zig/lib/std/crypto/ff.zig

989 lines
38 KiB
Zig

//! Allocation-free, (best-effort) constant-time, finite field arithmetic for large integers.
//!
//! Unlike `std.math.big`, these integers have a fixed maximum length and are only designed to be used for modular arithmetic.
//! Arithmetic operations are meant to run in constant-time for a given modulus, making them suitable for cryptography.
//!
//! Parts of that code was ported from the BSD-licensed crypto/internal/bigmod/nat.go file in the Go language, itself inspired from BearSSL.
const std = @import("std");
const builtin = @import("builtin");
const crypto = std.crypto;
const math = std.math;
const mem = std.mem;
const meta = std.meta;
const testing = std.testing;
const assert = std.debug.assert;
const Endian = std.builtin.Endian;
// A Limb is a single digit in a big integer.
const Limb = usize;
// The number of reserved bits in a Limb.
const carry_bits = 1;
// The number of active bits in a Limb.
const t_bits: usize = @bitSizeOf(Limb) - carry_bits;
// A TLimb is a Limb that is truncated to t_bits.
const TLimb = meta.Int(.unsigned, t_bits);
const native_endian = builtin.target.cpu.arch.endian();
// A WideLimb is a Limb that is twice as wide as a normal Limb.
const WideLimb = struct {
hi: Limb,
lo: Limb,
};
/// Value is too large for the destination.
pub const OverflowError = error{Overflow};
/// Invalid modulus. Modulus must be odd.
pub const InvalidModulusError = error{ EvenModulus, ModulusTooSmall };
/// Exponentiation with a null exponent.
/// Exponentiation in cryptographic protocols is almost always a sign of a bug which can lead to trivial attacks.
/// Therefore, this module returns an error when a null exponent is encountered, encouraging applications to handle this case explicitly.
pub const NullExponentError = error{NullExponent};
/// Invalid field element for the given modulus.
pub const FieldElementError = error{NonCanonical};
/// Invalid representation (Montgomery vs non-Montgomery domain.)
pub const RepresentationError = error{UnexpectedRepresentation};
/// The set of all possible errors `std.crypto.ff` functions can return.
pub const Error = OverflowError || InvalidModulusError || NullExponentError || FieldElementError || RepresentationError;
/// An unsigned big integer with a fixed maximum size (`max_bits`), suitable for cryptographic operations.
/// Unless side-channels mitigations are explicitly disabled, operations are designed to be constant-time.
pub fn Uint(comptime max_bits: comptime_int) type {
comptime assert(@bitSizeOf(Limb) % 8 == 0); // Limb size must be a multiple of 8
return struct {
const Self = @This();
const max_limbs_count = math.divCeil(usize, max_bits, t_bits) catch unreachable;
limbs_buffer: [max_limbs_count]Limb,
/// The number of active limbs.
limbs_len: usize,
/// Number of bytes required to serialize an integer.
pub const encoded_bytes = math.divCeil(usize, max_bits, 8) catch unreachable;
/// Constant slice of active limbs.
fn limbsConst(self: *const Self) []const Limb {
return self.limbs_buffer[0..self.limbs_len];
}
/// Mutable slice of active limbs.
fn limbs(self: *Self) []Limb {
return self.limbs_buffer[0..self.limbs_len];
}
// Removes limbs whose value is zero from the active limbs.
fn normalize(self: Self) Self {
var res = self;
if (self.limbs_len < 2) {
return res;
}
var i = self.limbs_len - 1;
while (i > 0 and res.limbsConst()[i] == 0) : (i -= 1) {}
res.limbs_len = i + 1;
assert(res.limbs_len <= res.limbs_buffer.len);
return res;
}
/// The zero integer.
pub const zero: Self = .{
.limbs_buffer = [1]Limb{0} ** max_limbs_count,
.limbs_len = max_limbs_count,
};
/// Creates a new big integer from a primitive type.
/// This function may not run in constant time.
pub fn fromPrimitive(comptime T: type, init_value: T) OverflowError!Self {
var x = init_value;
var out: Self = .{
.limbs_buffer = undefined,
.limbs_len = max_limbs_count,
};
for (&out.limbs_buffer) |*limb| {
limb.* = if (@bitSizeOf(T) > t_bits) @as(TLimb, @truncate(x)) else x;
x = math.shr(T, x, t_bits);
}
if (x != 0) {
return error.Overflow;
}
return out;
}
/// Converts a big integer to a primitive type.
