mirror of
https://github.com/ziglang/zig.git
synced 2024-11-15 00:26:57 +00:00
231 lines
9.2 KiB
Zig
231 lines
9.2 KiB
Zig
//! Ported from:
|
|
//!
|
|
//! https://github.com/llvm/llvm-project/commit/d674d96bc56c0f377879d01c9d8dfdaaa7859cdb/compiler-rt/lib/builtins/divdf3.c
|
|
|
|
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
const arch = builtin.cpu.arch;
|
|
const is_test = builtin.is_test;
|
|
const common = @import("common.zig");
|
|
|
|
const normalize = common.normalize;
|
|
const wideMultiply = common.wideMultiply;
|
|
|
|
pub const panic = common.panic;
|
|
|
|
comptime {
|
|
if (common.want_aeabi) {
|
|
@export(__aeabi_ddiv, .{ .name = "__aeabi_ddiv", .linkage = common.linkage, .visibility = common.visibility });
|
|
} else {
|
|
@export(__divdf3, .{ .name = "__divdf3", .linkage = common.linkage, .visibility = common.visibility });
|
|
}
|
|
}
|
|
|
|
pub fn __divdf3(a: f64, b: f64) callconv(.C) f64 {
|
|
return div(a, b);
|
|
}
|
|
|
|
fn __aeabi_ddiv(a: f64, b: f64) callconv(.AAPCS) f64 {
|
|
return div(a, b);
|
|
}
|
|
|
|
inline fn div(a: f64, b: f64) f64 {
|
|
const Z = std.meta.Int(.unsigned, 64);
|
|
const SignedZ = std.meta.Int(.signed, 64);
|
|
|
|
const significandBits = std.math.floatMantissaBits(f64);
|
|
const exponentBits = std.math.floatExponentBits(f64);
|
|
|
|
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
|
|
const maxExponent = ((1 << exponentBits) - 1);
|
|
const exponentBias = (maxExponent >> 1);
|
|
|
|
const implicitBit = (@as(Z, 1) << significandBits);
|
|
const quietBit = implicitBit >> 1;
|
|
const significandMask = implicitBit - 1;
|
|
|
|
const absMask = signBit - 1;
|
|
const exponentMask = absMask ^ significandMask;
|
|
const qnanRep = exponentMask | quietBit;
|
|
const infRep = @as(Z, @bitCast(std.math.inf(f64)));
|
|
|
|
const aExponent: u32 = @truncate((@as(Z, @bitCast(a)) >> significandBits) & maxExponent);
|
|
const bExponent: u32 = @truncate((@as(Z, @bitCast(b)) >> significandBits) & maxExponent);
|
|
const quotientSign: Z = (@as(Z, @bitCast(a)) ^ @as(Z, @bitCast(b))) & signBit;
|
|
|
|
var aSignificand: Z = @as(Z, @bitCast(a)) & significandMask;
|
|
var bSignificand: Z = @as(Z, @bitCast(b)) & significandMask;
|
|
var scale: i32 = 0;
|
|
|
|
// Detect if a or b is zero, denormal, infinity, or NaN.
|
|
if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) {
|
|
const aAbs: Z = @as(Z, @bitCast(a)) & absMask;
|
|
const bAbs: Z = @as(Z, @bitCast(b)) & absMask;
|
|
|
|
// NaN / anything = qNaN
|
|
if (aAbs > infRep) return @bitCast(@as(Z, @bitCast(a)) | quietBit);
|
|
// anything / NaN = qNaN
|
|
if (bAbs > infRep) return @bitCast(@as(Z, @bitCast(b)) | quietBit);
|
|
|
|
if (aAbs == infRep) {
|
|
// infinity / infinity = NaN
|
|
if (bAbs == infRep) {
|
|
return @bitCast(qnanRep);
|
|
}
|
|
// infinity / anything else = +/- infinity
|
|
else {
|
|
return @bitCast(aAbs | quotientSign);
|
|
}
|
|
}
|
|
|
|
// anything else / infinity = +/- 0
|
|
if (bAbs == infRep) return @bitCast(quotientSign);
|
|
|
|
if (aAbs == 0) {
|
|
// zero / zero = NaN
|
|
if (bAbs == 0) {
|
|
return @bitCast(qnanRep);
|
|
}
|
|
// zero / anything else = +/- zero
|
|
else {
|
|
return @bitCast(quotientSign);
|
|
}
|
|
}
|
|
// anything else / zero = +/- infinity
|
|
if (bAbs == 0) return @bitCast(infRep | quotientSign);
|
|
|
|
// one or both of a or b is denormal, the other (if applicable) is a
|
|
// normal number. Renormalize one or both of a and b, and set scale to
|
|
// include the necessary exponent adjustment.
|
|
if (aAbs < implicitBit) scale +%= normalize(f64, &aSignificand);
|
|
if (bAbs < implicitBit) scale -%= normalize(f64, &bSignificand);
|
|
}
|
|
|
|
// Or in the implicit significand bit. (If we fell through from the
|
|
// denormal path it was already set by normalize( ), but setting it twice
|
|
// won't hurt anything.)
|
|
aSignificand |= implicitBit;
|
|
bSignificand |= implicitBit;
|
|
var quotientExponent: i32 = @as(i32, @bitCast(aExponent -% bExponent)) +% scale;
|
|
|
|
// Align the significand of b as a Q31 fixed-point number in the range
|
|
// [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
|
|
// polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
|
|
// is accurate to about 3.5 binary digits.
