 1;
return val;
}
/// Remove and return the last element from the list.
/// If the list is empty, returns `null`.
/// Invalidates pointers to last element.
pub fn popOrNull(self: *Self) ?T {
if (self.items.len == 0) return null;
return self.pop();
}
/// Returns a slice of all the items plus the extra capacity, whose memory
/// contents are `undefined`.
pub fn allocatedSlice(self: Self) Slice {
return self.items.ptr[0..self.capacity];
}
/// Returns a slice of only the extra capacity after items.
/// This can be useful for writing directly into an ArrayList.
/// Note that such an operation must be followed up with a direct
/// modification of `self.items.len`.
pub fn unusedCapacitySlice(self: Self) []T {
return self.allocatedSlice()[self.items.len..];
}
/// Return the last element from the list.
/// Asserts that the list is not empty.
pub fn getLast(self: Self) T {
const val = self.items[self.items.len - 1];
return val;
}
/// Return the last element from the list, or
/// return `null` if list is empty.
pub fn getLastOrNull(self: Self) ?T {
if (self.items.len == 0) return null;
return self.getLast();
}
};
}
/// Called when memory growth is necessary. Returns a capacity larger than
/// minimum that grows super-linearly.
fn growCapacity(current: usize, minimum: usize) usize {
var new = current;
while (true) {
new +|= new / 2 + 8;
if (new >= minimum)
return new;
}
}
/// Integer addition returning `error.OutOfMemory` on overflow.
fn addOrOom(a: usize, b: usize) error{OutOfMemory}!usize {
const result, const overflow = @addWithOverflow(a, b);
if (overflow != 0) return error.OutOfMemory;
return result;
}
test "init" {
{
var list = ArrayList(i32).init(testing.allocator);
defer list.deinit();
try testing.expect(list.items.len == 0);
try testing.expect(list.capacity == 0);
}
{
const list: ArrayListUnmanaged(i32) = .empty;
try testing.expect(list.items.len == 0);
try testing.expect(list.capacity == 0);
}
}
test "initCapacity" {
const a = testing.allocator;
{
var list = try ArrayList(i8).initCapacity(a, 200);
defer list.deinit();
try testing.expect(list.items.len == 0);
try testing.expect(list.capacity >= 200);
}
{
var list = try ArrayListUnmanaged(i8).initCapacity(a, 200);
defer list.deinit(a);
try testing.expect(list.items.len == 0);
try testing.expect(list.capacity >= 200);
}
}
test "clone" {
const a = testing.allocator;
{
var array = ArrayList(i32).init(a);
try array.append(-1);
try array.append(3);
try array.append(5);
const cloned = try array.clone();
defer cloned.deinit();
try testing.expectEqualSlices(i32, array.items, cloned.items);
try testing.expectEqual(array.allocator, cloned.allocator);
try testing.expect(cloned.capacity >= array.capacity);
array.deinit();
try testing.expectEqual(@as(i32, -1), cloned.items[0]);
try testing.expectEqual(@as(i32, 3), cloned.items[1]);
try testing.expectEqual(@as(i32, 5), cloned.items[2]);
}
{
var array: ArrayListUnmanaged(i32) = .empty;
try array.append(a, -1);
try array.append(a, 3);
try array.append(a, 5);
var cloned = try array.clone(a);
defer cloned.deinit(a);
try testing.expectEqualSlices(i32, array.items, cloned.items);
try testing.expect(cloned.capacity >= array.capacity);
array.deinit(a);
try testing.expectEqual(@as(i32, -1), cloned.items[0]);
try testing.expectEqual(@as(i32, 3), cloned.items[1]);
try testing.expectEqual(@as(i32, 5), cloned.items[2]);
}
}
test "basic" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
{
var i: usize = 0;
while (i < 10) : (i += 1) {
list.append(@as(i32, @intCast(i + 1))) catch unreachable;
}
}
{
var i: usize = 0;
while (i < 10) : (i += 1) {
try testing.expect(list.items[i] == @as(i32, @intCast(i + 1)));
}
}
for (list.items, 0..) |v, i| {
try testing.expect(v == @as(i32, @intCast(i + 1)));
}
try testing.expect(list.pop() == 10);
try testing.expect(list.items.len == 9);
list.appendSlice(&[_]i32{ 1, 2, 3 }) catch unreachable;
try testing.expect(list.items.len == 12);
try testing.expect(list.pop() == 3);
try testing.expect(list.pop() == 2);
try testing.expect(list.pop() == 1);
try testing.expect(list.items.len == 9);
var unaligned: [3]i32 align(1) = [_]i32{ 4, 5, 6 };
