mirror of
https://github.com/ziglang/zig.git
synced 2024-11-16 00:57:04 +00:00
907c5589ae
Calling Timer.lap queried the system time twice; once to compute the lap time and once to reset the timer. This can lead to time discrepancies between actual and computed durations when summing the result of Timer.lap in a loop. This commit fixes that. also fix Timer.read to not require a pointer
227 lines
8.4 KiB
Zig
227 lines
8.4 KiB
Zig
const builtin = @import("builtin");
|
|
const std = @import("std.zig");
|
|
const assert = std.debug.assert;
|
|
const testing = std.testing;
|
|
const os = std.os;
|
|
const math = std.math;
|
|
|
|
pub const epoch = @import("time/epoch.zig");
|
|
|
|
/// Spurious wakeups are possible and no precision of timing is guaranteed.
|
|
/// TODO integrate with evented I/O
|
|
pub fn sleep(nanoseconds: u64) void {
|
|
if (builtin.os == .windows) {
|
|
const ns_per_ms = ns_per_s / ms_per_s;
|
|
const big_ms_from_ns = nanoseconds / ns_per_ms;
|
|
const ms = math.cast(os.windows.DWORD, big_ms_from_ns) catch math.maxInt(os.windows.DWORD);
|
|
os.windows.kernel32.Sleep(ms);
|
|
return;
|
|
}
|
|
const s = nanoseconds / ns_per_s;
|
|
const ns = nanoseconds % ns_per_s;
|
|
std.os.nanosleep(s, ns);
|
|
}
|
|
|
|
/// Get the posix timestamp, UTC, in seconds
|
|
/// TODO audit this function. is it possible to return an error?
|
|
pub fn timestamp() u64 {
|
|
return @divFloor(milliTimestamp(), ms_per_s);
|
|
}
|
|
|
|
/// Get the posix timestamp, UTC, in milliseconds
|
|
/// TODO audit this function. is it possible to return an error?
|
|
pub fn milliTimestamp() u64 {
|
|
if (builtin.os == .windows) {
|
|
//FileTime has a granularity of 100 nanoseconds
|
|
// and uses the NTFS/Windows epoch
|
|
var ft: os.windows.FILETIME = undefined;
|
|
os.windows.kernel32.GetSystemTimeAsFileTime(&ft);
|
|
const hns_per_ms = (ns_per_s / 100) / ms_per_s;
|
|
const epoch_adj = epoch.windows * ms_per_s;
|
|
|
|
const ft64 = (@as(u64, ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
|
|
return @divFloor(ft64, hns_per_ms) - -epoch_adj;
|
|
}
|
|
if (builtin.os == .wasi and !builtin.link_libc) {
|
|
var ns: os.wasi.timestamp_t = undefined;
|
|
|
|
// TODO: Verify that precision is ignored
|
|
const err = os.wasi.clock_time_get(os.wasi.CLOCK_REALTIME, 1, &ns);
|
|
assert(err == os.wasi.ESUCCESS);
|
|
|
|
const ns_per_ms = 1000;
|
|
return @divFloor(ns, ns_per_ms);
|
|
}
|
|
if (comptime std.Target.current.isDarwin()) {
|
|
var tv: os.darwin.timeval = undefined;
|
|
var err = os.darwin.gettimeofday(&tv, null);
|
|
assert(err == 0);
|
|
const sec_ms = tv.tv_sec * ms_per_s;
|
|
const usec_ms = @divFloor(tv.tv_usec, us_per_s / ms_per_s);
|
|
return @intCast(u64, sec_ms + usec_ms);
|
|
}
|
|
var ts: os.timespec = undefined;
|
|
//From what I can tell there's no reason clock_gettime
|
|
// should ever fail for us with CLOCK_REALTIME,
|
|
// seccomp aside.
|
|
os.clock_gettime(os.CLOCK_REALTIME, &ts) catch unreachable;
|
|
const sec_ms = @intCast(u64, ts.tv_sec) * ms_per_s;
|
|
const nsec_ms = @divFloor(@intCast(u64, ts.tv_nsec), ns_per_s / ms_per_s);
|
|
return sec_ms + nsec_ms;
|
|
}
|
|
|
|
/// Multiples of a base unit (nanoseconds)
|
|
pub const nanosecond = 1;
|
|
pub const microsecond = 1000 * nanosecond;
|
|
pub const millisecond = 1000 * microsecond;
|
|
pub const second = 1000 * millisecond;
|
|
pub const minute = 60 * second;
|
|
pub const hour = 60 * minute;
|
|
|
|
/// Divisions of a second
|
|
pub const ns_per_s = 1000000000;
|
|
pub const us_per_s = 1000000;
|
|
pub const ms_per_s = 1000;
|
|
pub const cs_per_s = 100;
|
|
|
|
/// Common time divisions
|
|
pub const s_per_min = 60;
|
|
pub const s_per_hour = s_per_min * 60;
|
|
pub const s_per_day = s_per_hour * 24;
|
|
pub const s_per_week = s_per_day * 7;
|
|
|
|
/// A monotonic high-performance timer.
|
|
/// Timer.start() must be called to initialize the struct, which captures
|
|
/// the counter frequency on windows and darwin, records the resolution,
|
|
/// and gives the user an opportunity to check for the existnece of
|
|
/// monotonic clocks without forcing them to check for error on each read.
|
|
/// .resolution is in nanoseconds on all platforms but .start_time's meaning
|
|
/// depends on the OS. On Windows and Darwin it is a hardware counter
|
|
/// value that requires calculation to convert to a meaninful unit.
