zig/lib/std/time.zig
Heide Onas Auri 907c5589ae
std.time.Timer.lap: only read system time once (#4533)
Calling Timer.lap queried the system time twice; once to compute the lap
time and once to reset the timer. This can lead to time discrepancies
between actual and computed durations when summing the result of
Timer.lap in a loop. This commit fixes that.

also fix Timer.read to not require a pointer
2020-02-23 18:25:52 -05:00

227 lines
8.4 KiB
Zig

const builtin = @import("builtin");
const std = @import("std.zig");
const assert = std.debug.assert;
const testing = std.testing;
const os = std.os;
const math = std.math;
pub const epoch = @import("time/epoch.zig");
/// Spurious wakeups are possible and no precision of timing is guaranteed.
/// TODO integrate with evented I/O
pub fn sleep(nanoseconds: u64) void {
if (builtin.os == .windows) {
const ns_per_ms = ns_per_s / ms_per_s;
const big_ms_from_ns = nanoseconds / ns_per_ms;
const ms = math.cast(os.windows.DWORD, big_ms_from_ns) catch math.maxInt(os.windows.DWORD);
os.windows.kernel32.Sleep(ms);
return;
}
const s = nanoseconds / ns_per_s;
const ns = nanoseconds % ns_per_s;
std.os.nanosleep(s, ns);
}
/// Get the posix timestamp, UTC, in seconds
/// TODO audit this function. is it possible to return an error?
pub fn timestamp() u64 {
return @divFloor(milliTimestamp(), ms_per_s);
}
/// Get the posix timestamp, UTC, in milliseconds
/// TODO audit this function. is it possible to return an error?
pub fn milliTimestamp() u64 {
if (builtin.os == .windows) {
//FileTime has a granularity of 100 nanoseconds
// and uses the NTFS/Windows epoch
var ft: os.windows.FILETIME = undefined;
os.windows.kernel32.GetSystemTimeAsFileTime(&ft);
const hns_per_ms = (ns_per_s / 100) / ms_per_s;
const epoch_adj = epoch.windows * ms_per_s;
const ft64 = (@as(u64, ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
return @divFloor(ft64, hns_per_ms) - -epoch_adj;
}
if (builtin.os == .wasi and !builtin.link_libc) {
var ns: os.wasi.timestamp_t = undefined;
// TODO: Verify that precision is ignored
const err = os.wasi.clock_time_get(os.wasi.CLOCK_REALTIME, 1, &ns);
assert(err == os.wasi.ESUCCESS);
const ns_per_ms = 1000;
return @divFloor(ns, ns_per_ms);
}
if (comptime std.Target.current.isDarwin()) {
var tv: os.darwin.timeval = undefined;
var err = os.darwin.gettimeofday(&tv, null);
assert(err == 0);
const sec_ms = tv.tv_sec * ms_per_s;
const usec_ms = @divFloor(tv.tv_usec, us_per_s / ms_per_s);
return @intCast(u64, sec_ms + usec_ms);
}
var ts: os.timespec = undefined;
//From what I can tell there's no reason clock_gettime
// should ever fail for us with CLOCK_REALTIME,
// seccomp aside.
os.clock_gettime(os.CLOCK_REALTIME, &ts) catch unreachable;
const sec_ms = @intCast(u64, ts.tv_sec) * ms_per_s;
const nsec_ms = @divFloor(@intCast(u64, ts.tv_nsec), ns_per_s / ms_per_s);
return sec_ms + nsec_ms;
}
/// Multiples of a base unit (nanoseconds)
pub const nanosecond = 1;
pub const microsecond = 1000 * nanosecond;
pub const millisecond = 1000 * microsecond;
pub const second = 1000 * millisecond;
pub const minute = 60 * second;
pub const hour = 60 * minute;
/// Divisions of a second
pub const ns_per_s = 1000000000;
pub const us_per_s = 1000000;
pub const ms_per_s = 1000;
pub const cs_per_s = 100;
/// Common time divisions
pub const s_per_min = 60;
pub const s_per_hour = s_per_min * 60;
pub const s_per_day = s_per_hour * 24;
pub const s_per_week = s_per_day * 7;
/// A monotonic high-performance timer.
/// Timer.start() must be called to initialize the struct, which captures
/// the counter frequency on windows and darwin, records the resolution,
/// and gives the user an opportunity to check for the existnece of
/// monotonic clocks without forcing them to check for error on each read.
/// .resolution is in nanoseconds on all platforms but .start_time's meaning
/// depends on the OS. On Windows and Darwin it is a hardware counter
/// value that requires calculation to convert to a meaninful unit.
pub const Timer = struct {