list.appendUnalignedSlice(&unaligned) catch unreachable;
try testing.expect(list.items.len == 12);
try testing.expect(list.pop() == 6);
try testing.expect(list.pop() == 5);
try testing.expect(list.pop() == 4);
try testing.expect(list.items.len == 9);
list.appendSlice(&[_]i32{}) catch unreachable;
try testing.expect(list.items.len == 9);
// can only set on indices < self.items.len
list.items[7] = 33;
list.items[8] = 42;
try testing.expect(list.pop() == 42);
try testing.expect(list.pop() == 33);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
{
var i: usize = 0;
while (i < 10) : (i += 1) {
list.append(a, @as(i32, @intCast(i + 1))) catch unreachable;
}
}
{
var i: usize = 0;
while (i < 10) : (i += 1) {
try testing.expect(list.items[i] == @as(i32, @intCast(i + 1)));
}
}
for (list.items, 0..) |v, i| {
try testing.expect(v == @as(i32, @intCast(i + 1)));
}
try testing.expect(list.pop() == 10);
try testing.expect(list.items.len == 9);
list.appendSlice(a, &[_]i32{ 1, 2, 3 }) catch unreachable;
try testing.expect(list.items.len == 12);
try testing.expect(list.pop() == 3);
try testing.expect(list.pop() == 2);
try testing.expect(list.pop() == 1);
try testing.expect(list.items.len == 9);
var unaligned: [3]i32 align(1) = [_]i32{ 4, 5, 6 };
list.appendUnalignedSlice(a, &unaligned) catch unreachable;
try testing.expect(list.items.len == 12);
try testing.expect(list.pop() == 6);
try testing.expect(list.pop() == 5);
try testing.expect(list.pop() == 4);
try testing.expect(list.items.len == 9);
list.appendSlice(a, &[_]i32{}) catch unreachable;
try testing.expect(list.items.len == 9);
// can only set on indices < self.items.len
list.items[7] = 33;
list.items[8] = 42;
try testing.expect(list.pop() == 42);
try testing.expect(list.pop() == 33);
}
}
test "appendNTimes" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendNTimes(2, 10);
try testing.expectEqual(@as(usize, 10), list.items.len);
for (list.items) |element| {
try testing.expectEqual(@as(i32, 2), element);
}
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendNTimes(a, 2, 10);
try testing.expectEqual(@as(usize, 10), list.items.len);
for (list.items) |element| {
try testing.expectEqual(@as(i32, 2), element);
}
}
}
test "appendNTimes with failing allocator" {
const a = testing.failing_allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try testing.expectError(error.OutOfMemory, list.appendNTimes(2, 10));
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try testing.expectError(error.OutOfMemory, list.appendNTimes(a, 2, 10));
}
}
test "orderedRemove" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.append(4);
try list.append(5);
try list.append(6);
try list.append(7);
//remove from middle
try testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
try testing.expectEqual(@as(i32, 5), list.items[3]);
try testing.expectEqual(@as(usize, 6), list.items.len);
//remove from end
try testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
try testing.expectEqual(@as(usize, 5), list.items.len);
//remove from front
try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
try testing.expectEqual(@as(i32, 2), list.items[0]);
try testing.expectEqual(@as(usize, 4), list.items.len);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.append(a, 4);
try list.append(a, 5);
try list.append(a, 6);
try list.append(a, 7);
//remove from middle
try testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
try testing.expectEqual(@as(i32, 5), list.items[3]);
try testing.expectEqual(@as(usize, 6), list.items.len);
//remove from end
try testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
try testing.expectEqual(@as(usize, 5), list.items.len);
//remove from front
try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
try testing.expectEqual(@as(i32, 2), list.items[0]);
try testing.expectEqual(@as(usize, 4), list.items.len);
}
{
// remove last item
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
try testing.expectEqual(@as(usize, 0), list.items.len);
}
{
// remove last item
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.append(a, 1);
try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