|
|
pub const Timer = struct {
|
|
///if we used resolution's value when performing the
|
|
/// performance counter calc on windows/darwin, it would
|
|
/// be less precise
|
|
frequency: switch (builtin.os) {
|
|
.windows => u64,
|
|
.macosx, .ios, .tvos, .watchos => os.darwin.mach_timebase_info_data,
|
|
else => void,
|
|
},
|
|
resolution: u64,
|
|
start_time: u64,
|
|
|
|
const Error = error{TimerUnsupported};
|
|
|
|
///At some point we may change our minds on RAW, but for now we're
|
|
/// sticking with posix standard MONOTONIC. For more information, see:
|
|
/// https://github.com/ziglang/zig/pull/933
|
|
const monotonic_clock_id = os.CLOCK_MONOTONIC;
|
|
/// Initialize the timer structure.
|
|
//This gives us an opportunity to grab the counter frequency in windows.
|
|
//On Windows: QueryPerformanceCounter will succeed on anything >= XP/2000.
|
|
//On Posix: CLOCK_MONOTONIC will only fail if the monotonic counter is not
|
|
// supported, or if the timespec pointer is out of bounds, which should be
|
|
// impossible here barring cosmic rays or other such occurrences of
|
|
// incredibly bad luck.
|
|
//On Darwin: This cannot fail, as far as I am able to tell.
|
|
pub fn start() Error!Timer {
|
|
var self: Timer = undefined;
|
|
|
|
if (builtin.os == .windows) {
|
|
self.frequency = os.windows.QueryPerformanceFrequency();
|
|
self.resolution = @divFloor(ns_per_s, self.frequency);
|
|
self.start_time = os.windows.QueryPerformanceCounter();
|
|
} else if (comptime std.Target.current.isDarwin()) {
|
|
os.darwin.mach_timebase_info(&self.frequency);
|
|
self.resolution = @divFloor(self.frequency.numer, self.frequency.denom);
|
|
self.start_time = os.darwin.mach_absolute_time();
|
|
} else {
|
|
//On Linux, seccomp can do arbitrary things to our ability to call
|
|
// syscalls, including return any errno value it wants and
|
|
// inconsistently throwing errors. Since we can't account for
|
|
// abuses of seccomp in a reasonable way, we'll assume that if
|
|
// seccomp is going to block us it will at least do so consistently
|
|
var ts: os.timespec = undefined;
|
|
os.clock_getres(monotonic_clock_id, &ts) catch return error.TimerUnsupported;
|
|
self.resolution = @intCast(u64, ts.tv_sec) * @as(u64, ns_per_s) + @intCast(u64, ts.tv_nsec);
|
|
|
|
os.clock_gettime(monotonic_clock_id, &ts) catch return error.TimerUnsupported;
|
|
self.start_time = @intCast(u64, ts.tv_sec) * @as(u64, ns_per_s) + @intCast(u64, ts.tv_nsec);
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
/// Reads the timer value since start or the last reset in nanoseconds
|
|
pub fn read(self: Timer) u64 {
|
|
var clock = clockNative() - self.start_time;
|
|
return self.nativeDurationToNanos(clock);
|
|
}
|
|
|
|
/// Resets the timer value to 0/now.
|
|
pub fn reset(self: *Timer) void {
|
|
self.start_time = clockNative();
|
|
}
|
|
|
|
/// Returns the current value of the timer in nanoseconds, then resets it
|
|
pub fn lap(self: *Timer) u64 {
|
|
var now = clockNative();
|
|
var lap_time = self.nativeDurationToNanos(now - self.start_time);
|
|
self.start_time = now;
|
|
return lap_time;
|
|
}
|
|
|
|
fn clockNative() u64 {
|
|
if (builtin.os == .windows) {
|
|
return os.windows.QueryPerformanceCounter();
|
|
}
|
|
if (comptime std.Target.current.isDarwin()) {
|
|
return os.darwin.mach_absolute_time();
|
|
}
|
|
var ts: os.timespec = undefined;
|
|
os.clock_gettime(monotonic_clock_id, &ts) catch unreachable;
|
|
return @intCast(u64, ts.tv_sec) * @as(u64, ns_per_s) + @intCast(u64, ts.tv_nsec);
|
|
}
|
|
|
|
fn nativeDurationToNanos(self: Timer, duration: u64) u64 {
|
|
if (builtin.os == .windows) {
|
|
return @divFloor(duration * ns_per_s, self.frequency);
|
|
}
|
|
if (comptime std.Target.current.isDarwin()) {
|
|
return @divFloor(duration * self.frequency.numer, self.frequency.denom);
|
|
}
|
|
return duration;
|
|
}
|
|
};
|
|
|
|
test "sleep" {
|
|
sleep(1);
|
|
}
|
|
|
|
test "timestamp" {
|
|
const ns_per_ms = (ns_per_s / ms_per_s);
|
|
const margin = 50;
|
|
|
|
const time_0 = milliTimestamp();
|
|
sleep(ns_per_ms);
|
|
const time_1 = milliTimestamp();
|
|
const interval = time_1 - time_0;
|
|
testing.expect(interval > 0 and interval < margin);
|
|
}
|
|
|
|
test "Timer" {
|
|
const ns_per_ms = (ns_per_s / ms_per_s);
|
|
const margin = ns_per_ms * 150;
|
|
|
|
var timer = try Timer.start();
|
|
sleep(10 * ns_per_ms);
|
|
const time_0 = timer.read();
|
|
testing.expect(time_0 > 0 and time_0 < margin);
|
|
|
|
const time_1 = timer.lap();
|
|
testing.expect(time_1 >= time_0);
|
|
|
|
timer.reset();
|
|
testing.expect(timer.read() < time_1);
|
|
}
|