mirror of
https://github.com/ziglang/zig.git
synced 2024-11-16 17:15:37 +00:00
7912061226
* add `@intCast` * add `@floatCast` * add `@floatToInt` * add `@intToFloat` See #1061
181 lines
4.9 KiB
Zig
181 lines
4.9 KiB
Zig
// Special Cases:
|
|
//
|
|
// - acos(x) = nan if x < -1 or x > 1
|
|
|
|
const std = @import("../index.zig");
|
|
const math = std.math;
|
|
const assert = std.debug.assert;
|
|
|
|
pub fn acos(x: var) @typeOf(x) {
|
|
const T = @typeOf(x);
|
|
return switch (T) {
|
|
f32 => acos32(x),
|
|
f64 => acos64(x),
|
|
else => @compileError("acos not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
fn r32(z: f32) f32 {
|
|
const pS0 = 1.6666586697e-01;
|
|
const pS1 = -4.2743422091e-02;
|
|
const pS2 = -8.6563630030e-03;
|
|
const qS1 = -7.0662963390e-01;
|
|
|
|
const p = z * (pS0 + z * (pS1 + z * pS2));
|
|
const q = 1.0 + z * qS1;
|
|
return p / q;
|
|
}
|
|
|
|
fn acos32(x: f32) f32 {
|
|
const pio2_hi = 1.5707962513e+00;
|
|
const pio2_lo = 7.5497894159e-08;
|
|
|
|
const hx: u32 = @bitCast(u32, x);
|
|
const ix: u32 = hx & 0x7FFFFFFF;
|
|
|
|
// |x| >= 1 or nan
|
|
if (ix >= 0x3F800000) {
|
|
if (ix == 0x3F800000) {
|
|
if (hx >> 31 != 0) {
|
|
return 2.0 * pio2_hi + 0x1.0p-120;
|
|
} else {
|
|
return 0.0;
|
|
}
|
|
} else {
|
|
return math.nan(f32);
|
|
}
|
|
}
|
|
|
|
// |x| < 0.5
|
|
if (ix < 0x3F000000) {
|
|
if (ix <= 0x32800000) { // |x| < 2^(-26)
|
|
return pio2_hi + 0x1.0p-120;
|
|
} else {
|
|
return pio2_hi - (x - (pio2_lo - x * r32(x * x)));
|
|
}
|
|
}
|
|
|
|
// x < -0.5
|
|
if (hx >> 31 != 0) {
|
|
const z = (1 + x) * 0.5;
|
|
const s = math.sqrt(z);
|
|
const w = r32(z) * s - pio2_lo;
|
|
return 2 * (pio2_hi - (s + w));
|
|
}
|
|
|
|
// x > 0.5
|
|
const z = (1.0 - x) * 0.5;
|
|
const s = math.sqrt(z);
|
|
const jx = @bitCast(u32, s);
|
|
const df = @bitCast(f32, jx & 0xFFFFF000);
|
|
const c = (z - df * df) / (s + df);
|
|
const w = r32(z) * s + c;
|
|
return 2 * (df + w);
|
|
}
|
|
|
|
fn r64(z: f64) f64 {
|
|
const pS0: f64 = 1.66666666666666657415e-01;
|
|
const pS1: f64 = -3.25565818622400915405e-01;
|
|
const pS2: f64 = 2.01212532134862925881e-01;
|
|
const pS3: f64 = -4.00555345006794114027e-02;
|
|
const pS4: f64 = 7.91534994289814532176e-04;
|
|
const pS5: f64 = 3.47933107596021167570e-05;
|
|
const qS1: f64 = -2.40339491173441421878e+00;
|
|
const qS2: f64 = 2.02094576023350569471e+00;
|
|
const qS3: f64 = -6.88283971605453293030e-01;
|
|
const qS4: f64 = 7.70381505559019352791e-02;
|
|
|
|
const p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
|
|
