zig/lib/std/start.zig
2022-11-04 00:09:27 +03:30

648 lines
24 KiB
Zig

// This file is included in the compilation unit when exporting an executable.
const root = @import("root");
const std = @import("std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const uefi = std.os.uefi;
const elf = std.elf;
const tlcsprng = @import("crypto/tlcsprng.zig");
const native_arch = builtin.cpu.arch;
const native_os = builtin.os.tag;
var argc_argv_ptr: [*]usize = undefined;
const start_sym_name = if (native_arch.isMIPS()) "__start" else "_start";
comptime {
// No matter what, we import the root file, so that any export, test, comptime
// decls there get run.
_ = root;
// The self-hosted compiler is not fully capable of handling all of this start.zig file.
// Until then, we have simplified logic here for self-hosted. TODO remove this once
// self-hosted is capable enough to handle all of the real start.zig logic.
if (builtin.zig_backend == .stage2_wasm or
builtin.zig_backend == .stage2_x86_64 or
builtin.zig_backend == .stage2_x86 or
builtin.zig_backend == .stage2_aarch64 or
builtin.zig_backend == .stage2_arm or
builtin.zig_backend == .stage2_riscv64 or
builtin.zig_backend == .stage2_sparc64)
{
if (builtin.output_mode == .Exe) {
if ((builtin.link_libc or builtin.object_format == .c) and @hasDecl(root, "main")) {
if (@typeInfo(@TypeOf(root.main)).Fn.calling_convention != .C) {
@export(main2, .{ .name = "main" });
}
} else if (builtin.os.tag == .windows) {
if (!@hasDecl(root, "wWinMainCRTStartup") and !@hasDecl(root, "mainCRTStartup")) {
@export(wWinMainCRTStartup2, .{ .name = "wWinMainCRTStartup" });
}
} else if (builtin.os.tag == .wasi and @hasDecl(root, "main")) {
@export(wasiMain2, .{ .name = "_start" });
} else {
if (!@hasDecl(root, "_start")) {
@export(_start2, .{ .name = "_start" });
}
}
}
} else {
if (builtin.output_mode == .Lib and builtin.link_mode == .Dynamic) {
if (native_os == .windows and !@hasDecl(root, "_DllMainCRTStartup")) {
@export(_DllMainCRTStartup, .{ .name = "_DllMainCRTStartup" });
}
} else if (builtin.output_mode == .Exe or @hasDecl(root, "main")) {
if (builtin.link_libc and @hasDecl(root, "main")) {
if (native_arch.isWasm()) {
@export(mainWithoutEnv, .{ .name = "main" });
} else if (@typeInfo(@TypeOf(root.main)).Fn.calling_convention != .C) {
@export(main, .{ .name = "main" });
}
} else if (native_os == .windows) {
if (!@hasDecl(root, "WinMain") and !@hasDecl(root, "WinMainCRTStartup") and
!@hasDecl(root, "wWinMain") and !@hasDecl(root, "wWinMainCRTStartup"))
{
@export(WinStartup, .{ .name = "wWinMainCRTStartup" });
} else if (@hasDecl(root, "WinMain") and !@hasDecl(root, "WinMainCRTStartup") and
!@hasDecl(root, "wWinMain") and !@hasDecl(root, "wWinMainCRTStartup"))
{
@compileError("WinMain not supported; declare wWinMain or main instead");
} else if (@hasDecl(root, "wWinMain") and !@hasDecl(root, "wWinMainCRTStartup") and
!@hasDecl(root, "WinMain") and !@hasDecl(root, "WinMainCRTStartup"))
{
@export(wWinMainCRTStartup, .{ .name = "wWinMainCRTStartup" });
}
} else if (native_os == .uefi) {
if (!@hasDecl(root, "EfiMain")) @export(EfiMain, .{ .name = "EfiMain" });
} else if (native_os == .wasi) {
const wasm_start_sym = switch (builtin.wasi_exec_model) {
.reactor => "_initialize",
.command => "_start",
};