/// This function may not run in constant time.
pub fn toPrimitive(self: Self, comptime T: type) OverflowError!T {
var x: T = 0;
var i = self.limbs_len - 1;
while (true) : (i -= 1) {
if (@bitSizeOf(T) >= t_bits and math.shr(T, x, @bitSizeOf(T) - t_bits) != 0) {
return error.Overflow;
}
x = math.shl(T, x, t_bits);
const v = math.cast(T, self.limbsConst()[i]) orelse return error.Overflow;
x |= v;
if (i == 0) break;
}
return x;
}
/// Encodes a big integer into a byte array.
pub fn toBytes(self: Self, bytes: []u8, comptime endian: Endian) OverflowError!void {
if (bytes.len == 0) {
if (self.isZero()) return;
return error.Overflow;
}
@memset(bytes, 0);
var shift: usize = 0;
var out_i: usize = switch (endian) {
.big => bytes.len - 1,
.little => 0,
};
for (0..self.limbs_len) |i| {
var remaining_bits = t_bits;
var limb = self.limbsConst()[i];
while (remaining_bits >= 8) {
bytes[out_i] |= math.shl(u8, @as(u8, @truncate(limb)), shift);
const consumed = 8 - shift;
limb >>= @as(u4, @truncate(consumed));
remaining_bits -= consumed;
shift = 0;
switch (endian) {
.big => {
if (out_i == 0) {
if (i != self.limbs_len - 1 or limb != 0) {
return error.Overflow;
}
return;
}
out_i -= 1;
},
.little => {
out_i += 1;
if (out_i == bytes.len) {
if (i != self.limbs_len - 1 or limb != 0) {
return error.Overflow;
}
return;
}
},
}
}
bytes[out_i] |= @as(u8, @truncate(limb));
shift = remaining_bits;
}
}
/// Creates a new big integer from a byte array.
pub fn fromBytes(bytes: []const u8, comptime endian: Endian) OverflowError!Self {
if (bytes.len == 0) return Self.zero;
var shift: usize = 0;
var out = Self.zero;
var out_i: usize = 0;
var i: usize = switch (endian) {
.big => bytes.len - 1,
.little => 0,
};
while (true) {
const bi = bytes[i];
out.limbs()[out_i] |= math.shl(Limb, bi, shift);
shift += 8;
if (shift >= t_bits) {
shift -= t_bits;
out.limbs()[out_i] = @as(TLimb, @truncate(out.limbs()[out_i]));
const overflow = math.shr(Limb, bi, 8 - shift);
out_i += 1;
if (out_i >= out.limbs_len) {
if (overflow != 0 or i != 0) {
return error.Overflow;
}
break;
}
out.limbs()[out_i] = overflow;
}
switch (endian) {
.big => {
if (i == 0) break;
i -= 1;
},
.little => {
i += 1;
if (i == bytes.len) break;
},
}
}
return out;
}
/// Returns `true` if both integers are equal.
pub fn eql(x: Self, y: Self) bool {
return crypto.utils.timingSafeEql([max_limbs_count]Limb, x.limbs_buffer, y.limbs_buffer);
}
/// Compares two integers.
pub fn compare(x: Self, y: Self) math.Order {
return crypto.utils.timingSafeCompare(
Limb,
x.limbsConst(),
y.limbsConst(),
.little,
);
}
/// Returns `true` if the integer is zero.
pub fn isZero(x: Self) bool {
var t: Limb = 0;
for (x.limbsConst()) |elem| {
t |= elem;
}
return ct.eql(t, 0);
}
/// Returns `true` if the integer is odd.
pub fn isOdd(x: Self) bool {
return @as(u1, @truncate(x.limbsConst()[0])) != 0;
}
/// Adds `y` to `x`, and returns `true` if the operation overflowed.
pub fn addWithOverflow(x: *Self, y: Self) u1 {
return x.conditionalAddWithOverflow(true, y);
}
/// Subtracts `y` from `x`, and returns `true` if the operation overflowed.
pub fn subWithOverflow(x: *Self, y: Self) u1 {
return x.conditionalSubWithOverflow(true, y);
}
// Replaces the limbs of `x` with the limbs of `y` if `on` is `true`.
fn cmov(x: *Self, on: bool, y: Self) void {
for (x.limbs(), y.limbsConst()) |*x_limb, y_limb| {
x_limb.* = ct.select(on, y_limb, x_limb.*);
}
}
// Adds `y` to `x` if `on` is `true`, and returns `true` if the
// operation overflowed.