try testing.expectEqual(@as(usize, 0), list.items.len);
}
}
test "swapRemove" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.append(4);
try list.append(5);
try list.append(6);
try list.append(7);
//remove from middle
try testing.expect(list.swapRemove(3) == 4);
try testing.expect(list.items[3] == 7);
try testing.expect(list.items.len == 6);
//remove from end
try testing.expect(list.swapRemove(5) == 6);
try testing.expect(list.items.len == 5);
//remove from front
try testing.expect(list.swapRemove(0) == 1);
try testing.expect(list.items[0] == 5);
try testing.expect(list.items.len == 4);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.append(a, 4);
try list.append(a, 5);
try list.append(a, 6);
try list.append(a, 7);
//remove from middle
try testing.expect(list.swapRemove(3) == 4);
try testing.expect(list.items[3] == 7);
try testing.expect(list.items.len == 6);
//remove from end
try testing.expect(list.swapRemove(5) == 6);
try testing.expect(list.items.len == 5);
//remove from front
try testing.expect(list.swapRemove(0) == 1);
try testing.expect(list.items[0] == 5);
try testing.expect(list.items.len == 4);
}
}
test "insert" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.insert(0, 1);
try list.append(2);
try list.insert(2, 3);
try list.insert(0, 5);
try testing.expect(list.items[0] == 5);
try testing.expect(list.items[1] == 1);
try testing.expect(list.items[2] == 2);
try testing.expect(list.items[3] == 3);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.insert(a, 0, 1);
try list.append(a, 2);
try list.insert(a, 2, 3);
try list.insert(a, 0, 5);
try testing.expect(list.items[0] == 5);
try testing.expect(list.items[1] == 1);
try testing.expect(list.items[2] == 2);
try testing.expect(list.items[3] == 3);
}
}
test "insertSlice" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.append(4);
try list.insertSlice(1, &[_]i32{ 9, 8 });
try testing.expect(list.items[0] == 1);
try testing.expect(list.items[1] == 9);
try testing.expect(list.items[2] == 8);
try testing.expect(list.items[3] == 2);
try testing.expect(list.items[4] == 3);
try testing.expect(list.items[5] == 4);
const items = [_]i32{1};
try list.insertSlice(0, items[0..0]);
try testing.expect(list.items.len == 6);
try testing.expect(list.items[0] == 1);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.append(a, 4);
try list.insertSlice(a, 1, &[_]i32{ 9, 8 });
try testing.expect(list.items[0] == 1);
try testing.expect(list.items[1] == 9);
try testing.expect(list.items[2] == 8);
try testing.expect(list.items[3] == 2);
try testing.expect(list.items[4] == 3);
try testing.expect(list.items[5] == 4);
const items = [_]i32{1};
try list.insertSlice(a, 0, items[0..0]);
try testing.expect(list.items.len == 6);
try testing.expect(list.items[0] == 1);
}
}
test "ArrayList.replaceRange" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(1, 0, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(1, 1, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(
i32,
&[_]i32{ 1, 0, 0, 0, 3, 4, 5 },
list.items,
);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(1, 2, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(1, 3, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(1, 4, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items);
}
}
test "ArrayList.replaceRangeAssumeCapacity" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 0, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 1, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(
i32,
&[_]i32{ 1, 0, 0, 0, 3, 4, 5 },
list.items,
);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 2, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 3, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 4, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items);
}
}
test "ArrayListUnmanaged.replaceRange" {
const a = testing.allocator;
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(a, 1, 0, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(a, 1, 1, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(
i32,
&[_]i32{ 1, 0, 0, 0, 3, 4, 5 },
list.items,