if (!@hasDecl(root, wasm_start_sym)) {
@export(wasi_start, .{ .name = wasm_start_sym });
}
} else if (native_arch.isWasm() and native_os == .freestanding) {
if (!@hasDecl(root, start_sym_name)) @export(wasm_freestanding_start, .{ .name = start_sym_name });
} else if (native_os != .other and native_os != .freestanding) {
if (!@hasDecl(root, start_sym_name)) @export(_start, .{ .name = start_sym_name });
}
}
}
}
// Simplified start code for stage2 until it supports more language features ///
fn main2() callconv(.C) c_int {
root.main();
return 0;
}
fn _start2() callconv(.Naked) noreturn {
callMain2();
}
fn callMain2() noreturn {
@setAlignStack(16);
root.main();
exit2(0);
}
fn wasiMain2() callconv(.C) noreturn {
switch (@typeInfo(@typeInfo(@TypeOf(root.main)).Fn.return_type.?)) {
.Void => {
root.main();
std.os.wasi.proc_exit(0);
},
.Int => |info| {
if (info.bits != 8 or info.signedness == .signed) {
@compileError(bad_main_ret);
}
std.os.wasi.proc_exit(root.main());
},
else => @compileError("Bad return type main"),
}
}
fn wWinMainCRTStartup2() callconv(.C) noreturn {
root.main();
exit2(0);
}
fn exit2(code: usize) noreturn {
switch (native_os) {
.linux => switch (builtin.cpu.arch) {
.x86_64 => {
asm volatile ("syscall"
:
: [number] "{rax}" (231),
[arg1] "{rdi}" (code),
: "rcx", "r11", "memory"
);
},
.arm => {
asm volatile ("svc #0"
:
: [number] "{r7}" (1),
[arg1] "{r0}" (code),
: "memory"
);
},
.aarch64 => {
asm volatile ("svc #0"
:
: [number] "{x8}" (93),
[arg1] "{x0}" (code),
: "memory", "cc"
);
},
.riscv64 => {
asm volatile ("ecall"
:
: [number] "{a7}" (94),
[arg1] "{a0}" (0),
: "rcx", "r11", "memory"
);
},
.sparc64 => {
asm volatile ("ta 0x6d"
:
: [number] "{g1}" (1),
[arg1] "{o0}" (code),
: "o0", "o1", "o2", "o3", "o4", "o5", "o6", "o7", "memory"
);
},
else => @compileError("TODO"),
},
// exits(0)
.plan9 => switch (builtin.cpu.arch) {
.x86_64 => {
asm volatile (
\\push $0
\\push $0
\\syscall
:
: [syscall_number] "{rbp}" (8),
: "rcx", "r11", "memory"
);
},
// TODO once we get stack setting with assembly on
// arm, exit with 0 instead of stack garbage
.aarch64 => {
asm volatile ("svc #0"
:
: [exit] "{x0}" (0x08),
: "memory", "cc"
);
},
else => @compileError("TODO"),
},
.windows => {
ExitProcess(@truncate(u32, code));
},
else => @compileError("TODO"),
}
unreachable;
}
extern "kernel32" fn ExitProcess(exit_code: u32) callconv(.C) noreturn;
////////////////////////////////////////////////////////////////////////////////
fn _DllMainCRTStartup(
hinstDLL: std.os.windows.HINSTANCE,
fdwReason: std.os.windows.DWORD,
lpReserved: std.os.windows.LPVOID,
) callconv(std.os.windows.WINAPI) std.os.windows.BOOL {
if (!builtin.single_threaded and !builtin.link_libc) {
_ = @import("start_windows_tls.zig");
}
if (@hasDecl(root, "DllMain")) {
return root.DllMain(hinstDLL, fdwReason, lpReserved);
}
return std.os.windows.TRUE;
}
fn wasm_freestanding_start() callconv(.C) void {
// This is marked inline because for some reason LLVM in
// release mode fails to inline it, and we want fewer call frames in stack traces.
_ = @call(.{ .modifier = .always_inline }, callMain, .{});
}
fn wasi_start() callconv(.C) void {
// The function call is marked inline because for some reason LLVM in
// release mode fails to inline it, and we want fewer call frames in stack traces.