fn conditionalAddWithOverflow(x: *Self, on: bool, y: Self) u1 {
var carry: u1 = 0;
for (x.limbs(), y.limbsConst()) |*x_limb, y_limb| {
const res = x_limb.* + y_limb + carry;
x_limb.* = ct.select(on, @as(TLimb, @truncate(res)), x_limb.*);
carry = @truncate(res >> t_bits);
}
return carry;
}
// Subtracts `y` from `x` if `on` is `true`, and returns `true` if the
// operation overflowed.
fn conditionalSubWithOverflow(x: *Self, on: bool, y: Self) u1 {
var borrow: u1 = 0;
for (x.limbs(), y.limbsConst()) |*x_limb, y_limb| {
const res = x_limb.* -% y_limb -% borrow;
x_limb.* = ct.select(on, @as(TLimb, @truncate(res)), x_limb.*);
borrow = @truncate(res >> t_bits);
}
return borrow;
}
};
}
/// A field element.
fn Fe_(comptime bits: comptime_int) type {
return struct {
const Self = @This();
const FeUint = Uint(bits);
/// The element value as a `Uint`.
v: FeUint,
/// `true` if the element is in Montgomery form.
montgomery: bool = false,
/// The maximum number of bytes required to encode a field element.
pub const encoded_bytes = FeUint.encoded_bytes;
// The number of active limbs to represent the field element.
fn limbs_count(self: Self) usize {
return self.v.limbs_len;
}
/// Creates a field element from a primitive.
/// This function may not run in constant time.
pub fn fromPrimitive(comptime T: type, m: Modulus(bits), x: T) (OverflowError || FieldElementError)!Self {
comptime assert(@bitSizeOf(T) <= bits); // Primitive type is larger than the modulus type.
const v = try FeUint.fromPrimitive(T, x);
var fe = Self{ .v = v };
try m.shrink(&fe);
try m.rejectNonCanonical(fe);
return fe;
}
/// Converts the field element to a primitive.
/// This function may not run in constant time.
pub fn toPrimitive(self: Self, comptime T: type) OverflowError!T {
return self.v.toPrimitive(T);
}
/// Creates a field element from a byte string.
pub fn fromBytes(m: Modulus(bits), bytes: []const u8, comptime endian: Endian) (OverflowError || FieldElementError)!Self {
const v = try FeUint.fromBytes(bytes, endian);
var fe = Self{ .v = v };
try m.shrink(&fe);
try m.rejectNonCanonical(fe);
return fe;
}
/// Converts the field element to a byte string.
pub fn toBytes(self: Self, bytes: []u8, comptime endian: Endian) OverflowError!void {
return self.v.toBytes(bytes, endian);
}
/// Returns `true` if the field elements are equal, in constant time.
pub fn eql(x: Self, y: Self) bool {
return x.v.eql(y.v);
}
/// Compares two field elements in constant time.
pub fn compare(x: Self, y: Self) math.Order {
return x.v.compare(y.v);
}
/// Returns `true` if the element is zero.
pub fn isZero(self: Self) bool {
return self.v.isZero();
}
/// Returns `true` is the element is odd.
pub fn isOdd(self: Self) bool {
return self.v.isOdd();
}
};
}
/// A modulus, defining a finite field.
/// All operations within the field are performed modulo this modulus, without heap allocations.
/// `max_bits` represents the number of bits in the maximum value the modulus can be set to.
pub fn Modulus(comptime max_bits: comptime_int) type {
return struct {
const Self = @This();
/// A field element, representing a value within the field defined by this modulus.
pub const Fe = Fe_(max_bits);
const FeUint = Fe.FeUint;
/// The neutral element.
zero: Fe,
/// The modulus value.
v: FeUint,
/// R^2 for the Montgomery representation.
rr: Fe,
/// Inverse of the first limb
m0inv: Limb,
/// Number of leading zero bits in the modulus.
leading: usize,
// Number of active limbs in the modulus.
fn limbs_count(self: Self) usize {
return self.v.limbs_len;
}
/// Actual size of the modulus, in bits.
pub fn bits(self: Self) usize {
return self.limbs_count() * t_bits - self.leading;
}
/// Returns the element `1`.
pub fn one(self: Self) Fe {
var fe = self.zero;
fe.v.limbs()[0] = 1;
return fe;
}
/// Creates a new modulus from a `Uint` value.