);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(a, 1, 2, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(a, 1, 3, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(a, 1, 4, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items);
}
}
test "ArrayListUnmanaged.replaceRangeAssumeCapacity" {
const a = testing.allocator;
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 0, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 1, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(
i32,
&[_]i32{ 1, 0, 0, 0, 3, 4, 5 },
list.items,
);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 2, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 3, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 4, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items);
}
}
const Item = struct {
integer: i32,
sub_items: ArrayList(Item),
};
const ItemUnmanaged = struct {
integer: i32,
sub_items: ArrayListUnmanaged(ItemUnmanaged),
};
test "ArrayList(T) of struct T" {
const a = std.testing.allocator;
{
var root = Item{ .integer = 1, .sub_items = .init(a) };
defer root.sub_items.deinit();
try root.sub_items.append(Item{ .integer = 42, .sub_items = .init(a) });
try testing.expect(root.sub_items.items[0].integer == 42);
}
{
var root = ItemUnmanaged{ .integer = 1, .sub_items = .empty };
defer root.sub_items.deinit(a);
try root.sub_items.append(a, ItemUnmanaged{ .integer = 42, .sub_items = .empty });
try testing.expect(root.sub_items.items[0].integer == 42);
}
}
test "ArrayList(u8) implements writer" {
const a = testing.allocator;
{
var buffer = ArrayList(u8).init(a);
defer buffer.deinit();
const x: i32 = 42;
const y: i32 = 1234;
try buffer.writer().print("x: {}\ny: {}\n", .{ x, y });
try testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items);
}
{
var list = ArrayListAligned(u8, 2).init(a);
defer list.deinit();
const writer = list.writer();
try writer.writeAll("a");
try writer.writeAll("bc");
try writer.writeAll("d");
try writer.writeAll("efg");
try testing.expectEqualSlices(u8, list.items, "abcdefg");
}
}
test "ArrayListUnmanaged(u8) implements writer" {
const a = testing.allocator;
{
var buffer: ArrayListUnmanaged(u8) = .empty;
defer buffer.deinit(a);
const x: i32 = 42;
const y: i32 = 1234;
try buffer.writer(a).print("x: {}\ny: {}\n", .{ x, y });
try testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items);
}
{
var list: ArrayListAlignedUnmanaged(u8, 2) = .empty;
defer list.deinit(a);
const writer = list.writer(a);
try writer.writeAll("a");
try writer.writeAll("bc");
try writer.writeAll("d");
try writer.writeAll("efg");
try testing.expectEqualSlices(u8, list.items, "abcdefg");
}
}
test "shrink still sets length when resizing is disabled" {
var failing_allocator = testing.FailingAllocator.init(testing.allocator, .{ .resize_fail_index = 0 });
const a = failing_allocator.allocator();
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
list.shrinkAndFree(1);
try testing.expect(list.items.len == 1);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
list.shrinkAndFree(a, 1);
try testing.expect(list.items.len == 1);
}
}
test "shrinkAndFree with a copy" {
var failing_allocator = testing.FailingAllocator.init(testing.allocator, .{ .resize_fail_index = 0 });
const a = failing_allocator.allocator();
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendNTimes(3, 16);
list.shrinkAndFree(4);
try testing.expect(mem.eql(i32, list.items, &.{ 3, 3, 3, 3 }));
}
test "addManyAsArray" {
const a = std.testing.allocator;
{
var list = ArrayList(u8).init(a);
defer list.deinit();
(try list.addManyAsArray(4)).* = "aoeu".*;
try list.ensureTotalCapacity(8);
list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;
try testing.expectEqualSlices(u8, list.items, "aoeuasdf");
}
{
var list: ArrayListUnmanaged(u8) = .empty;
defer list.deinit(a);
(try list.addManyAsArray(a, 4)).* = "aoeu".*;
try list.ensureTotalCapacity(a, 8);
list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;
try testing.expectEqualSlices(u8, list.items, "aoeuasdf");
}
}
test "growing memory preserves contents" {
// Shrink the list after every insertion to ensure that a memory growth
// will be triggered in the next operation.