switch (builtin.wasi_exec_model) {
.reactor => _ = @call(.{ .modifier = .always_inline }, callMain, .{}),
.command => std.os.wasi.proc_exit(@call(.{ .modifier = .always_inline }, callMain, .{})),
}
}
fn EfiMain(handle: uefi.Handle, system_table: *uefi.tables.SystemTable) callconv(.C) usize {
uefi.handle = handle;
uefi.system_table = system_table;
switch (@typeInfo(@TypeOf(root.main)).Fn.return_type.?) {
noreturn => {
root.main();
},
void => {
root.main();
return 0;
},
usize => {
return root.main();
},
uefi.Status => {
return @enumToInt(root.main());
},
else => @compileError("expected return type of main to be 'void', 'noreturn', 'usize', or 'std.os.uefi.Status'"),
}
}
fn _start() callconv(.Naked) noreturn {
switch (builtin.zig_backend) {
.stage2_c => {
@export(argc_argv_ptr, .{ .name = "argc_argv_ptr" });
@export(posixCallMainAndExit, .{ .name = "_posixCallMainAndExit" });
switch (native_arch) {
.x86_64 => asm volatile (
\\ xorl %%ebp, %%ebp
\\ movq %%rsp, argc_argv_ptr
\\ andq $-16, %%rsp
\\ call _posixCallMainAndExit
),
.x86 => asm volatile (
\\ xorl %%ebp, %%ebp
\\ movl %%esp, argc_argv_ptr
\\ andl $-16, %%esp
\\ jmp _posixCallMainAndExit
),
.aarch64, .aarch64_be => asm volatile (
\\ mov fp, #0
\\ mov lr, #0
\\ mov x0, sp
\\ adrp x1, argc_argv_ptr
\\ str x0, [x1, :lo12:argc_argv_ptr]
\\ b _posixCallMainAndExit
),
.arm, .armeb, .thumb => asm volatile (
\\ mov fp, #0
\\ mov lr, #0
\\ str sp, argc_argv_ptr
\\ and sp, #-16
\\ b _posixCallMainAndExit
),
else => @compileError("unsupported arch"),
}
unreachable;
},
else => switch (native_arch) {
.x86_64 => {
argc_argv_ptr = asm volatile (
\\ xor %%ebp, %%ebp
: [argc] "={rsp}" (-> [*]usize),
);
},
.x86 => {
argc_argv_ptr = asm volatile (
\\ xor %%ebp, %%ebp
: [argc] "={esp}" (-> [*]usize),
);
},
.aarch64, .aarch64_be, .arm, .armeb, .thumb => {
argc_argv_ptr = asm volatile (
\\ mov fp, #0
\\ mov lr, #0
: [argc] "={sp}" (-> [*]usize),
);
},
.riscv64 => {
argc_argv_ptr = asm volatile (
\\ li s0, 0
\\ li ra, 0
: [argc] "={sp}" (-> [*]usize),
);
},
.mips, .mipsel => {
// The lr is already zeroed on entry, as specified by the ABI.
argc_argv_ptr = asm volatile (
\\ move $fp, $0
: [argc] "={sp}" (-> [*]usize),
);
},
.powerpc => {
// Setup the initial stack frame and clear the back chain pointer.
argc_argv_ptr = asm volatile (
\\ mr 4, 1
\\ li 0, 0
\\ stwu 1,-16(1)
\\ stw 0, 0(1)
\\ mtlr 0
: [argc] "={r4}" (-> [*]usize),
:
: "r0"
);
},
.powerpc64le => {
// Setup the initial stack frame and clear the back chain pointer.
// TODO: Support powerpc64 (big endian) on ELFv2.
argc_argv_ptr = asm volatile (
\\ mr 4, 1
\\ li 0, 0
\\ stdu 0, -32(1)
\\ mtlr 0
: [argc] "={r4}" (-> [*]usize),
:
: "r0"
);
},
.sparc64 => {
// argc is stored after a register window (16 registers) plus stack bias
argc_argv_ptr = asm (
\\ mov %%g0, %%i6
\\ add %%o6, 2175, %[argc]
: [argc] "=r" (-> [*]usize),
);
},
else => @compileError("unsupported arch"),
},
}
// If LLVM inlines stack variables into _start, they will overwrite
// the command line argument data.