/// The modulus must be odd and larger than 2.
pub fn fromUint(v_: FeUint) InvalidModulusError!Self {
if (!v_.isOdd()) return error.EvenModulus;
var v = v_.normalize();
const hi = v.limbsConst()[v.limbs_len - 1];
const lo = v.limbsConst()[0];
if (v.limbs_len < 2 and lo < 3) {
return error.ModulusTooSmall;
}
const leading = @clz(hi) - carry_bits;
var y = lo;
inline for (0..comptime math.log2_int(usize, t_bits)) |_| {
y = y *% (2 -% lo *% y);
}
const m0inv = (@as(Limb, 1) << t_bits) - (@as(TLimb, @truncate(y)));
const zero = Fe{ .v = FeUint.zero };
var m = Self{
.zero = zero,
.v = v,
.leading = leading,
.m0inv = m0inv,
.rr = undefined, // will be computed right after
};
m.shrink(&m.zero) catch unreachable;
computeRR(&m);
return m;
}
/// Creates a new modulus from a primitive value.
/// The modulus must be odd and larger than 2.
pub fn fromPrimitive(comptime T: type, x: T) (InvalidModulusError || OverflowError)!Self {
comptime assert(@bitSizeOf(T) <= max_bits); // Primitive type is larger than the modulus type.
const v = try FeUint.fromPrimitive(T, x);
return try Self.fromUint(v);
}
/// Creates a new modulus from a byte string.
pub fn fromBytes(bytes: []const u8, comptime endian: Endian) (InvalidModulusError || OverflowError)!Self {
const v = try FeUint.fromBytes(bytes, endian);
return try Self.fromUint(v);
}
/// Serializes the modulus to a byte string.
pub fn toBytes(self: Self, bytes: []u8, comptime endian: Endian) OverflowError!void {
return self.v.toBytes(bytes, endian);
}
/// Rejects field elements that are not in the canonical form.
pub fn rejectNonCanonical(self: Self, fe: Fe) error{NonCanonical}!void {
if (fe.limbs_count() != self.limbs_count() or ct.limbsCmpGeq(fe.v, self.v)) {
return error.NonCanonical;
}
}
// Makes the number of active limbs in a field element match the one of the modulus.
fn shrink(self: Self, fe: *Fe) OverflowError!void {
const new_len = self.limbs_count();
if (fe.limbs_count() < new_len) return error.Overflow;
var acc: Limb = 0;
for (fe.v.limbsConst()[new_len..]) |limb| {
acc |= limb;
}
if (acc != 0) return error.Overflow;
if (new_len > fe.v.limbs_buffer.len) return error.Overflow;
fe.v.limbs_len = new_len;
}
// Computes R^2 for the Montgomery representation.
fn computeRR(self: *Self) void {
self.rr = self.zero;
const n = self.rr.limbs_count();
self.rr.v.limbs()[n - 1] = 1;
for ((n - 1)..(2 * n)) |_| {
self.shiftIn(&self.rr, 0);
}
self.shrink(&self.rr) catch unreachable;
}
/// Computes x << t_bits + y (mod m)
fn shiftIn(self: Self, x: *Fe, y: Limb) void {
var d = self.zero;
const x_limbs = x.v.limbs();
const d_limbs = d.v.limbs();
const m_limbs = self.v.limbsConst();
var need_sub = false;
var i: usize = t_bits - 1;
while (true) : (i -= 1) {
var carry: u1 = @truncate(math.shr(Limb, y, i));
var borrow: u1 = 0;
for (0..self.limbs_count()) |j| {
const l = ct.select(need_sub, d_limbs[j], x_limbs[j]);
var res = (l << 1) + carry;
x_limbs[j] = @as(TLimb, @truncate(res));
carry = @truncate(res >> t_bits);
res = x_limbs[j] -% m_limbs[j] -% borrow;
d_limbs[j] = @as(TLimb, @truncate(res));
borrow = @truncate(res >> t_bits);
}
need_sub = ct.eql(carry, borrow);
if (i == 0) break;
}
x.v.cmov(need_sub, d.v);
}
/// Adds two field elements (mod m).