const q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
|
|
return p / q;
|
|
}
|
|
|
|
fn acos64(x: f64) f64 {
|
|
const pio2_hi: f64 = 1.57079632679489655800e+00;
|
|
const pio2_lo: f64 = 6.12323399573676603587e-17;
|
|
|
|
const ux = @bitCast(u64, x);
|
|
const hx = @intCast(u32, ux >> 32);
|
|
const ix = hx & 0x7FFFFFFF;
|
|
|
|
// |x| >= 1 or nan
|
|
if (ix >= 0x3FF00000) {
|
|
const lx = @intCast(u32, ux & 0xFFFFFFFF);
|
|
|
|
// acos(1) = 0, acos(-1) = pi
|
|
if ((ix - 0x3FF00000) | lx == 0) {
|
|
if (hx >> 31 != 0) {
|
|
return 2 * pio2_hi + 0x1.0p-120;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return math.nan(f32);
|
|
}
|
|
|
|
// |x| < 0.5
|
|
if (ix < 0x3FE00000) {
|
|
// |x| < 2^(-57)
|
|
if (ix <= 0x3C600000) {
|
|
return pio2_hi + 0x1.0p-120;
|
|
} else {
|
|
return pio2_hi - (x - (pio2_lo - x * r64(x * x)));
|
|
}
|
|
}
|
|
|
|
// x < -0.5
|
|
if (hx >> 31 != 0) {
|
|
const z = (1.0 + x) * 0.5;
|
|
const s = math.sqrt(z);
|
|
const w = r64(z) * s - pio2_lo;
|
|
return 2 * (pio2_hi - (s + w));
|
|
}
|
|
|
|
// x > 0.5
|
|
const z = (1.0 - x) * 0.5;
|
|
const s = math.sqrt(z);
|
|
const jx = @bitCast(u64, s);
|
|
const df = @bitCast(f64, jx & 0xFFFFFFFF00000000);
|
|
const c = (z - df * df) / (s + df);
|
|
const w = r64(z) * s + c;
|
|
return 2 * (df + w);
|
|
}
|
|
|
|
test "math.acos" {
|
|
assert(acos(f32(0.0)) == acos32(0.0));
|
|
assert(acos(f64(0.0)) == acos64(0.0));
|
|
}
|
|
|
|
test "math.acos32" {
|
|
const epsilon = 0.000001;
|
|
|
|
assert(math.approxEq(f32, acos32(0.0), 1.570796, epsilon));
|
|
assert(math.approxEq(f32, acos32(0.2), 1.369438, epsilon));
|
|
assert(math.approxEq(f32, acos32(0.3434), 1.220262, epsilon));
|
|
assert(math.approxEq(f32, acos32(0.5), 1.047198, epsilon));
|
|
assert(math.approxEq(f32, acos32(0.8923), 0.468382, epsilon));
|
|
assert(math.approxEq(f32, acos32(-0.2), 1.772154, epsilon));
|
|
}
|
|
|
|
test "math.acos64" {
|
|
const epsilon = 0.000001;
|
|
|
|
assert(math.approxEq(f64, acos64(0.0), 1.570796, epsilon));
|
|
assert(math.approxEq(f64, acos64(0.2), 1.369438, epsilon));
|
|
assert(math.approxEq(f64, acos64(0.3434), 1.220262, epsilon));
|
|
assert(math.approxEq(f64, acos64(0.5), 1.047198, epsilon));
|
|
assert(math.approxEq(f64, acos64(0.8923), 0.468382, epsilon));
|
|
assert(math.approxEq(f64, acos64(-0.2), 1.772154, epsilon));
|
|
}
|
|
|
|
test "math.acos32.special" {
|
|
assert(math.isNan(acos32(-2)));
|
|
assert(math.isNan(acos32(1.5)));
|
|
}
|
|
|
|
test "math.acos64.special" {
|
|
assert(math.isNan(acos64(-2)));
|
|
assert(math.isNan(acos64(1.5)));
|
|
}
|