@call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{});
}
fn WinStartup() callconv(std.os.windows.WINAPI) noreturn {
@setAlignStack(16);
if (!builtin.single_threaded and !builtin.link_libc) {
_ = @import("start_windows_tls.zig");
}
std.debug.maybeEnableSegfaultHandler();
std.os.windows.kernel32.ExitProcess(initEventLoopAndCallMain());
}
fn wWinMainCRTStartup() callconv(std.os.windows.WINAPI) noreturn {
@setAlignStack(16);
if (!builtin.single_threaded and !builtin.link_libc) {
_ = @import("start_windows_tls.zig");
}
std.debug.maybeEnableSegfaultHandler();
const result: std.os.windows.INT = initEventLoopAndCallWinMain();
std.os.windows.kernel32.ExitProcess(@bitCast(std.os.windows.UINT, result));
}
fn posixCallMainAndExit() callconv(.C) noreturn {
@setAlignStack(16);
const argc = argc_argv_ptr[0];
const argv = @ptrCast([*][*:0]u8, argc_argv_ptr + 1);
const envp_optional = @ptrCast([*:null]?[*:0]u8, @alignCast(@alignOf(usize), argv + argc + 1));
var envp_count: usize = 0;
while (envp_optional[envp_count]) |_| : (envp_count += 1) {}
const envp = @ptrCast([*][*:0]u8, envp_optional)[0..envp_count];
if (native_os == .linux) {
// Find the beginning of the auxiliary vector
const auxv = @ptrCast([*]elf.Auxv, @alignCast(@alignOf(usize), envp.ptr + envp_count + 1));
std.os.linux.elf_aux_maybe = auxv;
var at_hwcap: usize = 0;
const phdrs = init: {
var i: usize = 0;
var at_phdr: usize = 0;
var at_phnum: usize = 0;
while (auxv[i].a_type != elf.AT_NULL) : (i += 1) {
switch (auxv[i].a_type) {
elf.AT_PHNUM => at_phnum = auxv[i].a_un.a_val,
elf.AT_PHDR => at_phdr = auxv[i].a_un.a_val,
elf.AT_HWCAP => at_hwcap = auxv[i].a_un.a_val,
else => continue,
}
}
break :init @intToPtr([*]elf.Phdr, at_phdr)[0..at_phnum];
};
// Apply the initial relocations as early as possible in the startup
// process.
if (builtin.position_independent_executable) {
std.os.linux.pie.relocate(phdrs);
}
// ARMv6 targets (and earlier) have no support for TLS in hardware.
// FIXME: Elide the check for targets >= ARMv7 when the target feature API
// becomes less verbose (and more usable).
if (comptime native_arch.isARM()) {
if (at_hwcap & std.os.linux.HWCAP.TLS == 0) {
// FIXME: Make __aeabi_read_tp call the kernel helper kuser_get_tls
// For the time being use a simple abort instead of a @panic call to
// keep the binary bloat under control.
std.os.abort();
}
}
// Initialize the TLS area.
std.os.linux.tls.initStaticTLS(phdrs);
// The way Linux executables represent stack size is via the PT_GNU_STACK
// program header. However the kernel does not recognize it; it always gives 8 MiB.
// Here we look for the stack size in our program headers and use setrlimit
// to ask for more stack space.
expandStackSize(phdrs);
}
std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp }));
}
fn expandStackSize(phdrs: []elf.Phdr) void {
for (phdrs) |*phdr| {
switch (phdr.p_type) {
elf.PT_GNU_STACK => {
const wanted_stack_size = phdr.p_memsz;
assert(wanted_stack_size % std.mem.page_size == 0);
std.os.setrlimit(.STACK, .{
.cur = wanted_stack_size,
.max = wanted_stack_size,
}) catch {
// Because we could not increase the stack size to the upper bound,
// depending on what happens at runtime, a stack overflow may occur.
// However it would cause a segmentation fault, thanks to stack probing,
// so we do not have a memory safety issue here.
// This is intentional silent failure.
// This logic should be revisited when the following issues are addressed:
// https://github.com/ziglang/zig/issues/157
// https://github.com/ziglang/zig/issues/1006
};
break;
},
else => {},
}
}
}
fn callMainWithArgs(argc: usize, argv: [*][*:0]u8, envp: [][*:0]u8) u8 {
std.os.argv = argv[0..argc];
std.os.environ = envp;
std.debug.maybeEnableSegfaultHandler();
return initEventLoopAndCallMain();
}
fn main(c_argc: c_int, c_argv: [*c][*c]u8, c_envp: [*c][*c]u8) callconv(.C) c_int {
var env_count: usize = 0;
while (c_envp[env_count] != null) : (env_count += 1) {}
const envp = @ptrCast([*][*:0]u8, c_envp)[0..env_count];
if (builtin.os.tag == .linux) {
const at_phdr = std.c.getauxval(elf.AT_PHDR);
const at_phnum = std.c.getauxval(elf.AT_PHNUM);
const phdrs = (@intToPtr([*]elf.Phdr, at_phdr))[0..at_phnum];
expandStackSize(phdrs);
}
return @call(.{ .modifier = .always_inline }, callMainWithArgs, .{ @intCast(usize, c_argc), @ptrCast([*][*:0]u8, c_argv), envp });
}
fn mainWithoutEnv(c_argc: c_int, c_argv: [*c][*c]u8) callconv(.C) c_int {
std.os.argv = @ptrCast([*][*:0]u8, c_argv)[0..@intCast(usize, c_argc)];
return @call(.{ .modifier = .always_inline }, callMain, .{});
}
// General error message for a malformed return type
const bad_main_ret = "expected return type of main to be 'void', '!void', 'noreturn', 'u8', or '!u8'";
// This is marked inline because for some reason LLVM in release mode fails to inline it,
// and we want fewer call frames in stack traces.