///if we used resolution's value when performing the
/// performance counter calc on windows/darwin, it would
/// be less precise
frequency: switch (builtin.os) {
.windows => u64,
.macosx, .ios, .tvos, .watchos => os.darwin.mach_timebase_info_data,
else => void,
},
resolution: u64,
start_time: u64,
const Error = error{TimerUnsupported};
///At some point we may change our minds on RAW, but for now we're
/// sticking with posix standard MONOTONIC. For more information, see:
/// https://github.com/ziglang/zig/pull/933
const monotonic_clock_id = os.CLOCK_MONOTONIC;
/// Initialize the timer structure.
//This gives us an opportunity to grab the counter frequency in windows.
//On Windows: QueryPerformanceCounter will succeed on anything >= XP/2000.
//On Posix: CLOCK_MONOTONIC will only fail if the monotonic counter is not
// supported, or if the timespec pointer is out of bounds, which should be
// impossible here barring cosmic rays or other such occurrences of
// incredibly bad luck.
//On Darwin: This cannot fail, as far as I am able to tell.
pub fn start() Error!Timer {
var self: Timer = undefined;
if (builtin.os == .windows) {
self.frequency = os.windows.QueryPerformanceFrequency();
self.resolution = @divFloor(ns_per_s, self.frequency);
self.start_time = os.windows.QueryPerformanceCounter();
} else if (comptime std.Target.current.isDarwin()) {
os.darwin.mach_timebase_info(&self.frequency);
self.resolution = @divFloor(self.frequency.numer, self.frequency.denom);
self.start_time = os.darwin.mach_absolute_time();
} else {
//On Linux, seccomp can do arbitrary things to our ability to call
// syscalls, including return any errno value it wants and
// inconsistently throwing errors. Since we can't account for
// abuses of seccomp in a reasonable way, we'll assume that if
// seccomp is going to block us it will at least do so consistently
var ts: os.timespec = undefined;
os.clock_getres(monotonic_clock_id, &ts) catch return error.TimerUnsupported;
self.resolution = @intCast(u64, ts.tv_sec) * @as(u64, ns_per_s) + @intCast(u64, ts.tv_nsec);
os.clock_gettime(monotonic_clock_id, &ts) catch return error.TimerUnsupported;
self.start_time = @intCast(u64, ts.tv_sec) * @as(u64, ns_per_s) + @intCast(u64, ts.tv_nsec);
}
return self;
}
/// Reads the timer value since start or the last reset in nanoseconds
pub fn read(self: Timer) u64 {
var clock = clockNative() - self.start_time;
return self.nativeDurationToNanos(clock);
}
/// Resets the timer value to 0/now.
pub fn reset(self: *Timer) void {
self.start_time = clockNative();
}
/// Returns the current value of the timer in nanoseconds, then resets it
pub fn lap(self: *Timer) u64 {
var now = clockNative();
var lap_time = self.nativeDurationToNanos(now - self.start_time);
self.start_time = now;
return lap_time;
}
fn clockNative() u64 {
if (builtin.os == .windows) {
return os.windows.QueryPerformanceCounter();
}
if (comptime std.Target.current.isDarwin()) {
return os.darwin.mach_absolute_time();
}
var ts: os.timespec = undefined;
os.clock_gettime(monotonic_clock_id, &ts) catch unreachable;
return @intCast(u64, ts.tv_sec) * @as(u64, ns_per_s) + @intCast(u64, ts.tv_nsec);
}
fn nativeDurationToNanos(self: Timer, duration: u64) u64 {
if (builtin.os == .windows) {
return @divFloor(duration * ns_per_s, self.frequency);
}
if (comptime std.Target.current.isDarwin()) {
return @divFloor(duration * self.frequency.numer, self.frequency.denom);
}
return duration;
}
};
test "sleep" {
sleep(1);
}
test "timestamp" {
const ns_per_ms = (ns_per_s / ms_per_s);
const margin = 50;
const time_0 = milliTimestamp();
sleep(ns_per_ms);
const time_1 = milliTimestamp();
const interval = time_1 - time_0;
testing.expect(interval > 0 and interval < margin);
}
test "Timer" {
const ns_per_ms = (ns_per_s / ms_per_s);
const margin = ns_per_ms * 150;
var timer = try Timer.start();
sleep(10 * ns_per_ms);
const time_0 = timer.read();
testing.expect(time_0 > 0 and time_0 < margin);
const time_1 = timer.lap();
testing.expect(time_1 >= time_0);
timer.reset();
testing.expect(timer.read() < time_1);
}