pub fn add(self: Self, x: Fe, y: Fe) Fe {
var out = x;
const overflow = out.v.addWithOverflow(y.v);
const underflow: u1 = @bitCast(ct.limbsCmpLt(out.v, self.v));
const need_sub = ct.eql(overflow, underflow);
_ = out.v.conditionalSubWithOverflow(need_sub, self.v);
return out;
}
/// Subtracts two field elements (mod m).
pub fn sub(self: Self, x: Fe, y: Fe) Fe {
var out = x;
const underflow: bool = @bitCast(out.v.subWithOverflow(y.v));
_ = out.v.conditionalAddWithOverflow(underflow, self.v);
return out;
}
/// Converts a field element to the Montgomery form.
pub fn toMontgomery(self: Self, x: *Fe) RepresentationError!void {
if (x.montgomery) {
return error.UnexpectedRepresentation;
}
self.shrink(x) catch unreachable;
x.* = self.montgomeryMul(x.*, self.rr);
x.montgomery = true;
}
/// Takes a field element out of the Montgomery form.
pub fn fromMontgomery(self: Self, x: *Fe) RepresentationError!void {
if (!x.montgomery) {
return error.UnexpectedRepresentation;
}
self.shrink(x) catch unreachable;
x.* = self.montgomeryMul(x.*, self.one());
x.montgomery = false;
}
/// Reduces an arbitrary `Uint`, converting it to a field element.
pub fn reduce(self: Self, x: anytype) Fe {
var out = self.zero;
var i = x.limbs_len - 1;
if (self.limbs_count() >= 2) {
const start = @min(i, self.limbs_count() - 2);
var j = start;
while (true) : (j -= 1) {
out.v.limbs()[j] = x.limbsConst()[i];
i -= 1;
if (j == 0) break;
}
}
while (true) : (i -= 1) {
self.shiftIn(&out, x.limbsConst()[i]);
if (i == 0) break;
}
return out;
}
fn montgomeryLoop(self: Self, d: *Fe, x: Fe, y: Fe) u1 {
assert(d.limbs_count() == x.limbs_count());
assert(d.limbs_count() == y.limbs_count());
assert(d.limbs_count() == self.limbs_count());
const a_limbs = x.v.limbsConst();
const b_limbs = y.v.limbsConst();
const d_limbs = d.v.limbs();
const m_limbs = self.v.limbsConst();
var overflow: u1 = 0;
for (0..self.limbs_count()) |i| {
var carry: Limb = 0;
var wide = ct.mulWide(a_limbs[i], b_limbs[0]);
var z_lo = @addWithOverflow(d_limbs[0], wide.lo);
const f = @as(TLimb, @truncate(z_lo[0] *% self.m0inv));
var z_hi = wide.hi +% z_lo[1];
wide = ct.mulWide(f, m_limbs[0]);
z_lo = @addWithOverflow(z_lo[0], wide.lo);
z_hi +%= z_lo[1];
z_hi +%= wide.hi;
carry = (z_hi << 1) | (z_lo[0] >> t_bits);
for (1..self.limbs_count()) |j| {
wide = ct.mulWide(a_limbs[i], b_limbs[j]);
z_lo = @addWithOverflow(d_limbs[j], wide.lo);
z_hi = wide.hi +% z_lo[1];
wide = ct.mulWide(f, m_limbs[j]);
z_lo = @addWithOverflow(z_lo[0], wide.lo);
z_hi +%= z_lo[1];
z_hi +%= wide.hi;
z_lo = @addWithOverflow(z_lo[0], carry);
z_hi +%= z_lo[1];
if (j > 0) {
d_limbs[j - 1] = @as(TLimb, @truncate(z_lo[0]));
}
carry = (z_hi << 1) | (z_lo[0] >> t_bits);
}
const z = overflow + carry;
d_limbs[self.limbs_count() - 1] = @as(TLimb, @truncate(z));
overflow = @as(u1, @truncate(z >> t_bits));
}
return overflow;
}
// Montgomery multiplication.
fn montgomeryMul(self: Self, x: Fe, y: Fe) Fe {
var d = self.zero;
assert(x.limbs_count() == self.limbs_count());
assert(y.limbs_count() == self.limbs_count());
const overflow = self.montgomeryLoop(&d, x, y);
const underflow = 1 -% @intFromBool(ct.limbsCmpGeq(d.v, self.v));
const need_sub = ct.eql(overflow, underflow);
_ = d.v.conditionalSubWithOverflow(need_sub, self.v);
d.montgomery = x.montgomery == y.montgomery;
return d;
}
// Montgomery squaring.
fn montgomerySq(self: Self, x: Fe) Fe {
var d = self.zero;
assert(x.limbs_count() == self.limbs_count());
const overflow = self.montgomeryLoop(&d, x, x);
const underflow = 1 -% @intFromBool(ct.limbsCmpGeq(d.v, self.v));
const need_sub = ct.eql(overflow, underflow);
_ = d.v.conditionalSubWithOverflow(need_sub, self.v);
d.montgomery = true;
return d;
}
// Returns x^e (mod m), with the exponent provided as a byte string.