const a = std.testing.allocator;
{
var list = ArrayList(u8).init(a);
defer list.deinit();
(try list.addManyAsArray(4)).* = "abcd".*;
list.shrinkAndFree(4);
try list.appendSlice("efgh");
try testing.expectEqualSlices(u8, list.items, "abcdefgh");
list.shrinkAndFree(8);
try list.insertSlice(4, "ijkl");
try testing.expectEqualSlices(u8, list.items, "abcdijklefgh");
}
{
var list: ArrayListUnmanaged(u8) = .empty;
defer list.deinit(a);
(try list.addManyAsArray(a, 4)).* = "abcd".*;
list.shrinkAndFree(a, 4);
try list.appendSlice(a, "efgh");
try testing.expectEqualSlices(u8, list.items, "abcdefgh");
list.shrinkAndFree(a, 8);
try list.insertSlice(a, 4, "ijkl");
try testing.expectEqualSlices(u8, list.items, "abcdijklefgh");
}
}
test "fromOwnedSlice" {
const a = testing.allocator;
{
var orig_list = ArrayList(u8).init(a);
defer orig_list.deinit();
try orig_list.appendSlice("foobar");
const slice = try orig_list.toOwnedSlice();
var list = ArrayList(u8).fromOwnedSlice(a, slice);
defer list.deinit();
try testing.expectEqualStrings(list.items, "foobar");
}
{
var list = ArrayList(u8).init(a);
defer list.deinit();
try list.appendSlice("foobar");
const slice = try list.toOwnedSlice();
var unmanaged = ArrayListUnmanaged(u8).fromOwnedSlice(slice);
defer unmanaged.deinit(a);
try testing.expectEqualStrings(unmanaged.items, "foobar");
}
}
test "fromOwnedSliceSentinel" {
const a = testing.allocator;
{
var orig_list = ArrayList(u8).init(a);
defer orig_list.deinit();
try orig_list.appendSlice("foobar");
const sentinel_slice = try orig_list.toOwnedSliceSentinel(0);
var list = ArrayList(u8).fromOwnedSliceSentinel(a, 0, sentinel_slice);
defer list.deinit();
try testing.expectEqualStrings(list.items, "foobar");
}
{
var list = ArrayList(u8).init(a);
defer list.deinit();
try list.appendSlice("foobar");
const sentinel_slice = try list.toOwnedSliceSentinel(0);
var unmanaged = ArrayListUnmanaged(u8).fromOwnedSliceSentinel(0, sentinel_slice);
defer unmanaged.deinit(a);
try testing.expectEqualStrings(unmanaged.items, "foobar");
}
}
test "toOwnedSliceSentinel" {
const a = testing.allocator;
{
var list = ArrayList(u8).init(a);
defer list.deinit();
try list.appendSlice("foobar");
const result = try list.toOwnedSliceSentinel(0);
defer a.free(result);
try testing.expectEqualStrings(result, mem.sliceTo(result.ptr, 0));
}
{
var list: ArrayListUnmanaged(u8) = .empty;
defer list.deinit(a);
try list.appendSlice(a, "foobar");
const result = try list.toOwnedSliceSentinel(a, 0);
defer a.free(result);
try testing.expectEqualStrings(result, mem.sliceTo(result.ptr, 0));
}
}
test "accepts unaligned slices" {
const a = testing.allocator;
{
var list = std.ArrayListAligned(u8, 8).init(a);
defer list.deinit();
try list.appendSlice(&.{ 0, 1, 2, 3 });
try list.insertSlice(2, &.{ 4, 5, 6, 7 });
try list.replaceRange(1, 3, &.{ 8, 9 });
try testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 });
}
{
var list: std.ArrayListAlignedUnmanaged(u8, 8) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &.{ 0, 1, 2, 3 });
try list.insertSlice(a, 2, &.{ 4, 5, 6, 7 });
try list.replaceRange(a, 1, 3, &.{ 8, 9 });
try testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 });
}
}
test "ArrayList(u0)" {