|
|
const q31b: u32 = @truncate(bSignificand >> 21);
|
|
var recip32 = @as(u32, 0x7504f333) -% q31b;
|
|
|
|
// Now refine the reciprocal estimate using a Newton-Raphson iteration:
|
|
//
|
|
// x1 = x0 * (2 - x0 * b)
|
|
//
|
|
// This doubles the number of correct binary digits in the approximation
|
|
// with each iteration, so after three iterations, we have about 28 binary
|
|
// digits of accuracy.
|
|
var correction32: u32 = undefined;
|
|
correction32 = @truncate(~(@as(u64, recip32) *% q31b >> 32) +% 1);
|
|
recip32 = @truncate(@as(u64, recip32) *% correction32 >> 31);
|
|
correction32 = @truncate(~(@as(u64, recip32) *% q31b >> 32) +% 1);
|
|
recip32 = @truncate(@as(u64, recip32) *% correction32 >> 31);
|
|
correction32 = @truncate(~(@as(u64, recip32) *% q31b >> 32) +% 1);
|
|
recip32 = @truncate(@as(u64, recip32) *% correction32 >> 31);
|
|
|
|
// recip32 might have overflowed to exactly zero in the preceding
|
|
// computation if the high word of b is exactly 1.0. This would sabotage
|
|
// the full-width final stage of the computation that follows, so we adjust
|
|
// recip32 downward by one bit.
|
|
recip32 -%= 1;
|
|
|
|
// We need to perform one more iteration to get us to 56 binary digits;
|
|
// The last iteration needs to happen with extra precision.
|
|
const q63blo: u32 = @truncate(bSignificand << 11);
|
|
var correction: u64 = undefined;
|
|
var reciprocal: u64 = undefined;
|
|
correction = ~(@as(u64, recip32) *% q31b +% (@as(u64, recip32) *% q63blo >> 32)) +% 1;
|
|
const cHi: u32 = @truncate(correction >> 32);
|
|
const cLo: u32 = @truncate(correction);
|
|
reciprocal = @as(u64, recip32) *% cHi +% (@as(u64, recip32) *% cLo >> 32);
|
|
|
|
// We already adjusted the 32-bit estimate, now we need to adjust the final
|
|
// 64-bit reciprocal estimate downward to ensure that it is strictly smaller
|
|
// than the infinitely precise exact reciprocal. Because the computation
|
|
// of the Newton-Raphson step is truncating at every step, this adjustment
|
|
// is small; most of the work is already done.
|
|
reciprocal -%= 2;
|
|
|
|
// The numerical reciprocal is accurate to within 2^-56, lies in the
|
|
// interval [0.5, 1.0), and is strictly smaller than the true reciprocal
|
|
// of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
|
|
// in Q53 with the following properties:
|
|
//
|
|
// 1. q < a/b
|
|
// 2. q is in the interval [0.5, 2.0)
|
|
// 3. the error in q is bounded away from 2^-53 (actually, we have a
|
|
// couple of bits to spare, but this is all we need).
|
|
|
|
// We need a 64 x 64 multiply high to compute q, which isn't a basic
|
|
// operation in C, so we need to be a little bit fussy.
|
|
var quotient: Z = undefined;
|
|
var quotientLo: Z = undefined;
|
|
wideMultiply(Z, aSignificand << 2, reciprocal, "ient, "ientLo);
|
|
|
|
// Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
|
|
// In either case, we are going to compute a residual of the form
|
|
//
|
|
// r = a - q*b
|
|
//
|
|
// We know from the construction of q that r satisfies:
|
|
//
|
|
// 0 <= r < ulp(q)*b
|
|
//
|
|
// if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
|
|
// already have the correct result. The exact halfway case cannot occur.
|
|
// We also take this time to right shift quotient if it falls in the [1,2)
|
|
// range and adjust the exponent accordingly.
|
|
var residual: Z = undefined;
|
|
if (quotient < (implicitBit << 1)) {
|
|
residual = (aSignificand << 53) -% quotient *% bSignificand;
|
|
quotientExponent -%= 1;
|
|
} else {
|
|
quotient >>= 1;
|
|
residual = (aSignificand << 52) -% quotient *% bSignificand;
|
|
}
|
|
|
|
const writtenExponent = quotientExponent +% exponentBias;
|
|
|
|
if (writtenExponent >= maxExponent) {
|
|
// If we have overflowed the exponent, return infinity.
|
|
return @bitCast(infRep | quotientSign);
|
|
} else if (writtenExponent < 1) {
|
|
if (writtenExponent == 0) {
|
|
// Check whether the rounded result is normal.
|
|
const round = @intFromBool((residual << 1) > bSignificand);
|
|
// Clear the implicit bit.
|
|
var absResult = quotient & significandMask;
|
|
// Round.
|
|
absResult += round;
|
|
if ((absResult & ~significandMask) != 0) {
|
|
// The rounded result is normal; return it.
|
|
return @bitCast(absResult | quotientSign);
|
|
}
|
|
}
|
|
// Flush denormals to zero. In the future, it would be nice to add
|
|
// code to round them correctly.
|
|
return @bitCast(quotientSign);
|
|
} else {
|
|
const round = @intFromBool((residual << 1) > bSignificand);
|
|
// Clear the implicit bit
|
|
var absResult = quotient & significandMask;
|
|
// Insert the exponent
|
|
absResult |= @as(Z, @bitCast(@as(SignedZ, writtenExponent))) << significandBits;
|
|
// Round
|
|
absResult +%= round;
|
|
// Insert the sign and return
|
|
return @bitCast(absResult | quotientSign);
|
|
}
|
|
}
|
|
|
|
test {
|
|
_ = @import("divdf3_test.zig");
|
|
}
|