// `public` must be set to `false` if the exponent it secret.
fn powWithEncodedExponentInternal(self: Self, x: Fe, e: []const u8, endian: Endian, comptime public: bool) NullExponentError!Fe {
var acc: u8 = 0;
for (e) |b| acc |= b;
if (acc == 0) return error.NullExponent;
var out = self.one();
self.toMontgomery(&out) catch unreachable;
if (public and e.len < 3 or (e.len == 3 and e[if (endian == .big) 0 else 2] <= 0b1111)) {
// Do not use a precomputation table for short, public exponents
var x_m = x;
if (x.montgomery == false) {
self.toMontgomery(&x_m) catch unreachable;
}
var s = switch (endian) {
.big => 0,
.little => e.len - 1,
};
while (true) {
const b = e[s];
var j: u3 = 7;
while (true) : (j -= 1) {
out = self.montgomerySq(out);
const k: u1 = @truncate(b >> j);
if (k != 0) {
const t = self.montgomeryMul(out, x_m);
@memcpy(out.v.limbs(), t.v.limbsConst());
}
if (j == 0) break;
}
switch (endian) {
.big => {
s += 1;
if (s == e.len) break;
},
.little => {
if (s == 0) break;
s -= 1;
},
}
}
} else {
// Use a precomputation table for large exponents
var pc = [1]Fe{x} ++ [_]Fe{self.zero} ** 14;
if (x.montgomery == false) {
self.toMontgomery(&pc[0]) catch unreachable;
}
for (1..pc.len) |i| {
pc[i] = self.montgomeryMul(pc[i - 1], pc[0]);
}
var t0 = self.zero;
var s = switch (endian) {
.big => 0,
.little => e.len - 1,
};
while (true) {
const b = e[s];
for ([_]u3{ 4, 0 }) |j| {
for (0..4) |_| {
out = self.montgomerySq(out);
}
const k = (b >> j) & 0b1111;
if (public or std.options.side_channels_mitigations == .none) {
if (k == 0) continue;
t0 = pc[k - 1];
} else {
for (pc, 0..) |t, i| {
t0.v.cmov(ct.eql(k, @as(u8, @truncate(i + 1))), t.v);
}
}
const t1 = self.montgomeryMul(out, t0);
if (public) {
@memcpy(out.v.limbs(), t1.v.limbsConst());
} else {
out.v.cmov(!ct.eql(k, 0), t1.v);
}
}
switch (endian) {
.big => {
s += 1;
if (s == e.len) break;
},
.little => {
if (s == 0) break;
s -= 1;
},
}
}
}
self.fromMontgomery(&out) catch unreachable;
return out;
}
/// Multiplies two field elements.
pub fn mul(self: Self, x: Fe, y: Fe) Fe {
if (x.montgomery != y.montgomery) {
return self.montgomeryMul(x, y);
}
var a_ = x;
if (x.montgomery == false) {
self.toMontgomery(&a_) catch unreachable;
} else {
self.fromMontgomery(&a_) catch unreachable;
}
return self.montgomeryMul(a_, y);
}
/// Squares a field element.
pub fn sq(self: Self, x: Fe) Fe {
var out = x;
if (x.montgomery == true) {
self.fromMontgomery(&out) catch unreachable;
}
out = self.montgomerySq(out);
out.montgomery = false;
self.toMontgomery(&out) catch unreachable;
return out;
}
/// Returns x^e (mod m) in constant time.
pub fn pow(self: Self, x: Fe, e: Fe) NullExponentError!Fe {
var buf: [Fe.encoded_bytes]u8 = undefined;
e.toBytes(&buf, native_endian) catch unreachable;
return self.powWithEncodedExponent(x, &buf, native_endian);
}
/// Returns x^e (mod m), assuming that the exponent is public.