// An ArrayList on zero-sized types should not need to allocate
const a = testing.failing_allocator;
var list = ArrayList(u0).init(a);
defer list.deinit();
try list.append(0);
try list.append(0);
try list.append(0);
try testing.expectEqual(list.items.len, 3);
var count: usize = 0;
for (list.items) |x| {
try testing.expectEqual(x, 0);
count += 1;
}
try testing.expectEqual(count, 3);
}
test "ArrayList(?u32).popOrNull()" {
const a = testing.allocator;
var list = ArrayList(?u32).init(a);
defer list.deinit();
try list.append(null);
try list.append(1);
try list.append(2);
try testing.expectEqual(list.items.len, 3);
try testing.expect(list.popOrNull().? == @as(u32, 2));
try testing.expect(list.popOrNull().? == @as(u32, 1));
try testing.expect(list.popOrNull().? == null);
try testing.expect(list.popOrNull() == null);
}
test "ArrayList(u32).getLast()" {
const a = testing.allocator;
var list = ArrayList(u32).init(a);
defer list.deinit();
try list.append(2);
const const_list = list;
try testing.expectEqual(const_list.getLast(), 2);
}
test "ArrayList(u32).getLastOrNull()" {
const a = testing.allocator;
var list = ArrayList(u32).init(a);
defer list.deinit();
try testing.expectEqual(list.getLastOrNull(), null);
try list.append(2);
const const_list = list;
try testing.expectEqual(const_list.getLastOrNull().?, 2);
}
test "return OutOfMemory when capacity would exceed maximum usize integer value" {
const a = testing.allocator;
const new_item: u32 = 42;
const items = &.{ 42, 43 };
{
var list: ArrayListUnmanaged(u32) = .{
.items = undefined,
.capacity = math.maxInt(usize) - 1,
};
list.items.len = math.maxInt(usize) - 1;
try testing.expectError(error.OutOfMemory, list.appendSlice(a, items));
try testing.expectError(error.OutOfMemory, list.appendNTimes(a, new_item, 2));
try testing.expectError(error.OutOfMemory, list.appendUnalignedSlice(a, &.{ new_item, new_item }));
try testing.expectError(error.OutOfMemory, list.addManyAt(a, 0, 2));
try testing.expectError(error.OutOfMemory, list.addManyAsArray(a, 2));
try testing.expectError(error.OutOfMemory, list.addManyAsSlice(a, 2));
try testing.expectError(error.OutOfMemory, list.insertSlice(a, 0, items));
try testing.expectError(error.OutOfMemory, list.ensureUnusedCapacity(a, 2));
}
{
var list: ArrayList(u32) = .{
.items = undefined,
.capacity = math.maxInt(usize) - 1,
.allocator = a,
};
list.items.len = math.maxInt(usize) - 1;
try testing.expectError(error.OutOfMemory, list.appendSlice(items));
try testing.expectError(error.OutOfMemory, list.appendNTimes(new_item, 2));
try testing.expectError(error.OutOfMemory, list.appendUnalignedSlice(&.{ new_item, new_item }));
try testing.expectError(error.OutOfMemory, list.addManyAt(0, 2));
try testing.expectError(error.OutOfMemory, list.addManyAsArray(2));
try testing.expectError(error.OutOfMemory, list.addManyAsSlice(2));
try testing.expectError(error.OutOfMemory, list.insertSlice(0, items));
try testing.expectError(error.OutOfMemory, list.ensureUnusedCapacity(2));
}
}
test "ArrayListAligned with non-native alignment compiles unusedCapabitySlice" {
var list = ArrayListAligned(u8, 4).init(testing.allocator);
defer list.deinit();
try list.appendNTimes(1, 4);
_ = list.unusedCapacitySlice();
}