inline fn initEventLoopAndCallMain() u8 {
if (std.event.Loop.instance) |loop| {
if (!@hasDecl(root, "event_loop")) {
loop.init() catch |err| {
std.log.err("{s}", .{@errorName(err)});
if (@errorReturnTrace()) |trace| {
std.debug.dumpStackTrace(trace.*);
}
return 1;
};
defer loop.deinit();
var result: u8 = undefined;
var frame: @Frame(callMainAsync) = undefined;
_ = @asyncCall(&frame, &result, callMainAsync, .{loop});
loop.run();
return result;
}
}
// This is marked inline because for some reason LLVM in release mode fails to inline it,
// and we want fewer call frames in stack traces.
return @call(.{ .modifier = .always_inline }, callMain, .{});
}
// This is marked inline because for some reason LLVM in release mode fails to inline it,
// and we want fewer call frames in stack traces.
// TODO This function is duplicated from initEventLoopAndCallMain instead of using generics
// because it is working around stage1 compiler bugs.
inline fn initEventLoopAndCallWinMain() std.os.windows.INT {
if (std.event.Loop.instance) |loop| {
if (!@hasDecl(root, "event_loop")) {
loop.init() catch |err| {
std.log.err("{s}", .{@errorName(err)});
if (@errorReturnTrace()) |trace| {
std.debug.dumpStackTrace(trace.*);
}
return 1;
};
defer loop.deinit();
var result: std.os.windows.INT = undefined;
var frame: @Frame(callWinMainAsync) = undefined;
_ = @asyncCall(&frame, &result, callWinMainAsync, .{loop});
loop.run();
return result;
}
}
// This is marked inline because for some reason LLVM in release mode fails to inline it,
// and we want fewer call frames in stack traces.
return @call(.{ .modifier = .always_inline }, call_wWinMain, .{});
}
fn callMainAsync(loop: *std.event.Loop) callconv(.Async) u8 {
// This prevents the event loop from terminating at least until main() has returned.
// TODO This shouldn't be needed here; it should be in the event loop code.
loop.beginOneEvent();
defer loop.finishOneEvent();
return callMain();
}
fn callWinMainAsync(loop: *std.event.Loop) callconv(.Async) std.os.windows.INT {
// This prevents the event loop from terminating at least until main() has returned.
// TODO This shouldn't be needed here; it should be in the event loop code.
loop.beginOneEvent();
defer loop.finishOneEvent();
return call_wWinMain();
}
// This is not marked inline because it is called with @asyncCall when
// there is an event loop.
pub fn callMain() u8 {
switch (@typeInfo(@typeInfo(@TypeOf(root.main)).Fn.return_type.?)) {
.NoReturn => {
root.main();
},
.Void => {
root.main();
return 0;
},
.Int => |info| {
if (info.bits != 8 or info.signedness == .signed) {
@compileError(bad_main_ret);
}
return root.main();
},
.ErrorUnion => {
const result = root.main() catch |err| {
std.log.err("{s}", .{@errorName(err)});
if (@errorReturnTrace()) |trace| {
std.debug.dumpStackTrace(trace.*);
}
return 1;
};
switch (@typeInfo(@TypeOf(result))) {
.Void => return 0,
.Int => |info| {
if (info.bits != 8 or info.signedness == .signed) {
@compileError(bad_main_ret);
}
return result;
},
else => @compileError(bad_main_ret),
}
},
else => @compileError(bad_main_ret),
}
}
pub fn call_wWinMain() std.os.windows.INT {
const MAIN_HINSTANCE = @typeInfo(@TypeOf(root.wWinMain)).Fn.args[0].arg_type.?;
const hInstance = @ptrCast(MAIN_HINSTANCE, std.os.windows.kernel32.GetModuleHandleW(null).?);
const lpCmdLine = std.os.windows.kernel32.GetCommandLineW();
// There's no (documented) way to get the nCmdShow parameter, so we're
// using this fairly standard default.
const nCmdShow = std.os.windows.user32.SW_SHOW;
// second parameter hPrevInstance, MSDN: "This parameter is always NULL"
return root.wWinMain(hInstance, null, lpCmdLine, nCmdShow);
}