/// The function remains constant time with respect to `x`.
pub fn powPublic(self: Self, x: Fe, e: Fe) NullExponentError!Fe {
var e_normalized = Fe{ .v = e.v.normalize() };
var buf_: [Fe.encoded_bytes]u8 = undefined;
var buf = buf_[0 .. math.divCeil(usize, e_normalized.v.limbs_len * t_bits, 8) catch unreachable];
e_normalized.toBytes(buf, .little) catch unreachable;
const leading = @clz(e_normalized.v.limbsConst()[e_normalized.v.limbs_len - carry_bits]);
buf = buf[0 .. buf.len - leading / 8];
return self.powWithEncodedPublicExponent(x, buf, .little);
}
/// Returns x^e (mod m), with the exponent provided as a byte string.
/// Exponents are usually small, so this function is faster than `powPublic` as a field element
/// doesn't have to be created if a serialized representation is already available.
///
/// If the exponent is public, `powWithEncodedPublicExponent()` can be used instead for a slight speedup.
pub fn powWithEncodedExponent(self: Self, x: Fe, e: []const u8, endian: Endian) NullExponentError!Fe {
return self.powWithEncodedExponentInternal(x, e, endian, false);
}
/// Returns x^e (mod m), the exponent being public and provided as a byte string.
/// Exponents are usually small, so this function is faster than `powPublic` as a field element
/// doesn't have to be created if a serialized representation is already available.
///
/// If the exponent is secret, `powWithEncodedExponent` must be used instead.
pub fn powWithEncodedPublicExponent(self: Self, x: Fe, e: []const u8, endian: Endian) NullExponentError!Fe {
return self.powWithEncodedExponentInternal(x, e, endian, true);
}
};
}
const ct = if (std.options.side_channels_mitigations == .none) ct_unprotected else ct_protected;
const ct_protected = struct {
// Returns x if on is true, otherwise y.
fn select(on: bool, x: Limb, y: Limb) Limb {
const mask = @as(Limb, 0) -% @intFromBool(on);
return y ^ (mask & (y ^ x));
}
// Compares two values in constant time.
fn eql(x: anytype, y: @TypeOf(x)) bool {
const c1 = @subWithOverflow(x, y)[1];
const c2 = @subWithOverflow(y, x)[1];
return @as(bool, @bitCast(1 - (c1 | c2)));
}
// Compares two big integers in constant time, returning true if x < y.
fn limbsCmpLt(x: anytype, y: @TypeOf(x)) bool {
var c: u1 = 0;
for (x.limbsConst(), y.limbsConst()) |x_limb, y_limb| {
c = @truncate((x_limb -% y_limb -% c) >> t_bits);
}
return c != 0;
}
// Compares two big integers in constant time, returning true if x >= y.
fn limbsCmpGeq(x: anytype, y: @TypeOf(x)) bool {
return !limbsCmpLt(x, y);
}
// Multiplies two limbs and returns the result as a wide limb.
fn mulWide(x: Limb, y: Limb) WideLimb {
const half_bits = @typeInfo(Limb).Int.bits / 2;
const Half = meta.Int(.unsigned, half_bits);
const x0 = @as(Half, @truncate(x));
const x1 = @as(Half, @truncate(x >> half_bits));
const y0 = @as(Half, @truncate(y));
const y1 = @as(Half, @truncate(y >> half_bits));
const w0 = math.mulWide(Half, x0, y0);
const t = math.mulWide(Half, x1, y0) + (w0 >> half_bits);
var w1: Limb = @as(Half, @truncate(t));
const w2 = @as(Half, @truncate(t >> half_bits));
w1 += math.mulWide(Half, x0, y1);
const hi = math.mulWide(Half, x1, y1) + w2 + (w1 >> half_bits);
const lo = x *% y;
return .{ .hi = hi, .lo = lo };
}
};
const ct_unprotected = struct {
// Returns x if on is true, otherwise y.
fn select(on: bool, x: Limb, y: Limb) Limb {
return if (on) x else y;
}
// Compares two values in constant time.
fn eql(x: anytype, y: @TypeOf(x)) bool {
return x == y;
}
// Compares two big integers in constant time, returning true if x < y.
fn limbsCmpLt(x: anytype, y: @TypeOf(x)) bool {
const x_limbs = x.limbsConst();
const y_limbs = y.limbsConst();
assert(x_limbs.len == y_limbs.len);
var i = x_limbs.len;
while (i != 0) {
i -= 1;
if (x_limbs[i] != y_limbs[i]) {
return x_limbs[i] < y_limbs[i];
}
}
return false;
}
// Compares two big integers in constant time, returning true if x >= y.
