zig/lib/compiler_rt/addf3.zig
Jacob Young 17e3fcc3a5 compiler_rt: fight off @as invasion
Importantly, fixes incorrectly annotated types in `__aeabi_?2h`.
2023-09-19 09:37:52 -07:00

172 lines
6.2 KiB
Zig

const std = @import("std");
const math = std.math;
const common = @import("./common.zig");
const normalize = common.normalize;
/// Ported from:
///
/// https://github.com/llvm/llvm-project/blob/02d85149a05cb1f6dc49f0ba7a2ceca53718ae17/compiler-rt/lib/builtins/fp_add_impl.inc
pub inline fn addf3(comptime T: type, a: T, b: T) T {
const bits = @typeInfo(T).Float.bits;
const Z = std.meta.Int(.unsigned, bits);
const typeWidth = bits;
const significandBits = math.floatMantissaBits(T);
const fractionalBits = math.floatFractionalBits(T);
const exponentBits = math.floatExponentBits(T);
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1);
const integerBit = (@as(Z, 1) << fractionalBits);
const quietBit = integerBit >> 1;
const significandMask = (@as(Z, 1) << significandBits) - 1;
const absMask = signBit - 1;
const qnanRep = @as(Z, @bitCast(math.nan(T))) | quietBit;
var aRep: Z = @bitCast(a);
var bRep: Z = @bitCast(b);
const aAbs = aRep & absMask;
const bAbs = bRep & absMask;
const infRep: Z = @bitCast(math.inf(T));
// Detect if a or b is zero, infinity, or NaN.
if (aAbs -% @as(Z, 1) >= infRep - @as(Z, 1) or
bAbs -% @as(Z, 1) >= infRep - @as(Z, 1))
{
// NaN + anything = qNaN
if (aAbs > infRep) return @bitCast(@as(Z, @bitCast(a)) | quietBit);
// anything + NaN = qNaN
if (bAbs > infRep) return @bitCast(@as(Z, @bitCast(b)) | quietBit);
if (aAbs == infRep) {
// +/-infinity + -/+infinity = qNaN
if ((@as(Z, @bitCast(a)) ^ @as(Z, @bitCast(b))) == signBit) {
return @bitCast(qnanRep);
}
// +/-infinity + anything remaining = +/- infinity
else {
return a;
}
}
// anything remaining + +/-infinity = +/-infinity
if (bAbs == infRep) return b;
// zero + anything = anything
if (aAbs == 0) {
// but we need to get the sign right for zero + zero
if (bAbs == 0) {
return @bitCast(@as(Z, @bitCast(a)) & @as(Z, @bitCast(b)));
} else {
return b;
}
}
// anything + zero = anything
if (bAbs == 0) return a;
}
// Swap a and b if necessary so that a has the larger absolute value.
if (bAbs > aAbs) {
const temp = aRep;
aRep = bRep;
bRep = temp;
}
// Extract the exponent and significand from the (possibly swapped) a and b.
var aExponent: i32 = @intCast((aRep >> significandBits) & maxExponent);
var bExponent: i32 = @intCast((bRep >> significandBits) & maxExponent);
var aSignificand = aRep & significandMask;
var bSignificand = bRep & significandMask;
// Normalize any denormals, and adjust the exponent accordingly.
if (aExponent == 0) aExponent = normalize(T, &aSignificand);
if (bExponent == 0) bExponent = normalize(T, &bSignificand);
// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction; otherwise addition.
const resultSign = aRep & signBit;
const subtraction = (aRep ^ bRep) & signBit != 0;
// Shift the significands to give us round, guard and sticky, and or in the
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize( ), but setting it twice won't hurt
// anything.)
aSignificand = (aSignificand | integerBit) << 3;
bSignificand = (bSignificand | integerBit) << 3;
// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
const @"align": u32 = @intCast(aExponent - bExponent);
if (@"align" != 0) {
if (@"align" < typeWidth) {
const sticky = if (bSignificand << @intCast(typeWidth - @"align") != 0) @as(Z, 1) else 0;
bSignificand = (bSignificand >> @truncate(@"align")) | sticky;
} else {
bSignificand = 1; // sticky; b is known to be non-zero.
}
}
if (subtraction) {
aSignificand -= bSignificand;
// If a == -b, return +zero.
if (aSignificand == 0) return @bitCast(@as(Z, 0));
// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent:
if (aSignificand < integerBit << 3) {
const shift = @as(i32, @intCast(@clz(aSignificand))) - @as(i32, @intCast(@clz(integerBit << 3)));
aSignificand <<= @intCast(shift);
aExponent -= shift;
}
} else { // addition
aSignificand += bSignificand;
// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if (aSignificand & (integerBit << 4) != 0) {
const sticky = aSignificand & 1;
aSignificand = aSignificand >> 1 | sticky;
aExponent += 1;
}
}
// If we have overflowed the type, return +/- infinity:
if (aExponent >= maxExponent) return @bitCast(infRep | resultSign);
if (aExponent <= 0) {
// Result is denormal; the exponent and round/sticky bits are zero.
// All we need to do is shift the significand and apply the correct sign.
aSignificand >>= @intCast(4 - aExponent);
return @bitCast(resultSign | aSignificand);
}
// Low three bits are round, guard, and sticky.
const roundGuardSticky = aSignificand & 0x7;
// Shift the significand into place, and mask off the integer bit, if it's implicit.
var result = (aSignificand >> 3) & significandMask;
// Insert the exponent and sign.
result |= @as(Z, @intCast(aExponent)) << significandBits;
result |= resultSign;
// Final rounding. The result may overflow to infinity, but that is the
// correct result in that case.
if (roundGuardSticky > 0x4) result += 1;
if (roundGuardSticky == 0x4) result += result & 1;
// Restore any explicit integer bit, if it was rounded off
if (significandBits != fractionalBits) {
if ((result >> significandBits) != 0) result |= integerBit;
}
return @bitCast(result);
}
test {
_ = @import("addf3_test.zig");
}