fn limbsCmpGeq(x: anytype, y: @TypeOf(x)) bool {
return !limbsCmpLt(x, y);
}
// Multiplies two limbs and returns the result as a wide limb.
fn mulWide(x: Limb, y: Limb) WideLimb {
const wide = math.mulWide(Limb, x, y);
return .{
.hi = @as(Limb, @truncate(wide >> @typeInfo(Limb).Int.bits)),
.lo = @as(Limb, @truncate(wide)),
};
}
};
test "finite field arithmetic" {
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
const M = Modulus(256);
const m = try M.fromPrimitive(u256, 3429938563481314093726330772853735541133072814650493833233);
var x = try M.Fe.fromPrimitive(u256, m, 80169837251094269539116136208111827396136208141182357733);
var y = try M.Fe.fromPrimitive(u256, m, 24620149608466364616251608466389896540098571);
const x_ = try x.toPrimitive(u256);
try testing.expect((try M.Fe.fromPrimitive(@TypeOf(x_), m, x_)).eql(x));
try testing.expectError(error.Overflow, x.toPrimitive(u50));
const bits = m.bits();
try testing.expectEqual(bits, 192);
var x_y = m.mul(x, y);
try testing.expectEqual(x_y.toPrimitive(u256), 1666576607955767413750776202132407807424848069716933450241);
try m.toMontgomery(&x);
x_y = m.mul(x, y);
try testing.expectEqual(x_y.toPrimitive(u256), 1666576607955767413750776202132407807424848069716933450241);
try m.fromMontgomery(&x);
x = m.add(x, y);
try testing.expectEqual(x.toPrimitive(u256), 80169837251118889688724602572728079004602598037722456304);
x = m.sub(x, y);
try testing.expectEqual(x.toPrimitive(u256), 80169837251094269539116136208111827396136208141182357733);
const big = try Uint(512).fromPrimitive(u495, 77285373554113307281465049383342993856348131409372633077285373554113307281465049383323332333429938563481314093726330772853735541133072814650493833233);
const reduced = m.reduce(big);
try testing.expectEqual(reduced.toPrimitive(u495), 858047099884257670294681641776170038885500210968322054970);
const x_pow_y = try m.powPublic(x, y);
try testing.expectEqual(x_pow_y.toPrimitive(u256), 1631933139300737762906024873185789093007782131928298618473);
try m.toMontgomery(&x);
const x_pow_y2 = try m.powPublic(x, y);
try m.fromMontgomery(&x);
try testing.expect(x_pow_y2.eql(x_pow_y));
try testing.expectError(error.NullExponent, m.powPublic(x, m.zero));
try testing.expect(!x.isZero());
try testing.expect(!y.isZero());
try testing.expect(m.v.isOdd());
const x_sq = m.sq(x);
const x_sq2 = m.mul(x, x);
try testing.expect(x_sq.eql(x_sq2));
try m.toMontgomery(&x);
const x_sq3 = m.sq(x);
const x_sq4 = m.mul(x, x);
try testing.expect(x_sq.eql(x_sq3));
try testing.expect(x_sq3.eql(x_sq4));
try m.fromMontgomery(&x);
}
fn testCt(ct_: anytype) !void {
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
const l0: Limb = 0;
const l1: Limb = 1;
try testing.expectEqual(l1, ct_.select(true, l1, l0));
try testing.expectEqual(l0, ct_.select(false, l1, l0));
try testing.expectEqual(false, ct_.eql(l1, l0));
try testing.expectEqual(true, ct_.eql(l1, l1));
const M = Modulus(256);
const m = try M.fromPrimitive(u256, 3429938563481314093726330772853735541133072814650493833233);
const x = try M.Fe.fromPrimitive(u256, m, 80169837251094269539116136208111827396136208141182357733);
const y = try M.Fe.fromPrimitive(u256, m, 24620149608466364616251608466389896540098571);
try testing.expectEqual(false, ct_.limbsCmpLt(x.v, y.v));
try testing.expectEqual(true, ct_.limbsCmpGeq(x.v, y.v));
try testing.expectEqual(WideLimb{ .hi = 0, .lo = 0x88 }, ct_.mulWide(1 << 3, (1 << 4) + 1));
}
test ct {
try testCt(ct_protected);
try testCt(ct_unprotected);
}